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Garbled Circuit

GC is a crypto primitive for secure 2-party computation.
Constant Round.
Mostly, based on symmetric primitives.
But, communication cost scales with the circuit size.
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Garbled Circuit

Basic approach relies on gate-by-gate construction
We represent functions as Boolean circuits composed by AND, XOR
gates.

Garbler generates encrypted truth tables gate-by-gate.
Evaluator can decrypt only the row corresponding to the inputs to
the gates.
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Recent Improvements & Our Contributions

Mostly, devoted to reduce communication costs.

AND XOR
Yao’s GC [Yao86] 4κ 4κ

Row reduction [NPS99] 3κ 3κ
Free-XOR [KS08] 3κ 0
Half-gate [ZRE15] 2κ 0

Three-halves [RR21] ≈ (3/2)κ 0
Sliced GC [AHS24] ≈ (4/3)κ? 0

Table: κ: security parameter.

Our Contribution: We show that Sliced GC [AHS24] is insecure!
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Yao’s GC

Consider a gate F with input wires a and b and output wire c.

a
b

c
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Yao’s GC

Consider a gate F with input wires a and b and output wire c.

Garbler assigns κ-bit wire labels for each wires.
(A0, A1) correspond to (0, 1) on the wire a.
Similarly for the others.

A0, A1

B0, B1 C0, C1
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Yao’s GC

Consider a gate F with input wires a and b and output wire c.

Basic Idea: Garbler encrypts CF (i ,j) using (Ai , Bj) as one-time pad
keys.

a b c
A0 B0 C0

A0 B1 C0

A1 B0 C0

A1 B1 C1

⇒
G0,0 = C0 ⊕ H(A0, B0)
G0,1 = C0 ⊕ H(A0, B1)
G1,0 = C0 ⊕ H(A1, B0)
G1,1 = C1 ⊕ H(A1, B1)
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Yao’s GC

Consider a gate F with input wires a and b and output wire c.

Basic Idea: Given (A1, B0), Evaluator decrypts G1,0 using (A1, B0)
as one-time pad keys.

a b c
A0 B0 C0

A0 B1 C0

A1 B0 C0

A1 B1 C1

⇒
G0,0 = C0 ⊕ H(A0, B0)
G0,1 = C0 ⊕ H(A0, B1)

G1,0 = C0 ⊕ H(A1, B0)
G1,1 = C1 ⊕ H(A1, B1)

GC size – Yao’s GC
The number of ctxts is 4.
Thus, the GC size is 4κ-bit.
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Notations

We assume the point-and-permute & Free-XOR techniques.
Garbler chooses1

(Global Offset) ∆ ∈ {0, 1}κ s.t. lsb(∆) = 1.
(Input Labels) A0 ∈ {0, 1}κ corresponding to the truth value 0. Set
A1 = A0 + ∆.

Au
x : where u: underlying truth value and x : least significant bit (lsb).

If Evaluator holds Au
x , the color bit x is visible to Evaluator, where

the underlying value is u = x + α for the permute bit α = lsb(A0).

1Additions below are all over F2.
T. Kim Analysis on Sliced Garbling 11 / 24



Garbling XOR, AND gates

Denote u := x + α and v := y + β.

(XOR gates) Garbling XOR gates requires no ciphertext.
Set C := C0 = A0 + B0 corresponds to 0.
Given (Au

x , Bv
y ) for some x , y ∈ {0, 1}, Evaluator knows

Cu+v = C + (u + v)∆ = Au
x + Bv

y .

(AND gates) Given (Au
x , Bv

y ), Evaluator wants to know

Cuv = C + uv∆ = C + (x + α)(y + β)∆.

⇒ Recent works focus on improving garbling AND gates.
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Algebraic View on Garbling – Yao’s GC

Motivated by linear-algebraic representation of GC equation [RR21], we
provide our algebraic view on GC.

Examples (Yao’s GC – Evaluator’s view)
Given (Au

x , Bv
y ) for some x , y ∈ {0, 1} and ciphertexts G0,0, . . . , G1,1,

obtain Cuv = C + uv∆ by computing

C + uv∆ = Gx ,y + H(Ax , By ).

Garbler’s goal: set C and Gi ,j ’s so that the equation holds for all
x , y ∈ F2.
Rearrange the above equation so that C and G are on the left-hand
side.
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Algebraic View on Garbling – Yao’s GC

Motivated by linear-algebraic representation of GC equation [RR21], we
provide our algebraic view on GC.

