Evolving Secret Sharing made Short

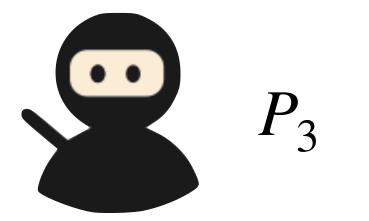
Danilo Francati Royal Holloway, University of London

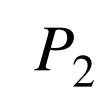
Daniele Venturi Sapienza University of Rome

Dealer

secret s

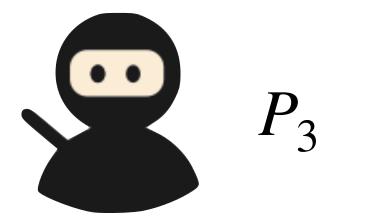
Secret Sharing

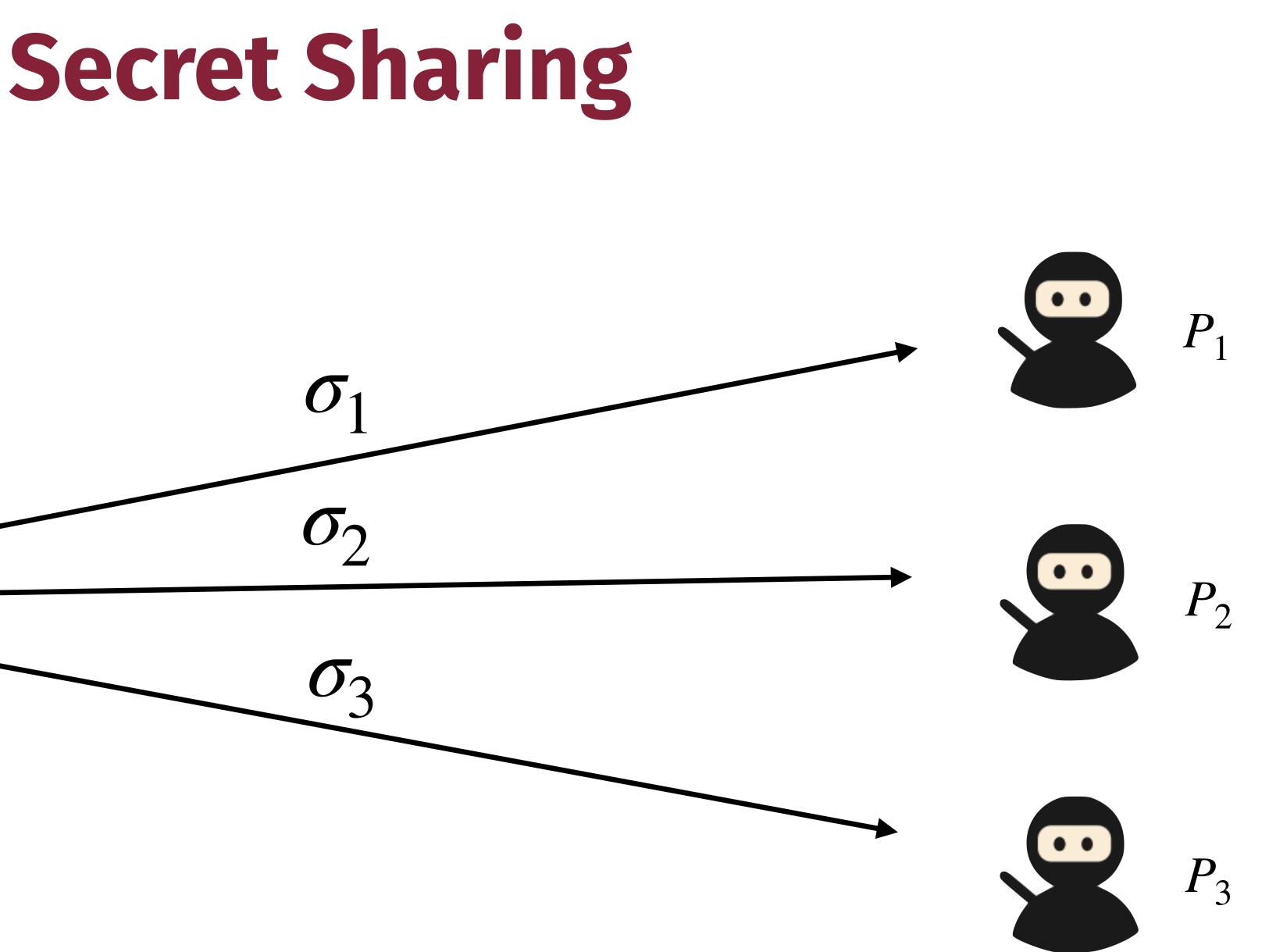


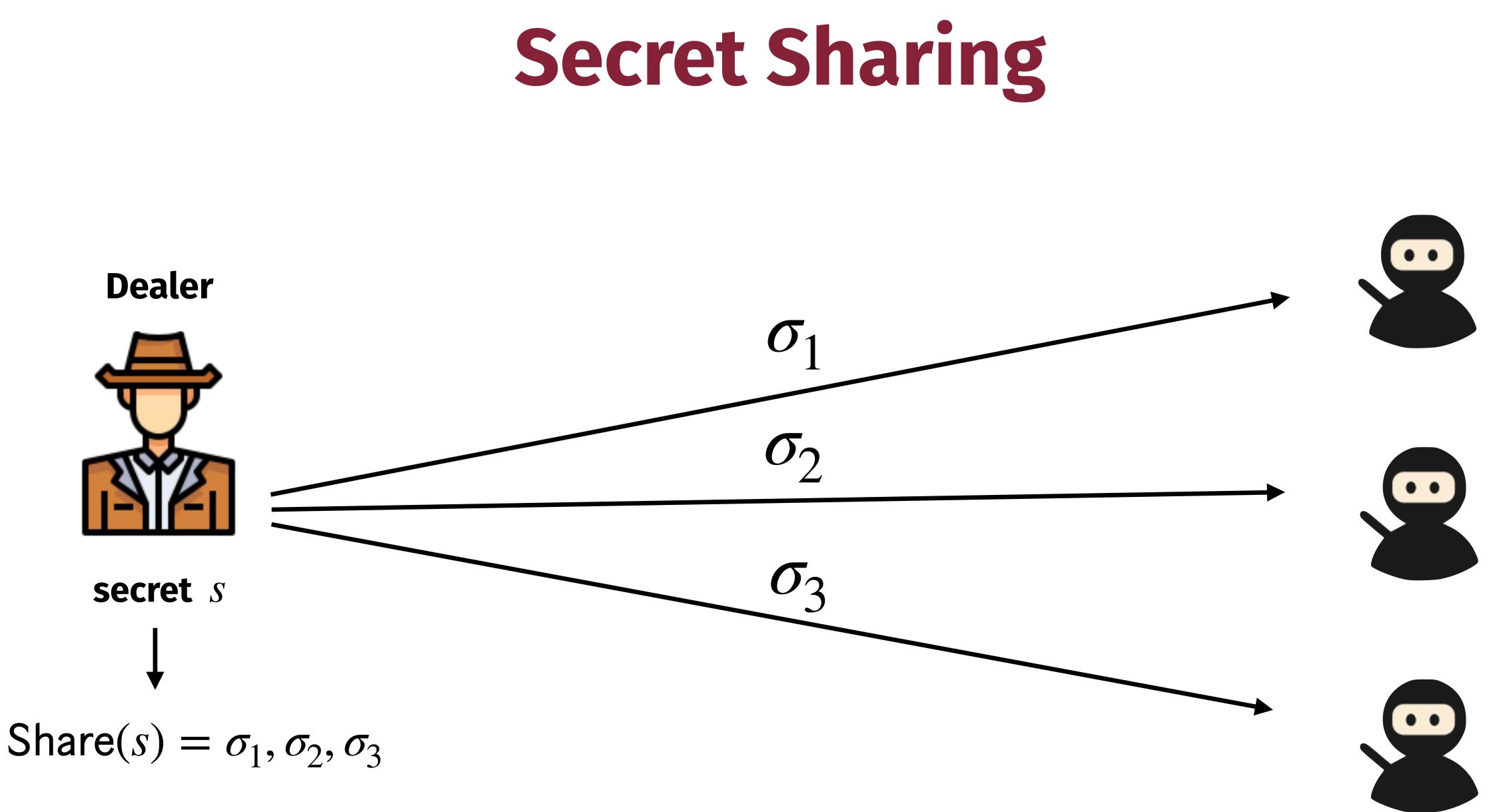


Dealer secret s Share(s) = $\sigma_1, \sigma_2, \sigma_3$

Secret Sharing



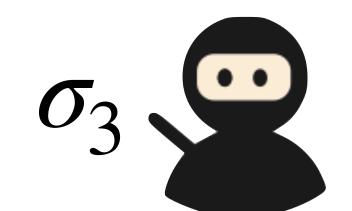


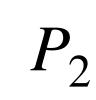


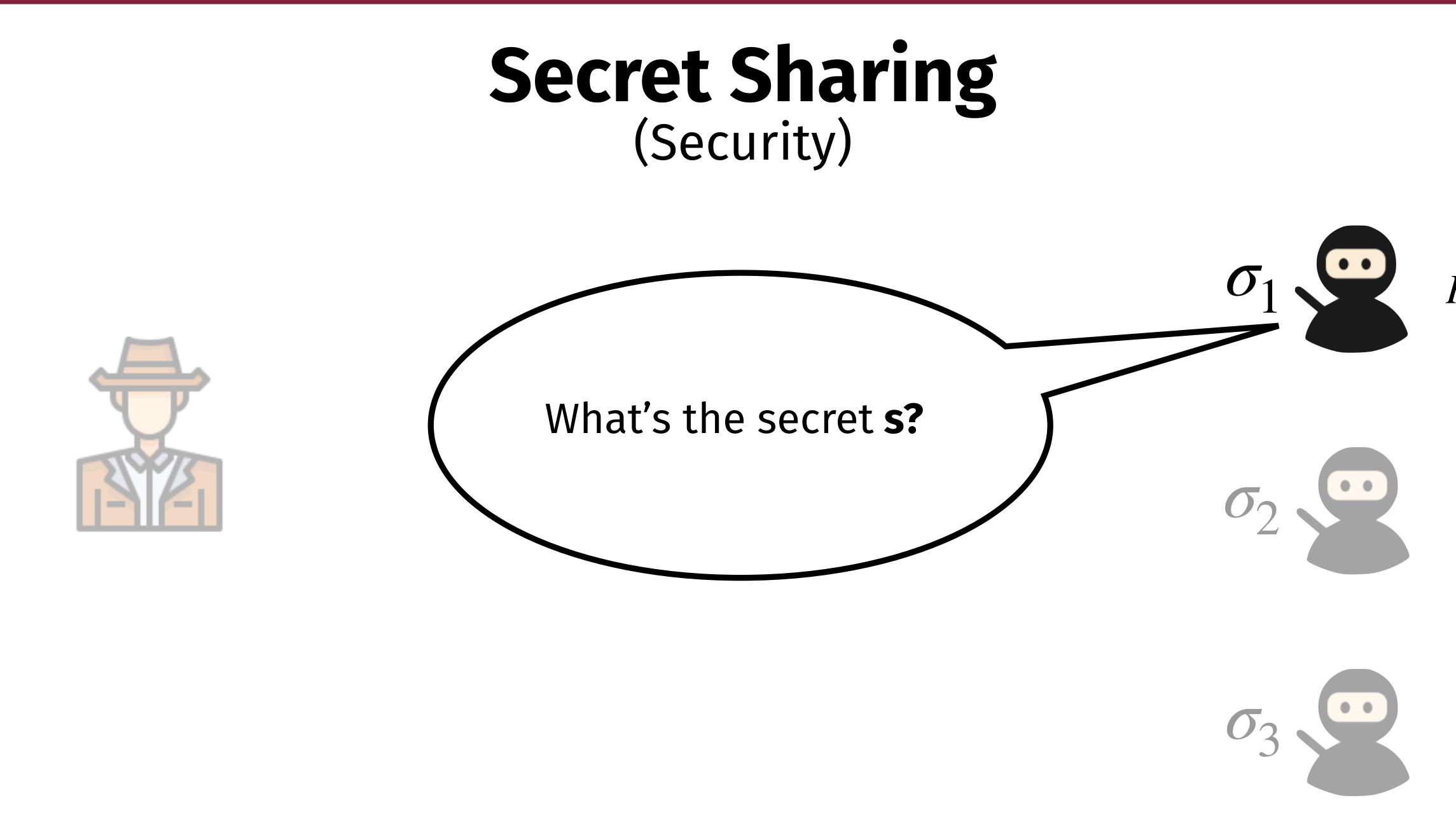
Secret Sharing (Correctness) $\text{Reconstruct}(\sigma_1, \sigma_2) = s$

