

Tightly Secure Non-Interactive BLS Multi-Signatures

ASIACRYPT 2024

Renas Bacho, Benedikt Wagner

Multi-Signatures

Multi-Signatures

Multi-Signatures

 pk_4, sk_4

Unforgeability:

All signers need to participate

Goal: Best of both Worlds

Goal: Best of both Worlds

Small Signature

Goal: Best of both Worlds

Small Signature

• *n* parties $P_1, ..., P_n$ want to sign message $m \in \{0, 1\}^*$

• *n* parties P_1, \ldots, P_n want to sign message $m \in \{0,1\}^*$

• *n* parties P_1, \ldots, P_n want to sign message $m \in \{0,1\}^*$

• *n* parties P_1, \ldots, P_n want to sign message $m \in \{0,1\}^*$

- Sample $r \leftarrow \mathbb{Z}_p$ $pk_2 = pk_1^{-1} \cdot g^r$

- Sample $r \leftarrow \mathbb{Z}_p$
- $pk_2 = pk_1^{-1} \cdot g^r$

- Sample $r \leftarrow \mathbb{Z}_p$
- $pk_2 = pk_1^{-1} \cdot g^r$

- Sample $r \leftarrow \mathbb{Z}_p$
- $pk_2 = pk_1^{-1} \cdot g^r$

Common Solutions

- Knowledge of secret key (KOSK) assumption [Boldyreva, PKC '03]
- Rerandomization of keys $pk_i \mapsto pk_i^{a_i}$ for random $a_i \in \mathbb{Z}_p$ [Bellare-Neven, CCS '06]
- Proof of knowledge of secret key as $\pi_i := H(pk_i)^{sk_i}$ [Ristenpart-Yilek, EC '07]

Common Solutions

- Knowledge of secret key (KOSK) assumption [Boldyreva, PKC '03]
- Rerandomization of keys $pk_i \mapsto pk_i^{a_i}$ for random $a_i \in \mathbb{Z}_p$ [Bellare-Neven, CCS '06]
- Proof of knowledge of secret key as $\pi_i := H(pk_i)^{sk_i}$ [Ristenpart-Yilek, EC '07]

Non-Interactive + CDH

Common Solutions

- Knowledge of secret key (KOSK) assumption [Boldyreva, PKC '03]
- Rerandomization of keys $pk_i \mapsto pk_i^{a_i}$ for random $a_i \in \mathbb{Z}_p$ [Bellare-Neven, CCS '06]
- Proof of knowledge of secret key as $\pi_i := H(pk_i)^{sk_i}$ [Ristenpart-Yilek, EC '07]

Non-Interactive + CDH

Still security loss of $O(Q_h)$ or worse !

What to do?

Can we design a tightly secure BLS multi-signature?

Our Results

Comparison

Scheme	Assumption	Loss	Idealization
BLS [Bol03]	CDH	$\Theta(q_s)$	ROM
RY07 [RY07]	CDH	$\Theta(q_s)$	ROM
BDN18 [BDN18]	CDH	$\Theta(q_h^2/\epsilon)$	ROM
LOSSW06 $[LOS+06]$	CDH	$\Theta(\ell q_s)$	KOSK
QX10 [QX10]	CDH	$\Theta(q_s^2 q_h/\epsilon)$	ROM
DGNW20 [DGNW20]	wBDHI	$\Theta(q_h)$	ROM
BNN07 [BNN07]	CDH	$\Theta(1)$	ROM
QLH12 [QLH12]	CDH	$\Theta(1)$	ROM
$BLSMS_2$	CDH	$\Theta(1)$	ROM

Table 1: Comparison of non-interactive multi-signature schemes in the pairing setting. We compare under which hardness assumption the scheme is proven secure, the asymptotic tightness loss of the security proof, and under which idealized model the scheme is proven secure. Here, we do not consider proofs in the algebraic group model (AGM). We denote the number of random oracle and signing queries by q_h and q_s , respectively, and the advantage of an adversary against the scheme by ϵ . For LOSSW06 [LOS⁺06], ℓ denotes the bit-length of messages. Further, wBDHI denotes the weak bilinear Diffie-Hellman inversion assumption [BBG05], ROM denotes the random oracle model, and KOSK denotes the knowledge of secret key model [Bol03].