Examples (Yao’s GC – Garbler’s view)
Given (Ax , By ) for all x , y ∈ {0, 1}, Garbler should set G0,0, . . . , G1,1 and
C such that

C + Gx ,y︸ ︷︷ ︸
should be determined by Garbler

= H(Ax , By ) + uv∆.

Garbler determine the variables on the left-hand side from the values
on the right-hand side.
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Algebraic View on Garbling – Yao’s GC

View the equation as a polynomial over Fκ
2 [x , y ]/(x2 + x , y2 + y) using the

Lagrange polynomials.2

C + Gx ,y︸︷︷︸
(x+1)(y+1)G0,0+···

= H(Ax , By )︸ ︷︷ ︸
(x+1)(y+1)H(A0,B0)+···

+(x + α)(y + β)∆

Observation:
Both sides are quadratic polynomials.
Garbler determines C and Gi ,j by comparing the coefficients of four
monomials 1, x , y , xy .

Ex. C + G0,0 = H(A0, B0) + αβ∆ from the constant term.
(Row reduction) Only four variables are enough to determine the
equation.
⇒ One is for C , the other three is for ciphertexts.

2As x , y ∈ F2, it holds x2 = x and y 2 = y .
T. Kim Analysis on Sliced Garbling 15 / 24



Algebraic View on Garbling – Half-gate

Half-gate GC [ZRE15] only requires 2 ciphertexts for garbling AND
gates.
Garbler generates C and two ciphertexts G1, G2 as follows:

C = H(A) + H(B) + αβ∆
G1 = H(A) + H(A + ∆) + β∆
G2 = H(B) + H(B + ∆) + A + α∆

Given (Ax , By ), Evaluator gets C (x+α)(y+β) = C + (x + α)(y + β)∆
by computing

C + (x + α)(y + β)∆︸ ︷︷ ︸
correspond to (x+α)(y+β)

= xG1 + yG2 + H(Ax ) + H(By ) + yAx︸ ︷︷ ︸
computed by Ev

.
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Algebraic View on Garbling – Half-gate

How does it work?
Similarly, rearrange and rewrite the previous equation as a polynomial.

C + xG1 + yG2 = H(Ax )︸ ︷︷ ︸
(x+1)H(A0)+xH(A1)

+ H(By )︸ ︷︷ ︸
···

+ yAx︸︷︷︸
y(A+x∆)

+(x + α)(y + β)∆.

Observation:
H(Ax ) + H(By ) is a linear polynomial.
The quadratic term (x + α)(y + β)∆ is inevitable if we aim to garble
AND gates.
To enforce the right-hand side to be linear, the term yAx is
introduced so that the quadratic term xy∆ cancels out.
C and G1, G2 are determined by comparing the coefficients of the
monomials 1, x , y .
⇒ Two ciphertexts are enough to garble AND gates!
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Construction of GC

In a nutshell, construction of GC is to establish a suitable garbling
equation, which mostly follows the direction:

1 Determine the type of random oracle queries on the input labels.
E.g. H(Ax , By ) in Yao’s GC and H(Ax ) + H(By ) in half-gate GC.

2 It will automatically determine a polynomial subspace spanned by
these random oracle queries.

E.g. the space of quadratic/linear polynomials in Yao’s GC/half-gate
GC, resp.

3 Adjust the term uv∆ = (x + α)(y + β)∆ in order that it belongs to
the same space.

E.g. Yao’s GC requires no adjustment. In half-gate scheme, the term
yAx has been introduced to cancel out the quadratic term.

4 On the left-hand side, consider the same space generated with the
variables C and G ’s, then compare the both sides to set the
variables.
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Algebraic View on Garbling – Three-halves

[RR21] further reduces GC size from 2κ to 1.5κ.

Clever Ideas: Slice wire labels into two parts, e.g. A = (AL∥AR). Let
Evaluator compute each half of the output label as3

CL + (x + α)(y + β)∆L = H(Ax ) + H(Ax + By ) + · · ·
CR + (x + α)(y + β)∆R = H(By ) + H(Ax + By ) + · · ·

Note: With the Free-XOR,

A0 + B1 = A1 + B0 and A0 + B0 = A1 + B1.

3H is now half-sized.
T. Kim Analysis on Sliced Garbling 18 / 24



Algebraic View on Garbling – Three-halves

Consider the space spanned by (again using the Lagrange polynomials)

(
H(Ax ) + H(Ax + By )
H(By ) + H(Ax + By )

)
= M



H(A0)
H(A1)
H(B0)
H(B1)

H(A0 + B0)
H(A0 + B1)


,

where
M :=

(
x + 1 x 0 0 x + y + 1 x + y

0 0 y + 1 y x + y + 1 x + y

)
.