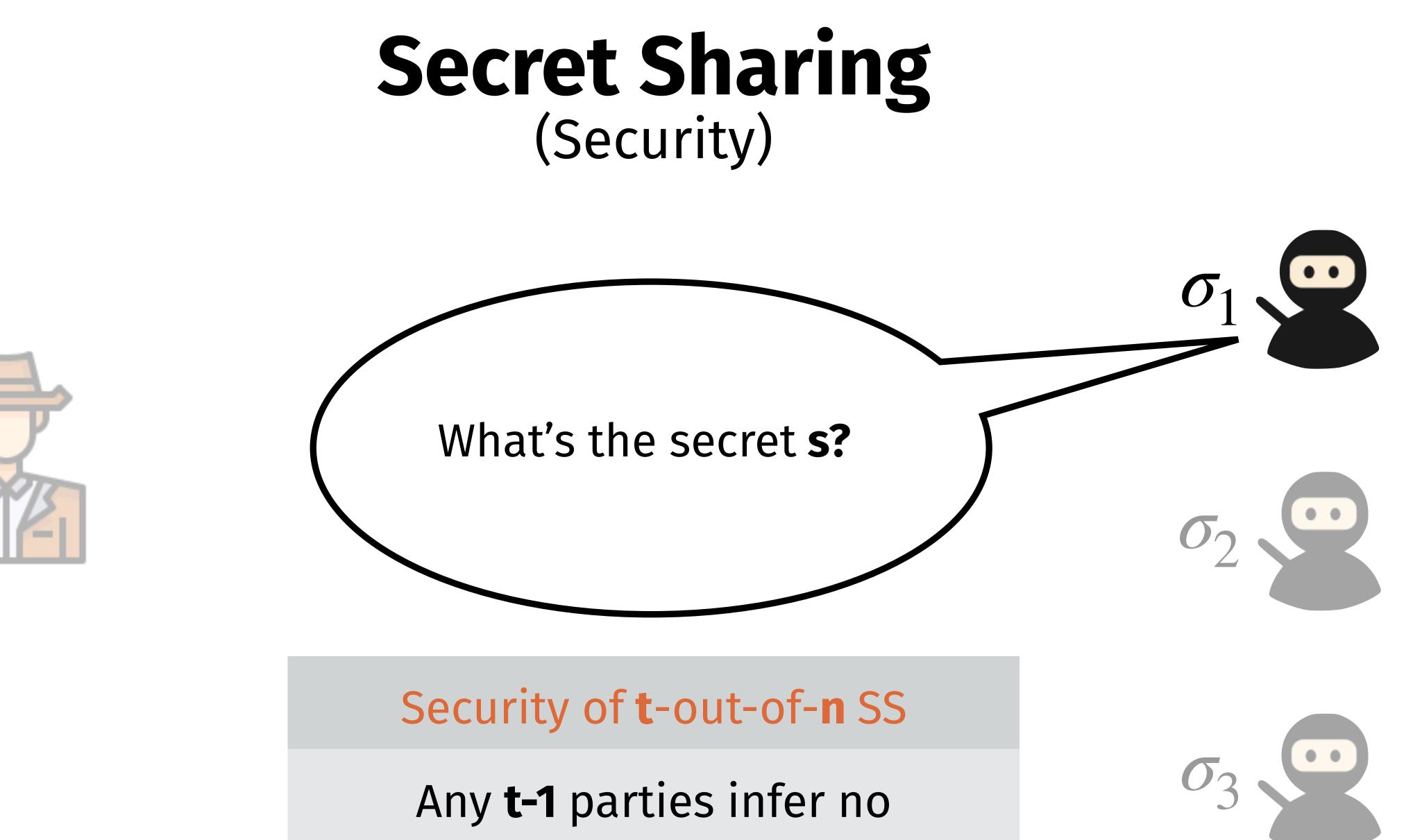
Any **t** parties can reconstruct the secret using their shares $\{\sigma_i\}$

Correctness of t-out-of-n SS

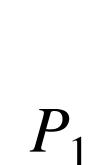


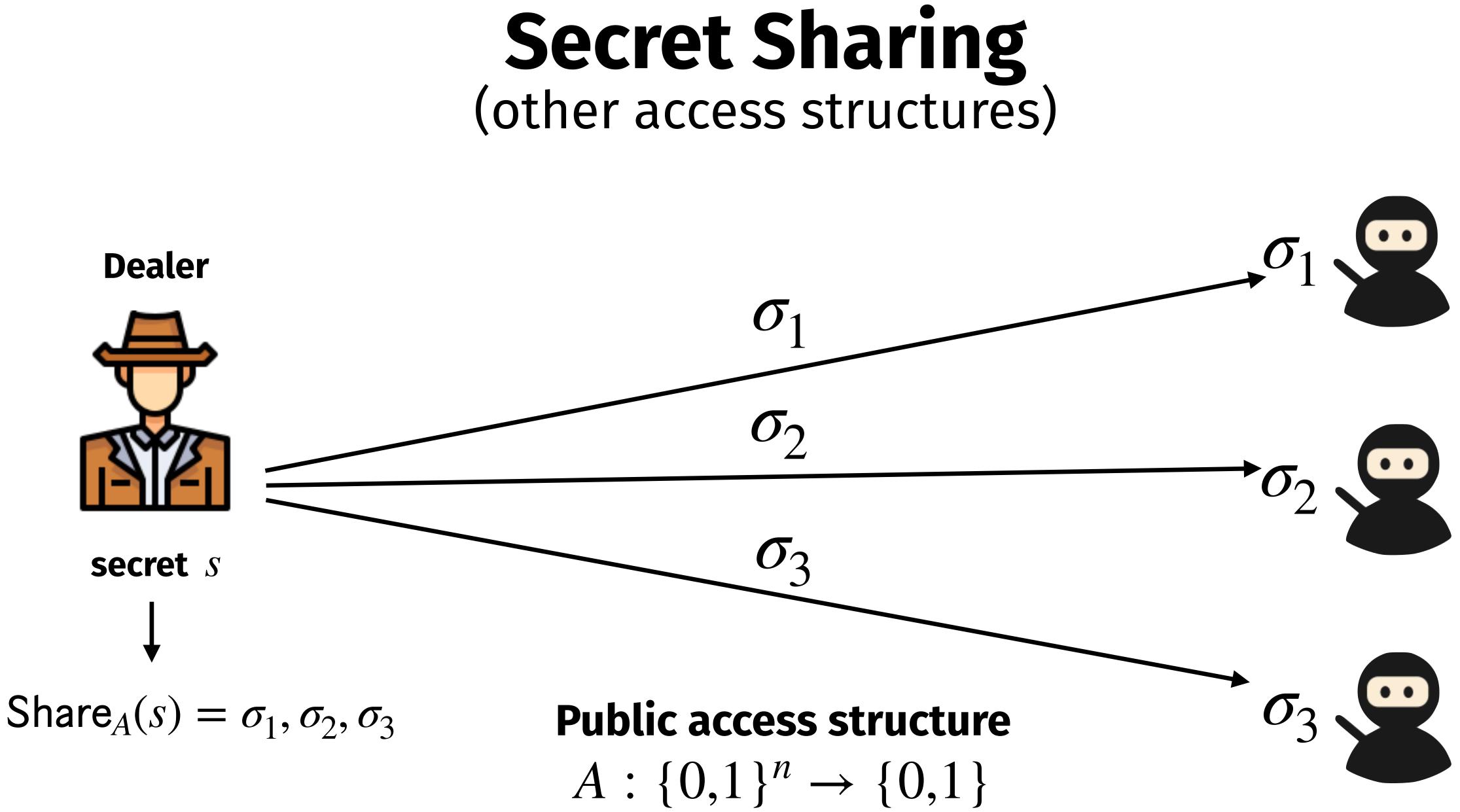


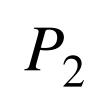


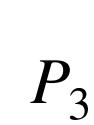


information about the secret **s**







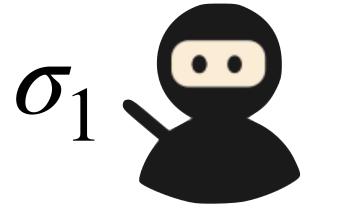


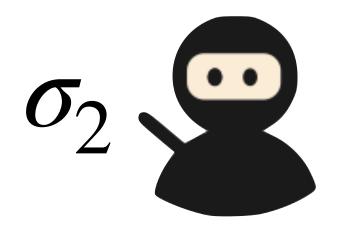
Secret Sharing (other access structures)

Correctness of SS w.r.t. A

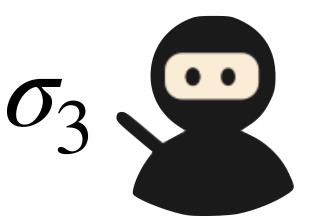
Any **t** parties (encoded by string) $x \in \{0,1\}^n$) s.t. A(x) = 1 reconstructs secret s

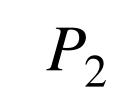
secret *s*





Public access structure $A: \{0,1\}^n \to \{0,1\}$





Secret Sharing (other access structures)

Correctness of SS w.r.t. A

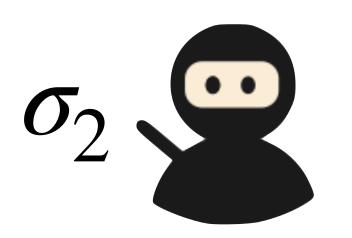
Any **t** parties (encoded by string $x \in \{0,1\}^n$) s.t. A(x) = 1 reconstructs secret s

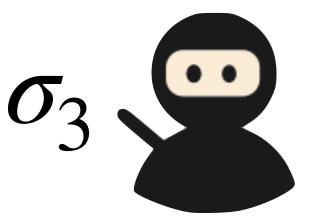
Security of SS w.r.t. A

Any **t** parties (encoded by string $x \in \{0,1\}^n$) s.t. A(x) = 0 infer no information about the secret s.