Comparison

Scheme	Public Key	Sig Share	Signature	Cost (Sig)	Cost (Ver)
BLS [Bol03]	$1\langle \mathbb{G} \rangle$	$1\langle \mathbb{G} \rangle$	$1\langle \mathbb{G} \rangle$	$1\mathrm{ex}$	$2\mathrm{pr}$
RY07 [RY07]	$1\langle \mathbb{G} \rangle$	$1\langle \mathbb{G} \rangle$	$1\langle \mathbb{G} \rangle$	$1\mathrm{ex}$	$2\mathrm{pr}$
BDN18 [BDN18]	$1\langle \mathbb{G} \rangle$	$1\langle \mathbb{G} \rangle$	$1\langle \mathbb{G} \rangle$	$1 \mathrm{ex}$	$2\mathrm{pr}$
LOSSW06 $[LOS+06]$	$1\langle \mathbb{G}_T \rangle$	$2\langle \mathbb{G} \rangle$	$2\langle \mathbb{G} \rangle$	$2\mathbf{e}\mathbf{x} + 1\mathbf{e}\mathbf{x}^{\ell}$	$2\mathrm{pr} + 1\mathrm{ex}^{\ell}$
QX10 [QX10]	$1\langle \mathbb{G} \rangle$	$1\langle \mathbb{G} \rangle$	$1\langle \mathbb{G} \rangle$	$1\mathrm{ex}$	$2\mathrm{pr} + 1\mathrm{ex}^{N+1}$
DGNW20 [DGNW20]	$1\langle \mathbb{G} \rangle$	$2\langle \mathbb{G} \rangle$	$2\langle \mathbb{G} \rangle$	$4\mathrm{ex}$	3 pr + 1 ex
BNN07 [BNN07]	$1\langle \mathbb{G} \rangle$	$1\langle \mathbb{G} \rangle + 1$	$1\langle \mathbb{G} \rangle + N$	$1 \mathrm{ex}$	(N+1)pr
QLH12 [QLH12]	$1\langle \mathbb{G} \rangle$	$2\langle \mathbb{G} \rangle + 1$	$4\langle \mathbb{G} \rangle$	2ex	4pr
$BLSMS_2$	$2\langle \mathbb{G} \rangle$	$1\langle \mathbb{G} \rangle + 1$	$1\langle \mathbb{G} \rangle + N$	1ex	2pr

pr, and ex^k , respectively. For LOSSW06 [LOS⁺06], ℓ denotes the bit-length of messages.

Table 2: Comparison of non-interactive multi-signature schemes in the pairing setting. We assume that all constructions are instantiated with a symmetric pairing $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ and compare the size of a public key, signature share, the size of the signature, the computational cost per signer, and the computational cost for verification. We denote the size of a group element by $\langle \mathbb{G} \rangle$ (respectively $\langle \mathbb{G}_T \rangle$), the number of signers by N, and the number of exponentiations, pairings, and k-multi-exponentiations for $k \in \mathbb{N}$ by ex,

Our Techniques

Proof Structure

Public key pk

Adversary

Proof Structure

Public key pk

Sign *m*_i σ_{i}

Adversary

CDH challenge $(X, Y) = (g^x, g^y)$ Embed into key pk := X

CDH challenge

$$(X, Y) = (g^{X}, g^{Y})$$

 \downarrow
Embed into key
 $pk := X$
Guess f
message

Simulate signatures as $\sigma_i := X^{r_i}$

Simulate signatures as $\sigma_i := X^{r_i}$

Forgery gives CDH solution $\sigma^* = Y^x$

pk_0

bk_1

33

Embed into key $pk_0 := X$

$$pk_1 := g^{sk_1}$$
$$sk_1 \leftarrow \mathbb{Z}_p$$

Trapdoor space

Simulate signatures *m_i*

Simulate signatures *m_i*

39

Simulate signatures *m_i*

Simulate as $\sigma_i := H(m_i)^{sk_1}$ (honest signing)

Simulate as $\sigma_i := X^{r_i}$ (trapdoor signing)

 $H(m^*) = Y^{r^*}$
for known r^*

Choose honest key pk_1

Forgery *m**

 $H(m^*) = g^{r^*}$
for known r^*

Choose challenge key $pk_0 = X$

 $H(m^*) = Y^{r^*}$
for known r^*

Choose honest key pk_1

With prob 1/4 forgery gives CDH solution $(\sigma^*)^{1/r^*} = Y^{\chi}$!

Questions?

Our Results