Observation: dim(col .sp(M)) = 5.
⇒ Two variables for CL and CR , and three variables for ciphertexts.
Each ciphertexts is of κ/2-bit. Thus the total GC size would be (3/2)κ.
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Algebraic View on Garbling – Three-halves

Let the both sides of GC equation be in the same space as span(M). And
write the GC equation (from the garbler’s view) as follows:

W


CL

CR

G1
G2
G3


︸ ︷︷ ︸

span(W)=span(M)

= M



H(A0)
H(A1)
H(B0)
H(B1)

H(A0 + B0)
H(A0 + B1)


︸ ︷︷ ︸

∈span(M)

+ RAA⃗x + RBB⃗y + (x + α)(y + β)∆⃗︸ ︷︷ ︸
(∗)

.

For the correctness,
W is a column-reduced matrix of M, i.e. span(W) = span(M).
The matrices RA, RB control the term (∗) containing
(x + α)(y + β)∆⃗ belongs to span(M).
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Algebraic View on Garbling – Three-halves

We have
W =

(
1 0 x 0 x + y
0 1 0 y x + y

)
The term (∗) also belongs to span(M) = span(W), i.e.

RAA⃗x + RBB⃗y + (x + α)(y + β)∆⃗ ∈ span(W) (1)

Completing the GC equation amounts to find RA and RB.

Notes: With their linear-algebraic view in [RR21], they find RA and RB
(which are 8 × 6 binary matrix for each) by exhaustive computer search.
Our algebraic view simplifies this task.

T. Kim Analysis on Sliced Garbling 19 / 24



Algebraic View on Garbling – Three-halves

Notes on span(W): Observe that

W


z1
z2
z3
z4
z5

 =
(

z1 + (z3 + z5)x + z5y
z2 + z5x + (z4 + z5)y

)
.

We see that
It consists of only linear polynomials.
(y -coefficient on the top) = (x -coefficient on the bottom)

We shall use these relations to find a correct GC equation.
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Algebraic View on Garbling – Three-halves

Let us write RA = RA,0 + xRA,1 + yRA,2 and similarly for RB.
Finding RA and RB satisfying Eq. (1) yields

RA,1 =
[
a1 a2
a3 a4

]
, RA,2 =

[
a3 a4
b3 b4

]
, RA,0 =

[
c1 c2
c3 c4

]

RB,1 =
[
a3 + 1 a4

b3 b4 + 1

]
, RB,2 =

[
b3 b4 + 1
e3 e4

]
, RB,0 =

[
f1 f2
f3 f4

]
,

where f1 = a3 + b3 + c3 + α and f2 = a4 + b4 + c4 + β + 1.

Note: We only need some algebra to solve RA and RB instead of the
exhaustive computer search as in RR21.
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Algebraic View on Garbling – Three-halves

Dicing Technique: Note that RA and RB contain information on α and β
that leaks information on the private inputs!

What Evaluator indeed needs is the values of RA and RB at (x , y) = (i , j)
for her input (Ai , Bj).

Garbler generates additional ciphertexts in a way that Evaluator only obtains
RA(i , j) and RB(i , j).
For instance, consider the first column of RA, the additional ciphertexts
satisfy

W


z1
z2
z3
z4
z5

 = MH⃗ +
(

c1 + a1x + a3y
c3 + a3x + b3y

)
.
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Algebraic View on Garbling – Three-halves

Note: The dicing technique in RR21 does not leak information on the
inputs:
I.e. from RA(i , j) and RB(i , j), Evaluator cannot infer information on α
and β.

But, this is not the case for AHS24 construction.
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Overview on AHS24 – Sliced Garbling

Sliced Garbling: A main feature of AHS24 is as follows:

(3-sliced) It uses 3-sliced wire labels, i.e. A = (A1∥A2∥A3).
(target gates) It targets garbling the 3-input gate
g(u, v , w) = u(v + w).
(oracle queries) It uses

D1 + g(u, v , w)∆1 = H(Ax ) + H(By ) + H(Ax + By + Cz) + · · ·
D2 + g(u, v , w)∆2 = H(By ) + H(Cz) + H(Ax + By + Cz) + · · ·
D3 + g(u, v , w)∆3 = H(Ax ) + H(Cz) + H(Ax + By + Cz) + · · · ,

where (u, v , w) = (x + α, y + β, z + γ).
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Overview on AHS24 – Sliced Garbling

Sliced Garbling: A main feature of AHS24 is as follows:

The H⃗ is defined as:

H⃗ := ( H(A0) H(A1) H(B0) H(B1) H(C0) H(C1) H(A0+B0+C0) H(A0+B0+C1) )⊤.