Public access structure $A: \{0,1\}^n \to \{0,1\}$

secret *s*





Monotonicity

Monotone Access Structure A (informal)

If parties $\{P_1, P_2, P_3\}$ can reconstruct **(authorized set)** the secret **s** then parties $\{P_1, P_2, P_3, P_4\}$ **(superset of)** can reconstruct **(authorized set)** the secret **s**

Required to define **security** of **SS**

secret s

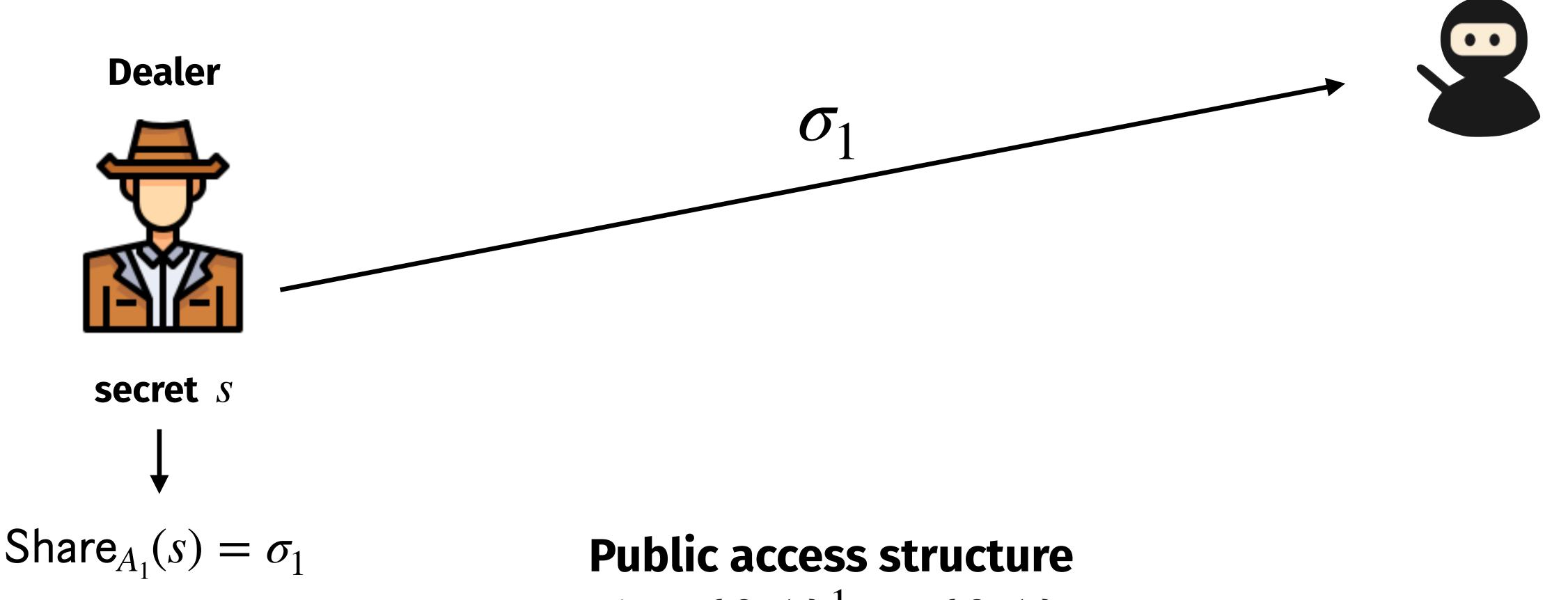
Public access structure $A_1: \{0,1\}^1 \rightarrow \{0,1\}$

1

Dealer secret s

Share_{A_1}(s) = σ_1

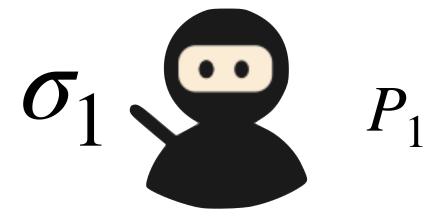
Public access structure $A_1: \{0,1\}^1 \to \{0,1\}$

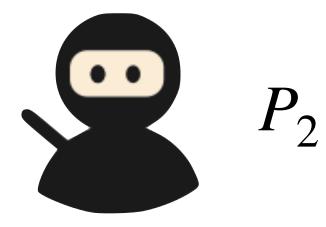


$A_1: \{0,1\}^1 \to \{0,1\}$

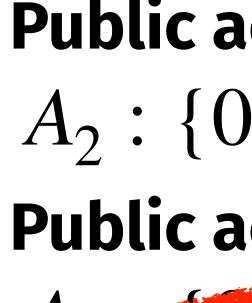
secret s

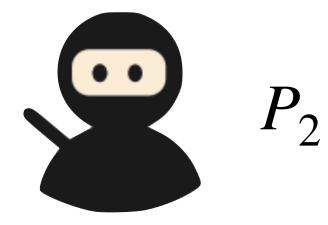
Public access structure $A_1: \{0,1\}^1 \to \{0,1\}$



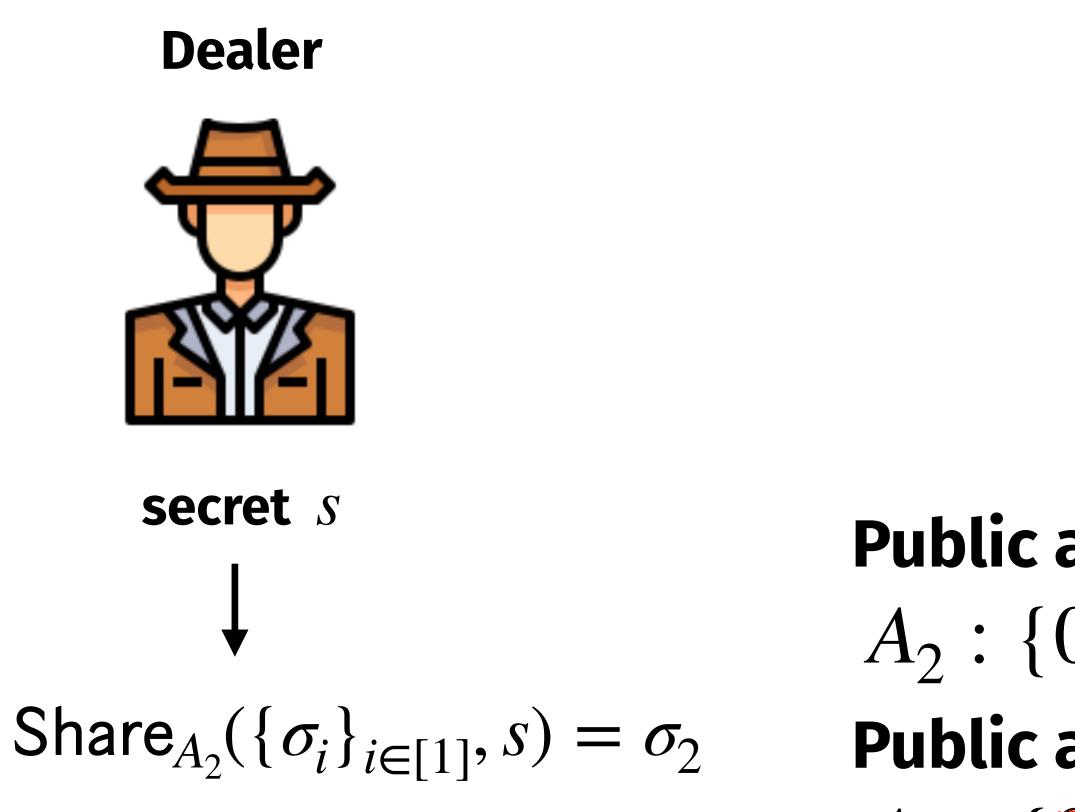


secret s



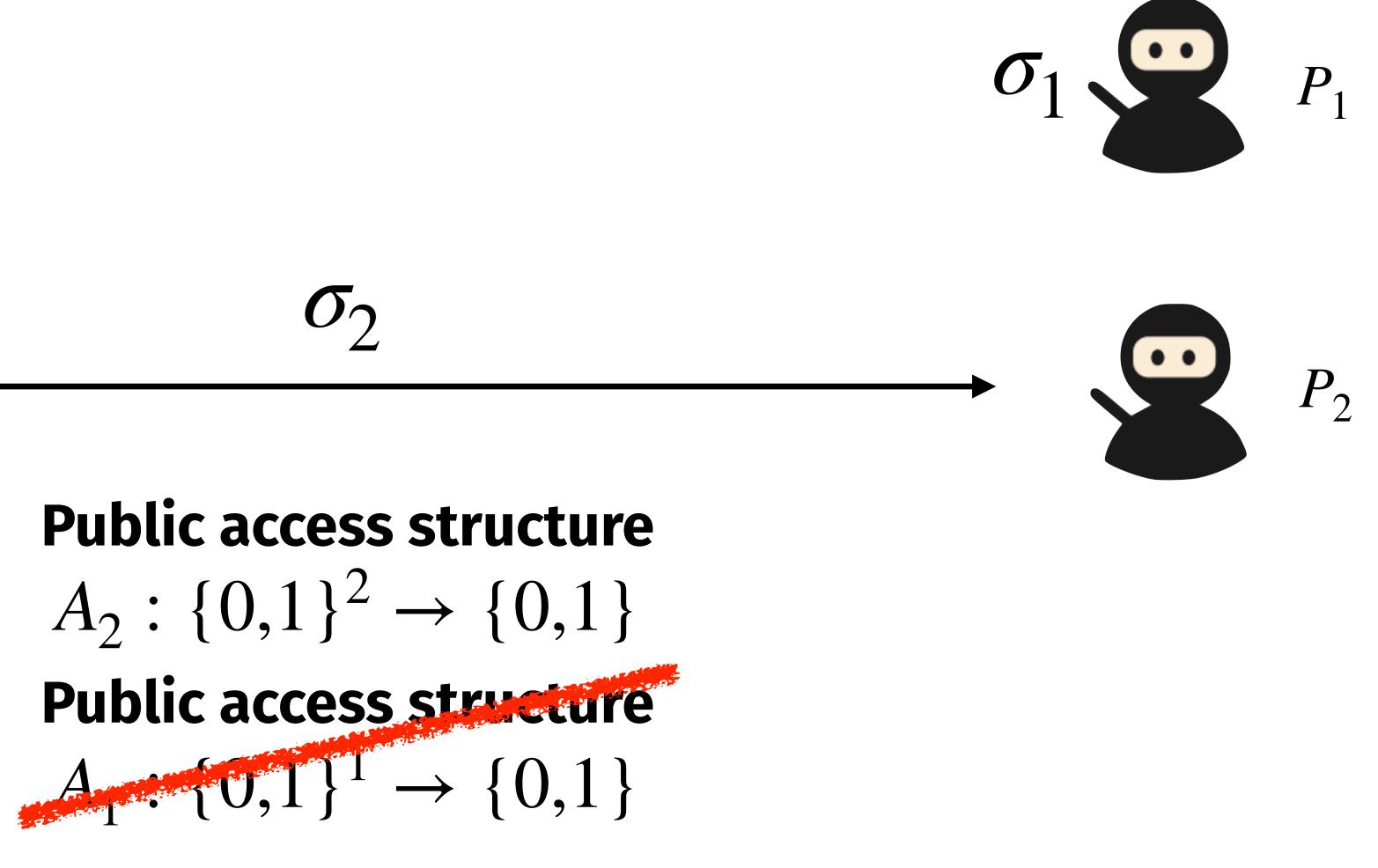


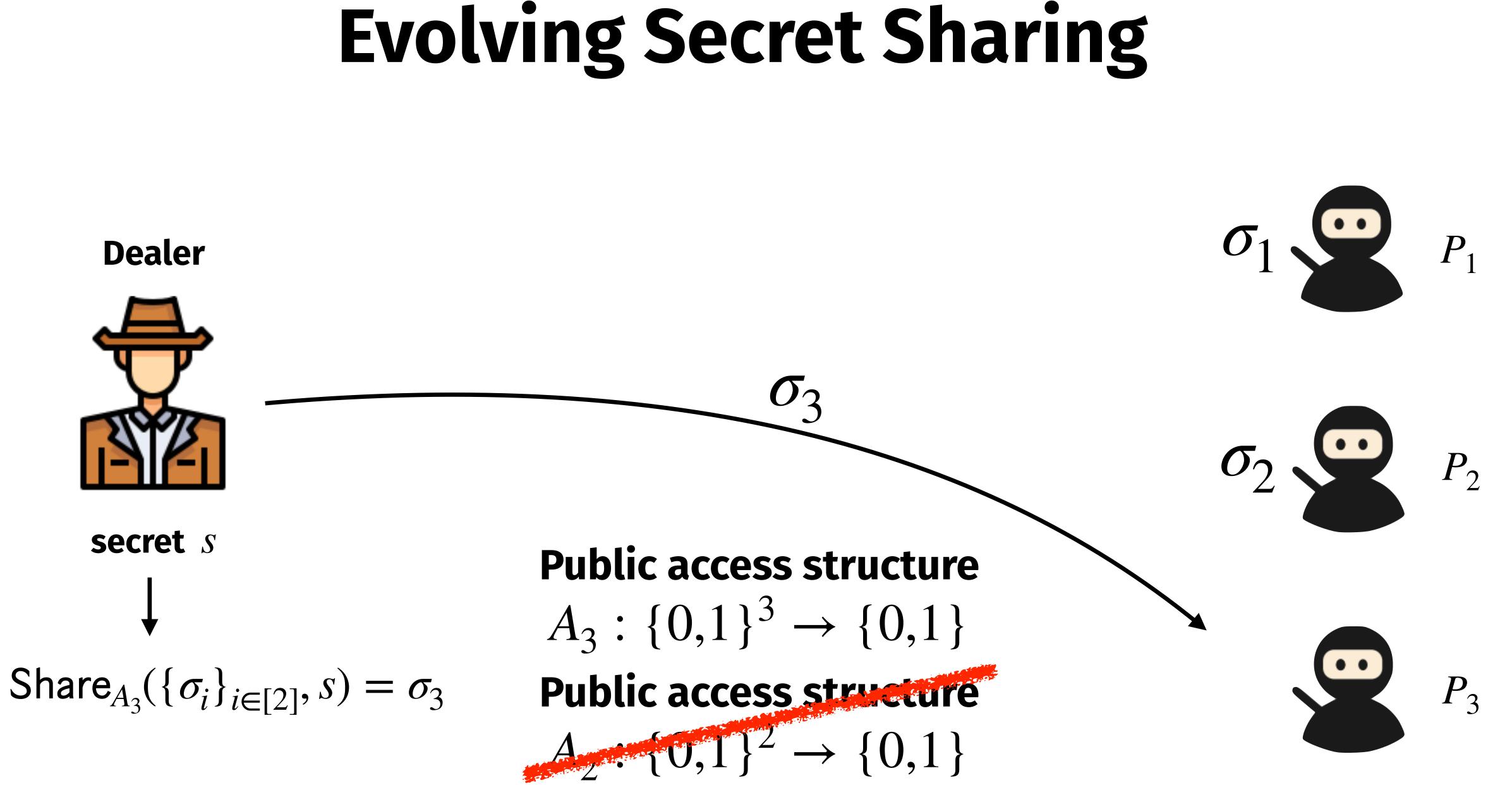
Public access structure $A_2: \{0,1\}^2 \to \{0,1\}$ Public access structure $A: \{0,1\} \rightarrow \{0,1\}$

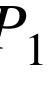


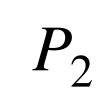
Public access structure $A_2: \{0,1\}^2 \to \{0,1\}$ Public access structure $A: \{0,1\}^{T} \rightarrow \{0,1\}$

Dealer secret s $\mathsf{Share}_{A_2}(\{\sigma_i\}_{i\in[1]}, s) = \sigma_2$

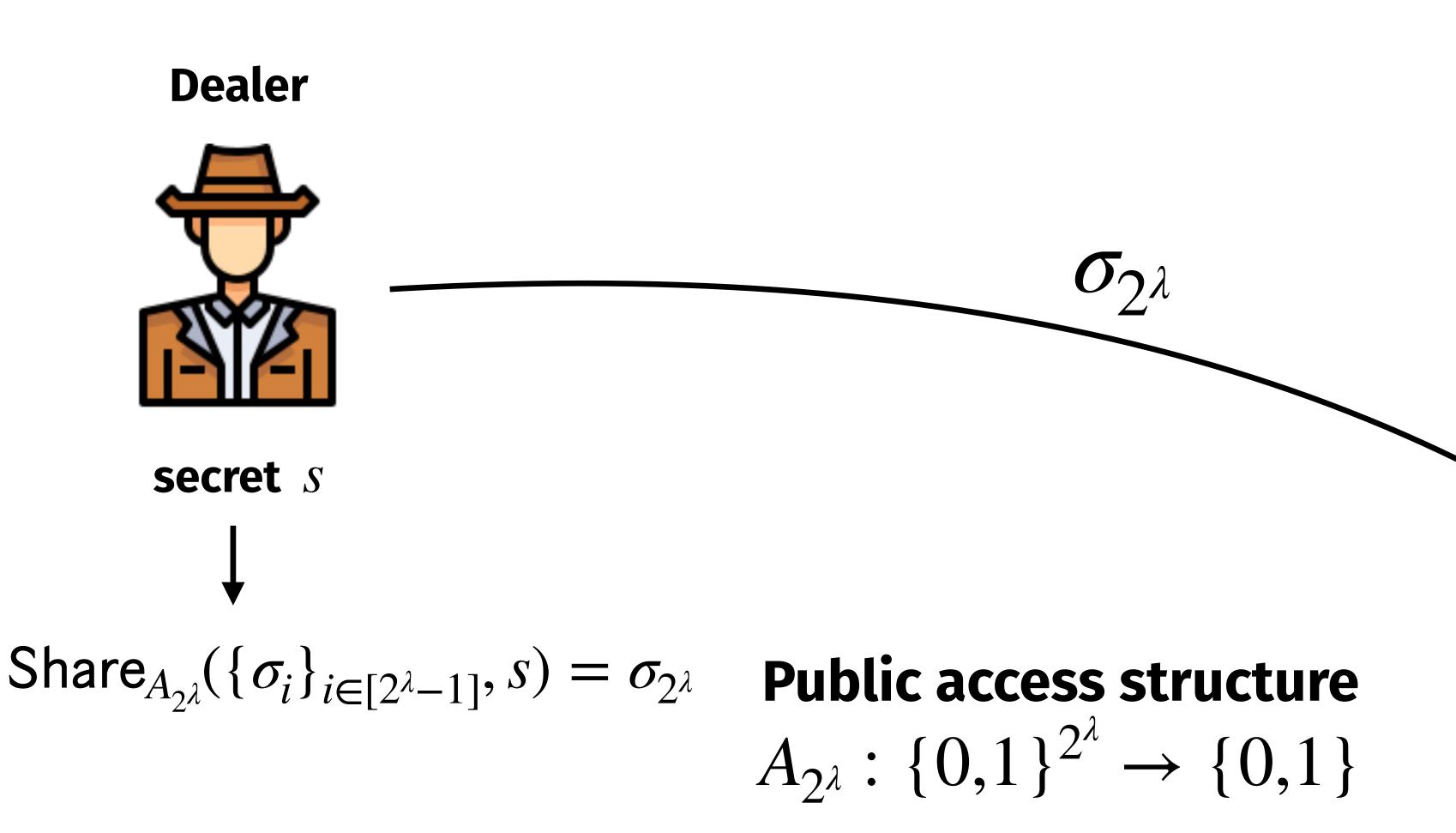


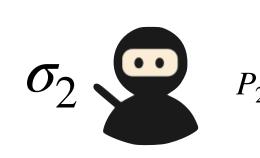




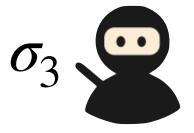


Evolving Secret Sharing (Information Theoretic Case)





 σ_1



 $P_{2^{\lambda}}$

Monotone Evolving Access Structure A (informal)

- For every $i \in [n], A_i$ is a **monotone** access structure (as in the non-evolving case).
 - AND
 - For every $i \in [n-1]$, we have $A_i \subseteq A_{i+1}$

Monotone Evolving Access Structure A (informal)

- For every $i \in [n], A_i$ is a **monotone** access structure (as in the non-evolving case).
 - For every $i \in [n-1]$, we have $A_i \subseteq A_{i+1}$

 - Let $\{P_{i_1}, ..., P_{i_{t-1}}, P_n\}$ a set of **t** parties (encoded by the string $x \in \{0, 1\}^n$). **Correctness:** If $A_n(x) = 1 \Rightarrow$ Reconstruction is **possible**. **Security:** if $A_n(x) = 0 \Rightarrow$ **No information revealed.**

AND

Security/Correctness w.r.t. **Evolving** setting (informal)

Monotone Evolving Access Structure A (informal)

- For every $i \in [n], A_i$ is a **monotone** access structure (as in the non-evolving case).
 - For every $i \in [n-1]$, we have $A_i \subseteq A_{i+1}$

Security/Correctness w.r.t. **Evolving** setting (informal)

Let
$$\{P_{i_1}, \dots, P_{i_{t-1}}, P_n\}$$
 a set of **t** pa
Correctness: If $A_n(x) = 1$
Security: if $A_n(x) = 0$

Share **size**

 $|\sigma_n|$ can depend on the number of **current parties, e.g.,** $|\sigma_n| \in O(n) \cdot \text{poly}(\lambda)$

AND

- True (encoded by the string $x \in \{0,1\}^n$).
- \Rightarrow Reconstruction is **possible**.
- \Rightarrow No information revealed.

Monotone Evolving Access Structure A (informal)

- For every $i \in [n], A_i$ is a **monotone** access structure (as in the non-evolving case).
 - For every $i \in [n-1]$, we have $A_i \subseteq A_{i+1}$

Security/Correctness w.r.t. Evolving setting (informal)

Let
$$\{P_{i_1}, \dots, P_{i_{t-1}}, P_n\}$$
 a set of **t** pa
Correctness: If $A_n(x) = 1$
Security: if $A_n(x) = 0$

Share **size**

 $|\sigma_n|$ can depend on the number of **current parties, e.g.,** $|\sigma_n| \in O(n) \cdot \text{poly}(\lambda)$

AND

- True (encoded by the string $x \in \{0,1\}^n$).
- \Rightarrow Reconstruction is **possible**.
- \Rightarrow No information revealed.