Then the matrix M for AHS24 is of the form:

M =
( x+1 x y+1 y 0 0 x+y+z+1 x+y+z

0 0 y+1 y z+1 z x+y+z+1 x+y+z
x+1 x 0 0 z+1 z x+y+z+1 x+y+z

)
The column-reduced matrix W is of the form:

W =
( 1 0 0 x y 0 x+y+z

0 1 0 0 y z x+y+z
0 0 1 x 0 z x+y+z

)

T. Kim Analysis on Sliced Garbling 20 / 24



Overview on AHS24 – Sliced Garbling

Sliced Garbling: A main feature of AHS24 is as follows:

Thus, dim(span(M)) = dim(span(W)) = 7.
Among them, 4 will contribute to the ciphertexts, and each of ctxts is
κ/3-bit.
If the construction works, then its cost will be (4/3)κ-bit, smaller
than (3/2)κ.
But, AHS24 leaks information on α and β.
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Analysis on Sliced Garbling: Main Results

From our algebraic view, we write the GC equation for AHS24 as follows:

WG⃗ = MH⃗ + RAA⃗x + RBB⃗y + RC C⃗z + g(x + α, y + β, z + γ)∆⃗︸ ︷︷ ︸
should belong to span(M)

,

where G⃗ :=
(
D1, D2, D3, G1, G2, G3, G4

)⊤
.
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Analysis on Sliced Garbling: Main Results

Notes on span(W): Observe that

W



v1
v2
v3
v4
v5
v6
v7


=

v1 + x(v4 + v7) + y(v5 + v7) + zv7
v2 + xv7 + y(v5 + v7) + z(v6 + v7)
v3 + x(v4 + v7) + yv7 + z(v6 + v7)



:= ν⃗0 + ν⃗1x + ν⃗2y + ν⃗3z .
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Analysis on Sliced Garbling: Main Results

More formally, we interpret this condition with linear algebra:

ν⃗ = ν⃗0 + ν⃗1x + ν⃗2y + ν⃗3z ∈ span(W)

if and only if
P1ν⃗1 + P2ν⃗2 + P3ν⃗3 = 0,

where

(P1 | P2 | P3) =


1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0

 .
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Analysis on Sliced Garbling: Main Results

We can provide explicit formulas for RA, RB and RC .

RA =
(

a0 b0 c0
a1 b1 c1

a0 + β + γ b0 c0 + β + γ

)
+

(
a3 b3 c3
a4 b4 c4
a3 b3 c3

)
x

+
(

a4 + 1 b4 c4 + 1
a4 + 1 b4 c4 + 1

a4 b4 c4

)
y+

(
a4 b4 c4

a4 + 1 b4 c4 + 1
a4 + 1 b4 c4 + 1

)
z

RB =
(

d0 e0 f0
d0 + α e0 + α f0
a1 + 1 b1 + β + γ + 1 c1 + α + 1

)
+
(

a4 b4 c4 + 1
a4 + 1 b4 + 1 c4 + 1

a4 b4 c4 + 1

)
x

+
(

d5 e5 f5
d5 e5 f5

a4 + 1 b4 + 1 c4 + 1

)
y+

(
a4 + 1 b4 + 1 c4 + 1
a4 + 1 b4 + 1 c4 + 1
a4 + 1 b4 + 1 c4 + 1

)
z

RC =
(

a1 + α + 1 b1 + β + γ + 1 c1 + 1
g1 h1 i1
g1 h1 + α i1 + α

)
+
(

a4 + 1 b4 c4
a4 + 1 b4 + 1 c4 + 1
a4 + 1 b4 c4

)
x

+
(

a4 + 1 b4 + 1 c4 + 1
a4 + 1 b4 + 1 c4 + 1
a4 + 1 b4 + 1 c4 + 1

)
y+

(
a4 + 1 b4 + 1 c4 + 1

g6 h6 i6
g6 h6 i6

)
z,

Note: It leaks information on α, β and γ.
For instance, if Ev holds (A0, B0, C0), then he will know the constant terms
of each matrix. We can generalize this to arbitrary choice of inputs.
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Analysis on Sliced Garbling [FLZ24]

Concurrent work: Recently, Fan, Lu, and Zhou also observed that Sliced
Garbling is not secure. Their approach is based on a different methodology,
and it only discusses the case when the color bits are (0, 0, 0).
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Thank you!
Any question?
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