Unknown evolution

The **evolution** of the access structure is **NOT known in advance** by the **dealer**. (otherwise, evolving SS is trivial)

Monotone Evolving Access Structure A (informal)

- For every $i \in [n], A_i$ is a **monotone** access structure (as in the non-evolving case).
 - For every $i \in [n-1]$, we have $A_i \subseteq A_{i+1}$

Security/Correctness w.r.t. Evolving setting (informal)

Let
$$\{P_{i_1}, \dots, P_{i_{t-1}}, P_n\}$$
 a set of **t** pa
Correctness: If $A_n(x) = 1$
Security: if $A_n(x) = 0$

Share size

 $|\sigma_n|$ can depend on the number of **current parties, e.g.,** $|\sigma_n| \in O(n) \cdot \text{poly}(\lambda)$

AND

- True (encoded by the string $x \in \{0,1\}^n$).
- \Rightarrow Reconstruction is **possible**.
- \Rightarrow No information revealed.

Unknown evolution

The **evolution** of the access structure is **NOT known in advance** by the **dealer**. (otherwise, evolving SS is trivial)

Extend the notion of **Evolving** Secret Sharing to the Computational Setting.

Our Work

Extend the notion of **Evolving** Secret Sharing to the Computational Setting.

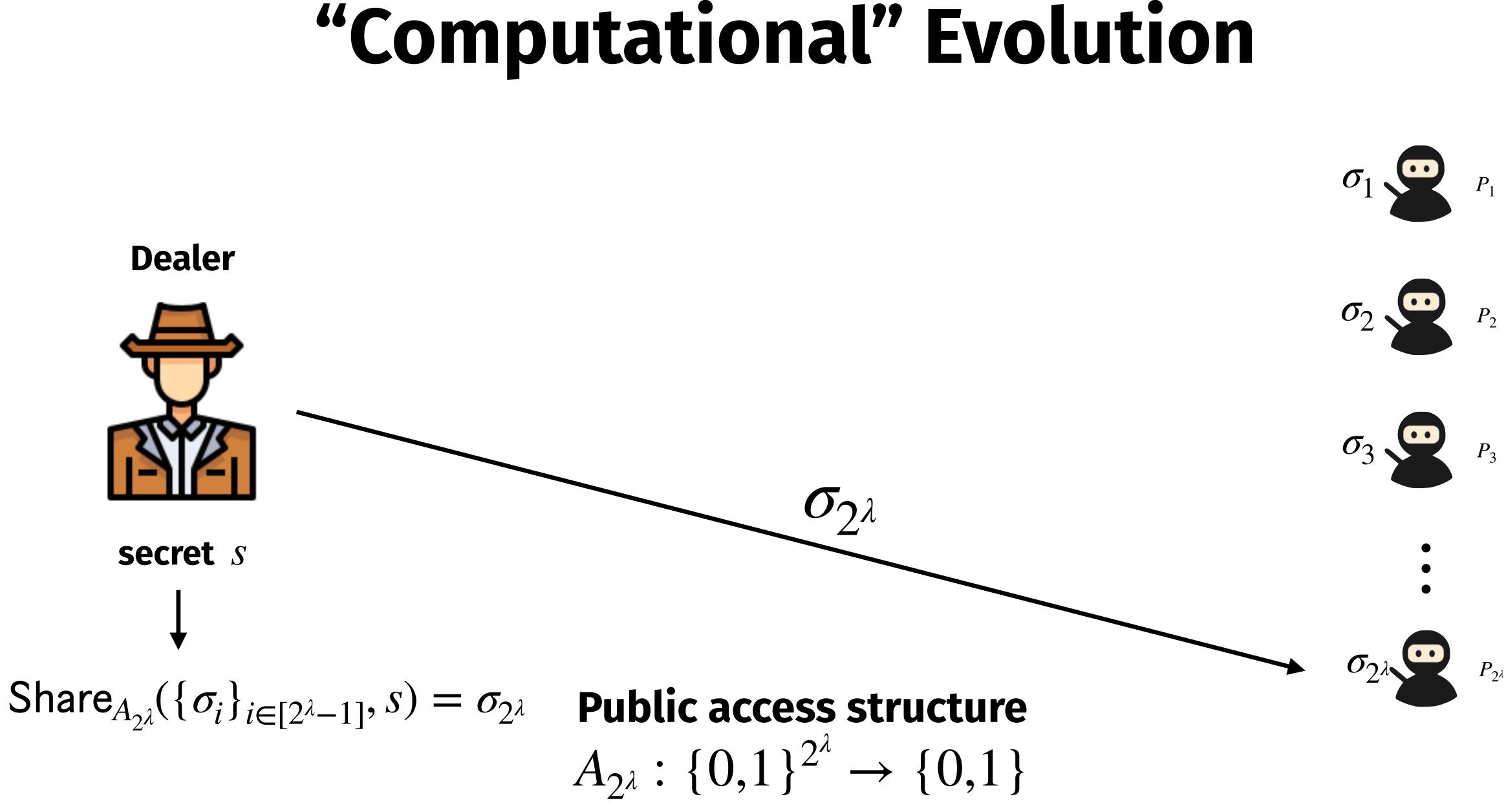
1.

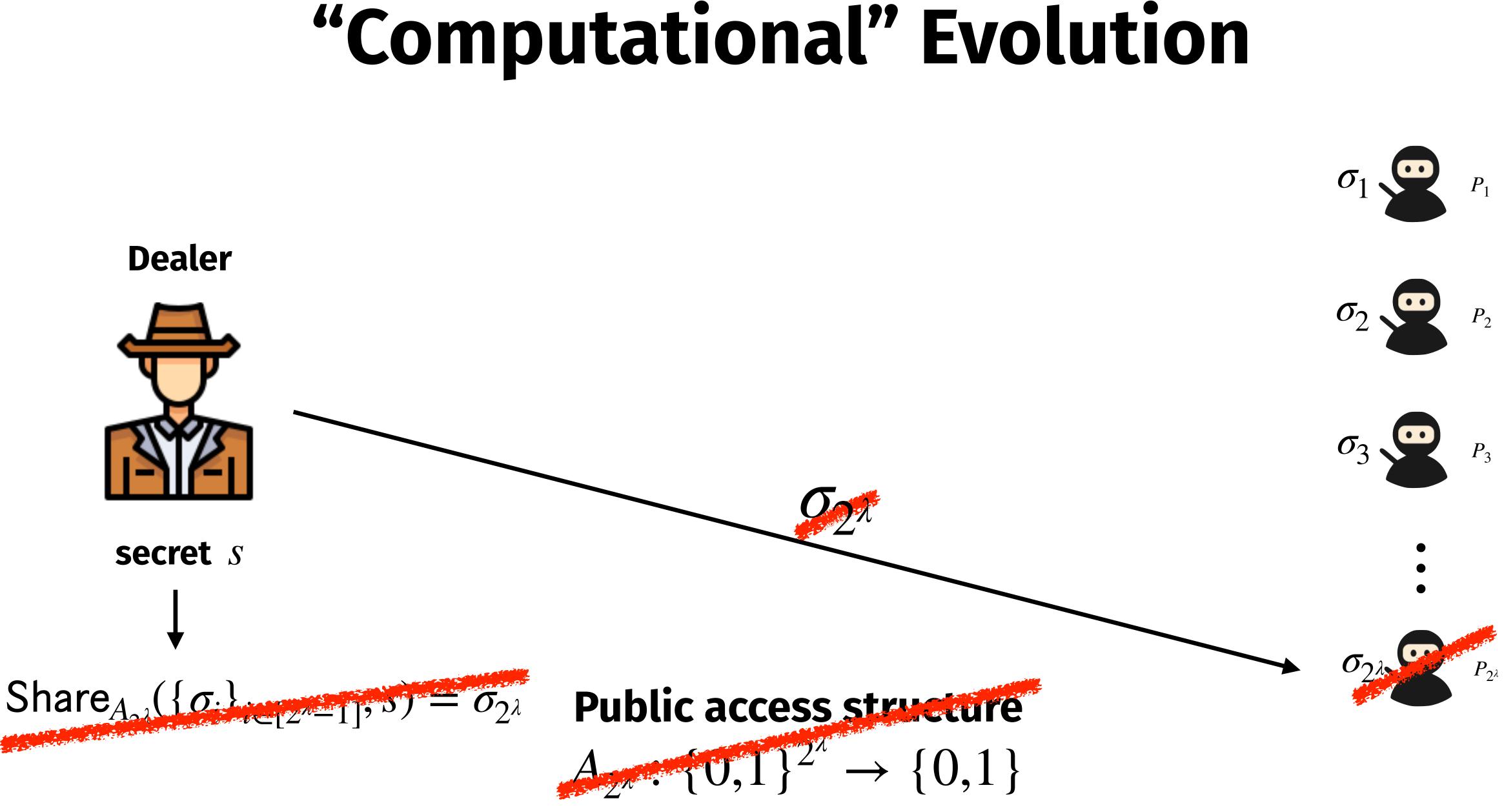
2.

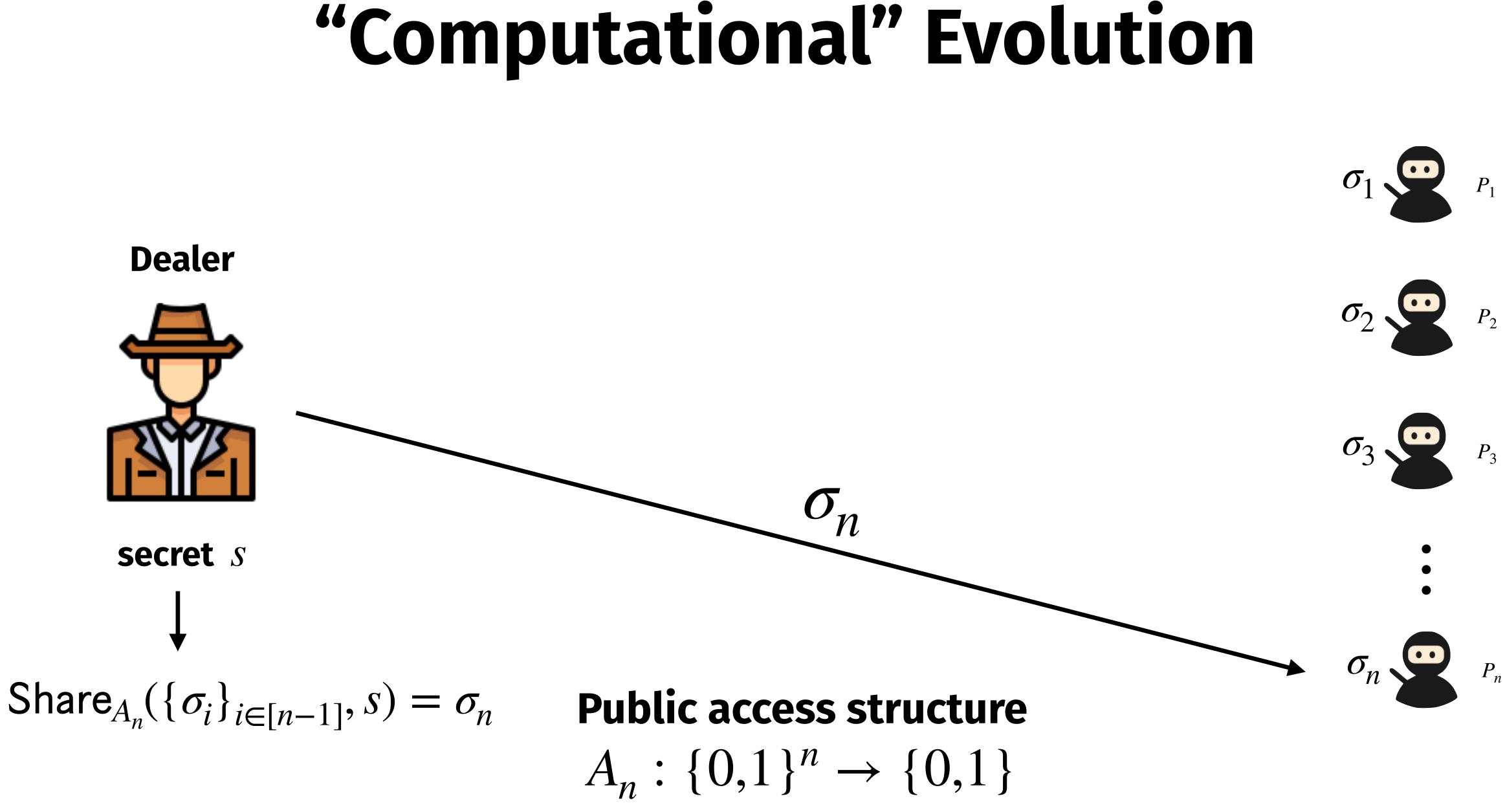
New **Evolving** Secret Sharing schemes for specific **Evolving** Access Structures. Reducing the share size of these **Evolving** Secret Sharing schemes (we can leverage **computationally** secure primitives 😂).

Our Work

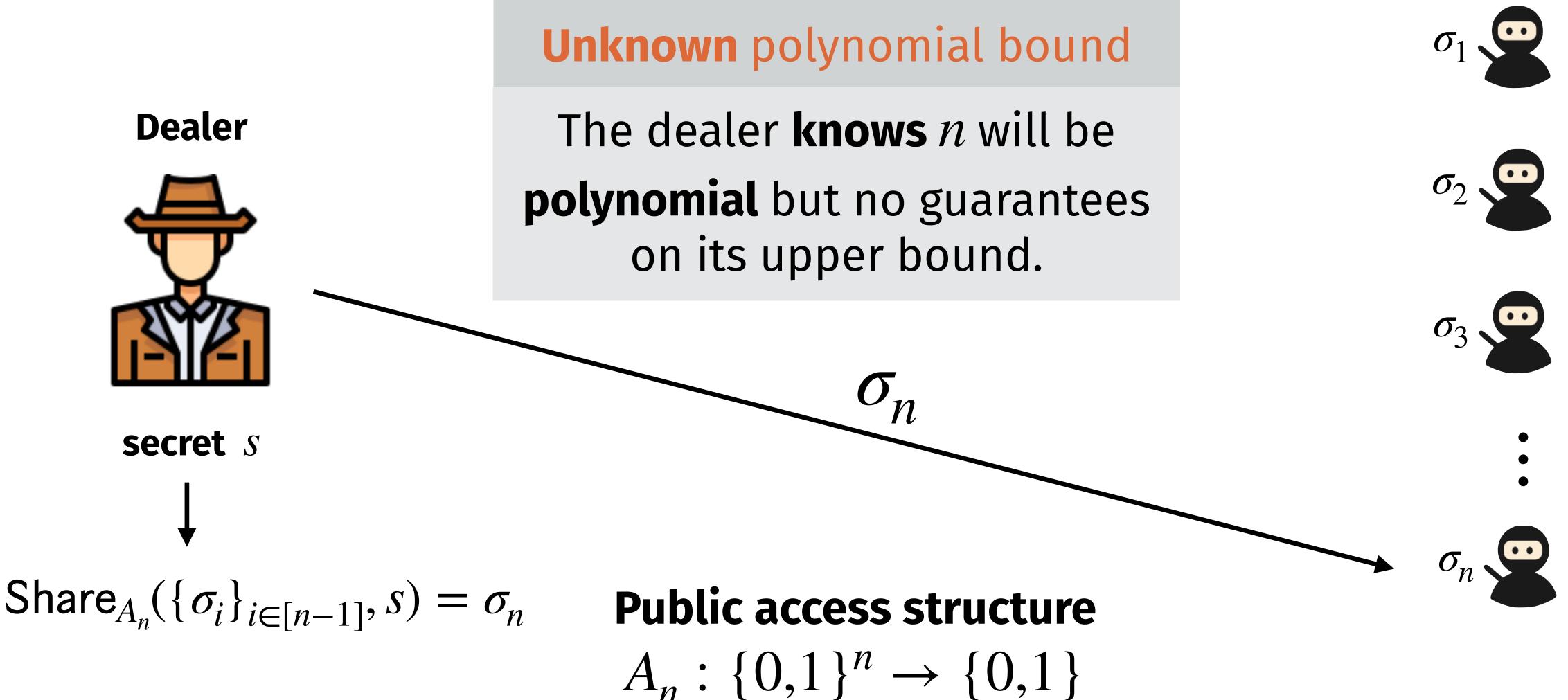
Objectives

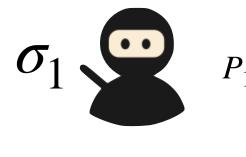


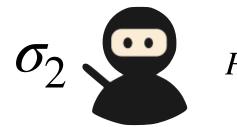


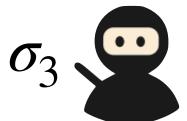


"Computational" Evolution









Information Theoretic representation of the **Evolving** Access Structure A

An **evolving** access structure is usually represented as incrementally defined sets: $A_1 \subseteq A_2 \subseteq A_3 \subseteq A_4 \subseteq \ldots \subseteq A_n$

without caring if these sets have an efficient (polynomial) representation.

Information Theoretic representation of the **Evolving** Access Structure A

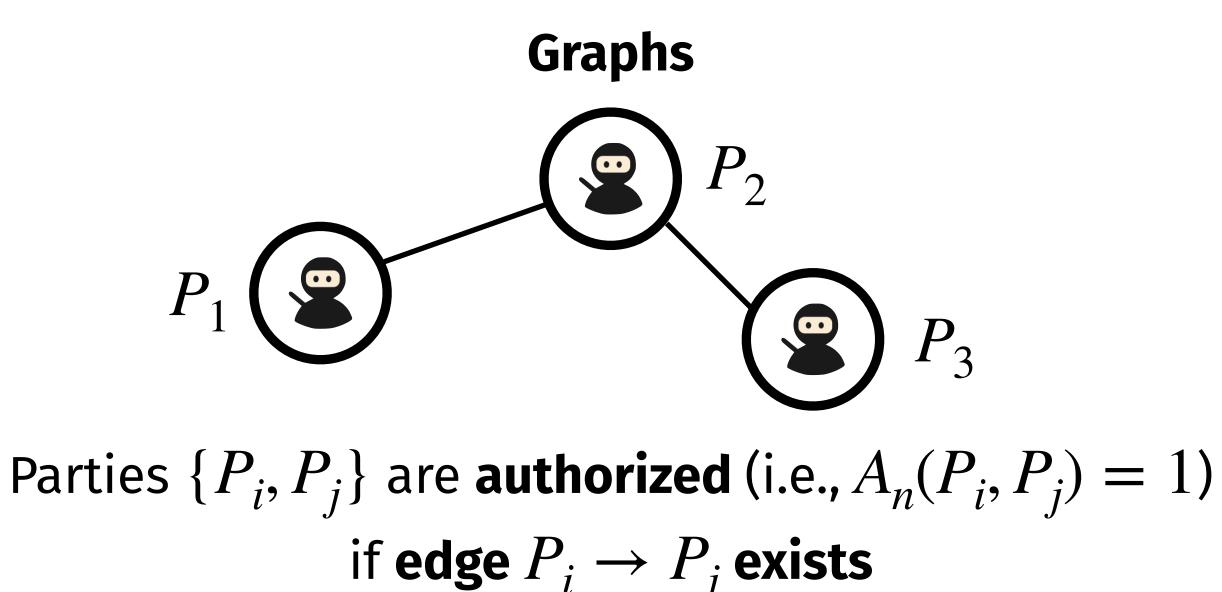
- An **evolving** access structure is usually represented as incrementally defined sets: $A_1 \subseteq A_2 \subseteq A_3 \subseteq A_4 \subseteq \ldots \subseteq A_n$ without caring if these sets have an efficient (polynomial) representation.

(having an efficient representation is important for the computational case) **Examples of efficient representable access structures**

Information Theoretic representation of the **Evolving** Access Structure A

- An **evolving** access structure is usually represented as incrementally defined sets: $A_1 \subseteq A_2 \subseteq A_3 \subseteq A_4 \subseteq \ldots \subseteq A_n$ without caring if these sets have an efficient (polynomial) representation.

 - (having an efficient representation is important for the computational case) **Examples of efficient representable access structures**

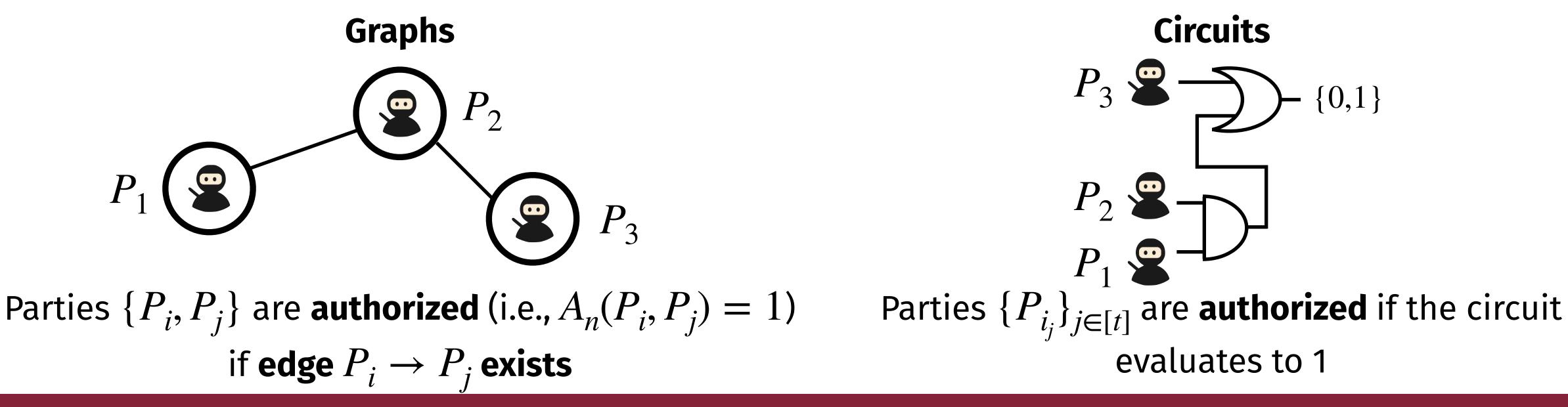


"Computational" Representation

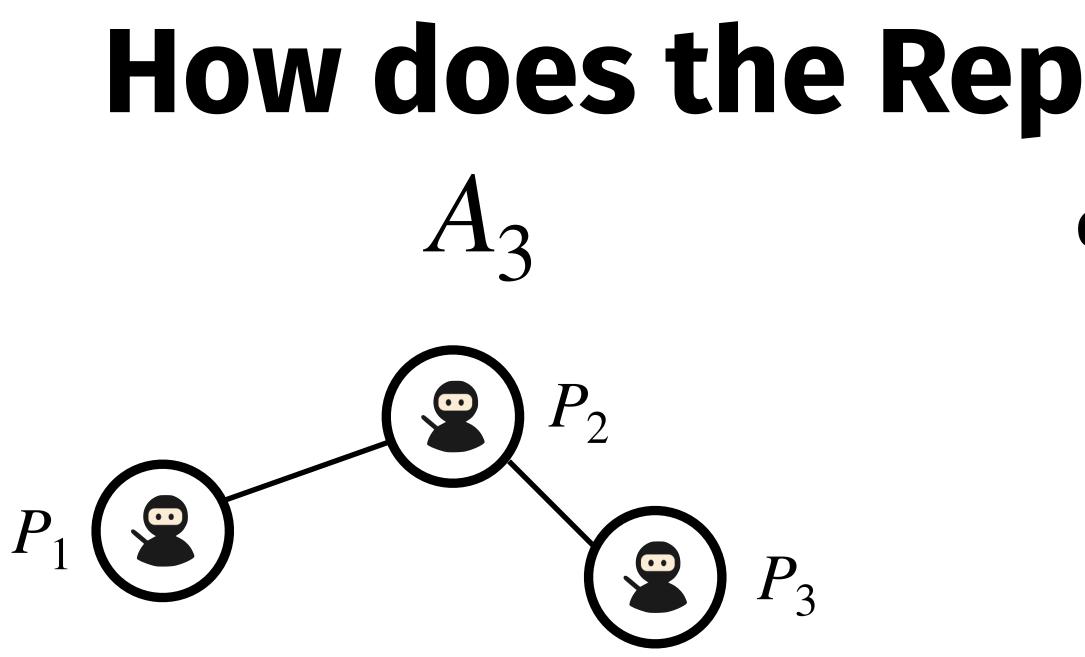
Information Theoretic representation of the **Evolving** Access Structure A

- An **evolving** access structure is usually represented as incrementally defined sets: $A_1 \subseteq A_2 \subseteq A_3 \subseteq A_4 \subseteq \ldots \subseteq A_n$ without caring if these sets have an efficient (polynomial) representation.

 - (having an efficient representation is important for the computational case) **Examples of efficient representable access structures**

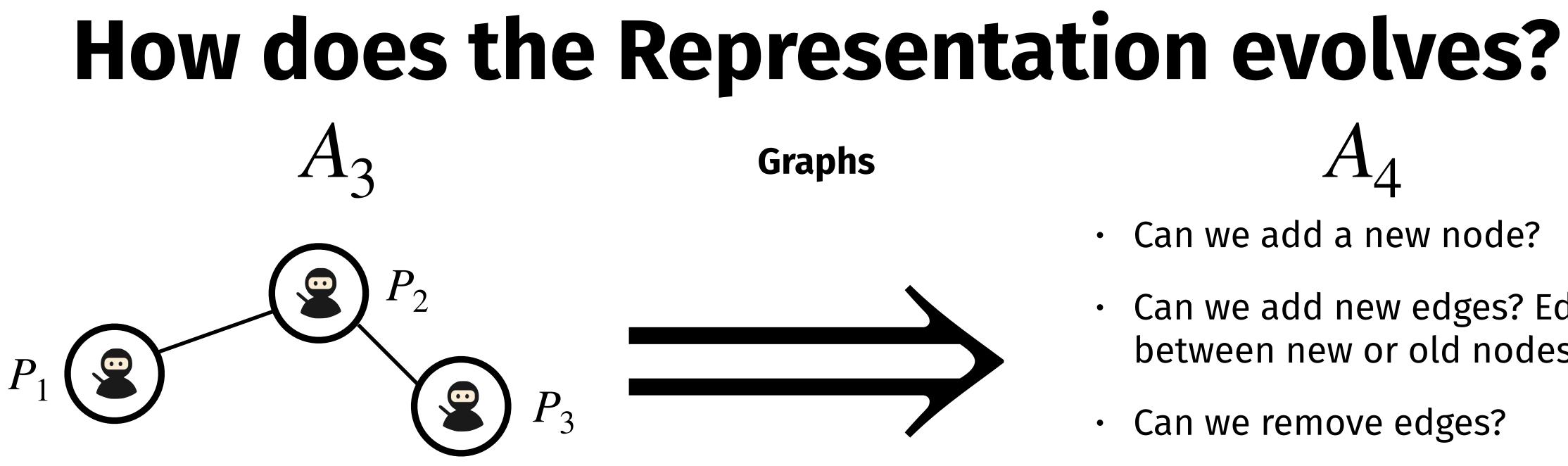


How does the Representation evolves?

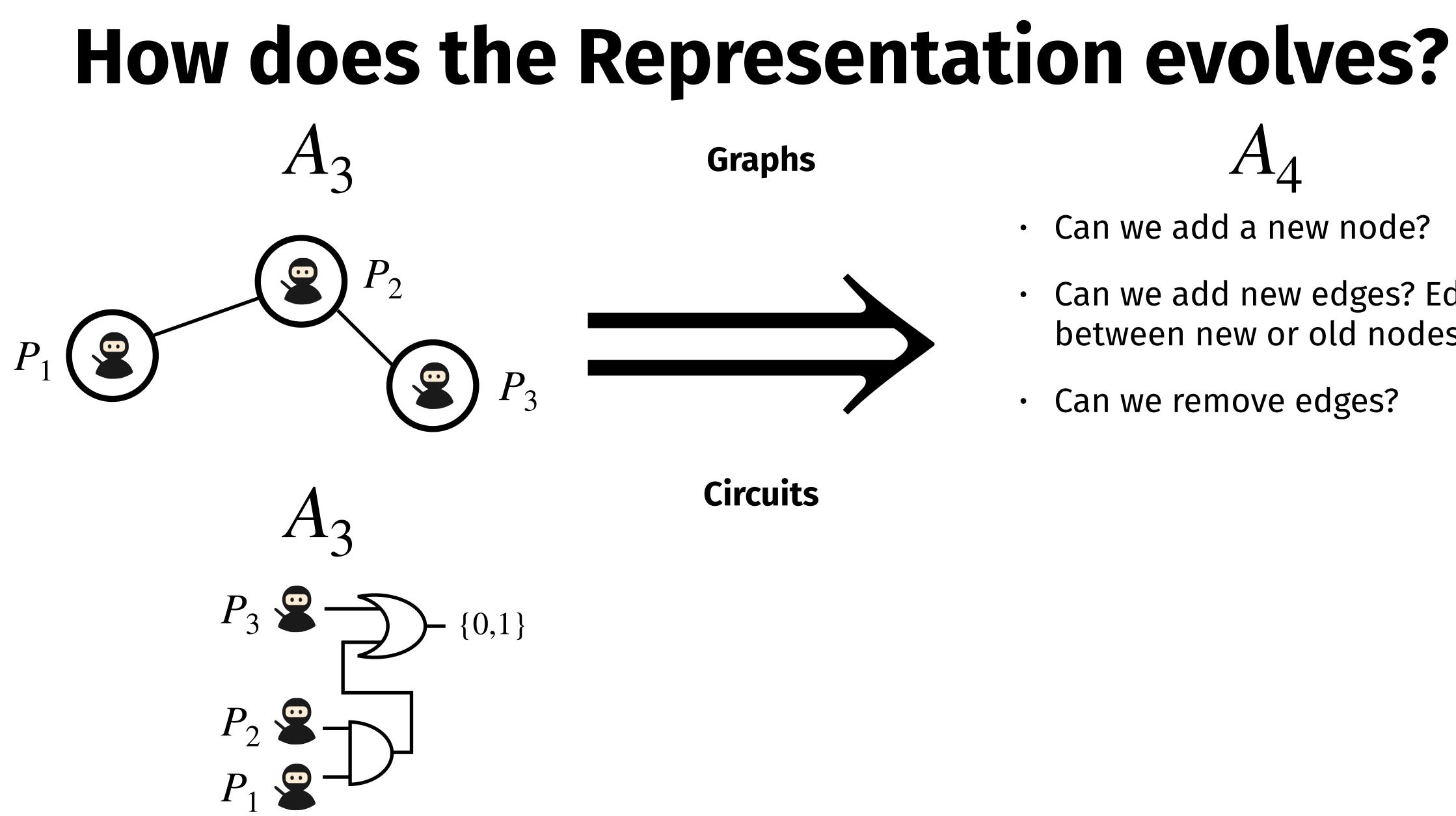


How does the Representation evolves?

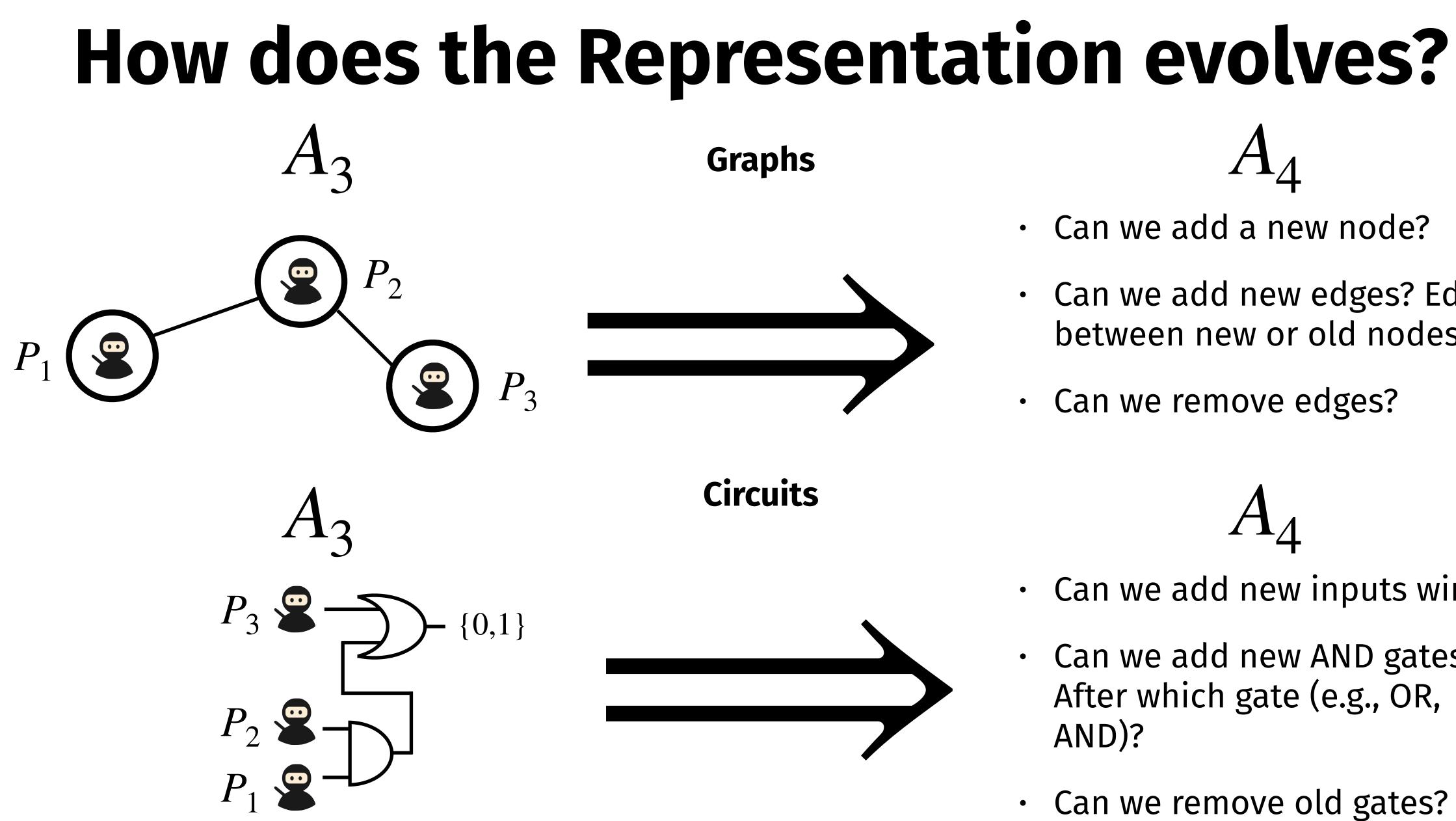
Graphs



- Can we add a new node? •
- Can we add new edges? Edges • between new or old nodes?
- Can we remove edges? •



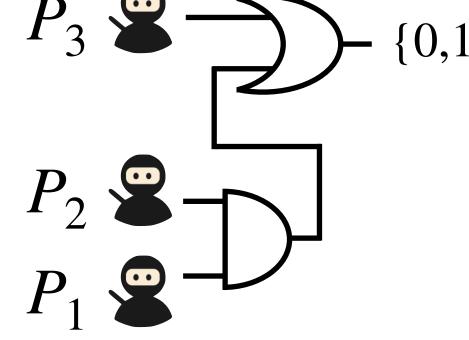
- Can we add a new node? •
- Can we add new edges? Edges • between new or old nodes?
- Can we remove edges? •



- Can we add a new node?
- Can we add new edges? Edges • between new or old nodes?
- Can we remove edges? •

- Can we add new inputs wires? •
- Can we add new AND gates? After which gate (e.g., OR, AND)?
- Can we remove old gates?

How does the Representation evolves? Graphs Can we add a new node? P_2 **Evolution** of representation P Determined by two properties: **Monotonicity + <u>Rigidity</u>** (next slide)



- Can we add new edges? Edges

- Can we add new inputs wires?
- Can we add new AND gates? After which gate (e.g., OR, AND)?
- Can we remove old gates?

Setting: No CRS + Shares of old parties remain unchanged

Rigidity

Rigidity

Setting: No CRS + Shares of old parties remain unchanged

Rigid Evolving Access Structure (informal)

the same set U is **unathorized** w.r.t. A_n

If a set $U = \{P_{i_1}, \dots, P_{i_t}\} \subseteq [n-1]$ is **unathorized** w.r.t. A_{n-1} \downarrow

Rigidity

Setting: No CRS + Shares of old parties remain unchanged

Rigid Evolving Access Structure (informal)

If a set
$$U = \{P_{i_1}, ..., P_{i_t}\} \subseteq$$

!! TAKEAWAY !!

After the arrival of *n*-th party (which defines the new access structure A_n), the newly inserted **authorized sets MUST** contain P_n , i.e., for every $X \in A_n \setminus A_{n-1}$, we have $n \in X$.

- $\subseteq [n-1]$ is **unathorized** w.r.t. A_{n-1} \downarrow
- the same set U is **unathorized** w.r.t. A_n

Evolving Bipartite Graphs (Projective PRGs)

Evolving Bipartite Graphs (Projective PRGs)

PRG: $\{0,1\}^n \to \{0,1\}^m$

Evolving Bipartite Graphs (Projective PRGs) PRG: $\{0,1\}^n \to \{0,1\}^m$ Setup $(1^{\lambda}, 1^m) \rightarrow msk$ (the seed)

Evolving Bipartite Graphs (Projective PRGs) PRG: $\{0,1\}^n \to \{0,1\}^m$ Setup $(1^{\lambda}, 1^{m}) \rightarrow msk$ (the seed) KeyGen(msk, $T \subseteq [m]$) $\rightarrow \alpha_T$ (the projective seed)

Evolving Bipartite Graphs (Projective PRGs) PRG: $\{0,1\}^n \to \{0,1\}^m$ Setup $(1^{\lambda}, 1^m) \rightarrow msk$ (the seed)

Correctness

 $Eval(msk) \rightarrow y \in \{0,1\}^m$ $\mathsf{Eval}(\alpha_T) \to y \in \{0,1\}^{|T|}$

- KeyGen(msk, $T \subseteq [m]$) $\rightarrow \alpha_T$ (the projective seed)

Evolving Bipartite Graphs (Projective PRGs) PRG: $\{0,1\}^n \to \{0,1\}^m$ Setup $(1^{\lambda}, 1^m) \rightarrow msk$ (the seed)

Correctness

 $\mathsf{Eval}(\mathsf{msk}) \to y \in \{0,1\}^m \text{-}$ $\mathsf{Eval}(\alpha_T) \to y \in \{0,1\}^{|T|}$

- KeyGen(msk, $T \subseteq [m]$) $\rightarrow \alpha_T$ (the projective seed)

Identical to PRG(msk)

Evolving Bipartite Graphs (Projective PRGs) PRG: $\{0,1\}^n \to \{0,1\}^m$ Setup $(1^{\lambda}, 1^{m}) \rightarrow msk$ (the seed)

Correctness

 $\mathsf{Eval}(\mathsf{msk}) \to y \in \{0,1\}^m$ $Eval(\alpha_T) \rightarrow y \in \{0,1\}^{|T|}$

- KeyGen(msk, $T \subseteq [m]$) $\rightarrow \alpha_T$ (the projective seed)

Identical to $PRG(msk)|_T$, i.e., the PRG output restricted on indexes T

Evolving Bipartite Graphs (Projective PRGs) PRG: $\{0,1\}^n \to \{0,1\}^m$ Setup $(1^{\lambda}, 1^m) \rightarrow msk$ (the seed) KeyGen(msk, $T \subseteq [m]$) $\rightarrow \alpha_T$ (the projective seed)

Security

Given α_T and Eval(msk) $\rightarrow y$, the y's bits associated to indexes $[m] \setminus T$ (where $T = \{i_1, ..., i_k\}$) are **pseudorandom**.

Evolving Bipartite Graphs (Projective PRGs)

- KeyGen(msk, $T \subseteq [m]$) $\rightarrow \alpha_T$ (the projective seed)

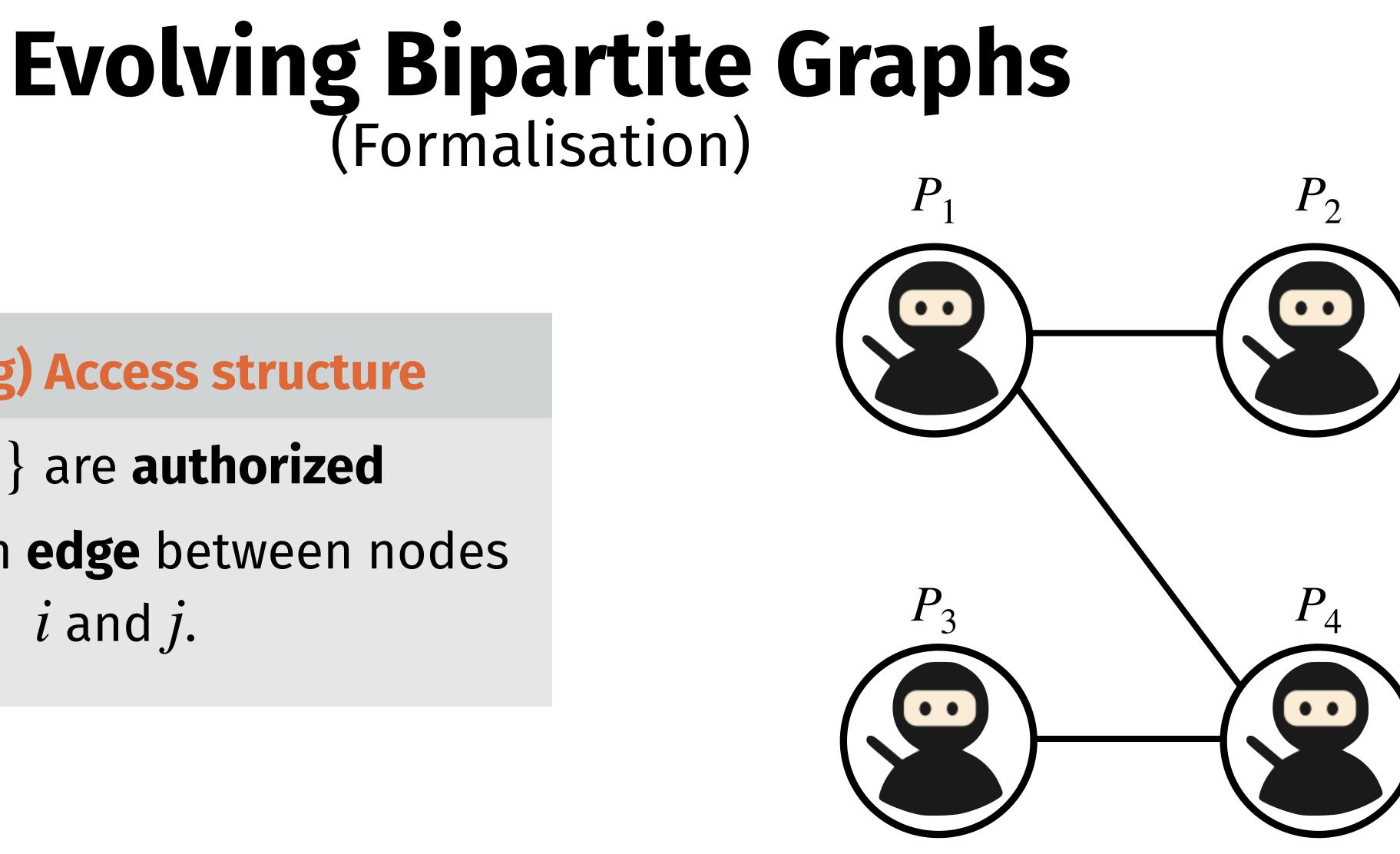
Succinctness

α_T must be succinct (i.e., sublinear) compared to |T|. **[A]** Gave a construction based on **RSA** where $|\alpha_T| \in \text{poly}(\lambda)$.

[A] Applebaum, Benny, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Tianren Liu, Vinod Vaikuntanathan. "Succinct computational secret sharing." STOC 23.

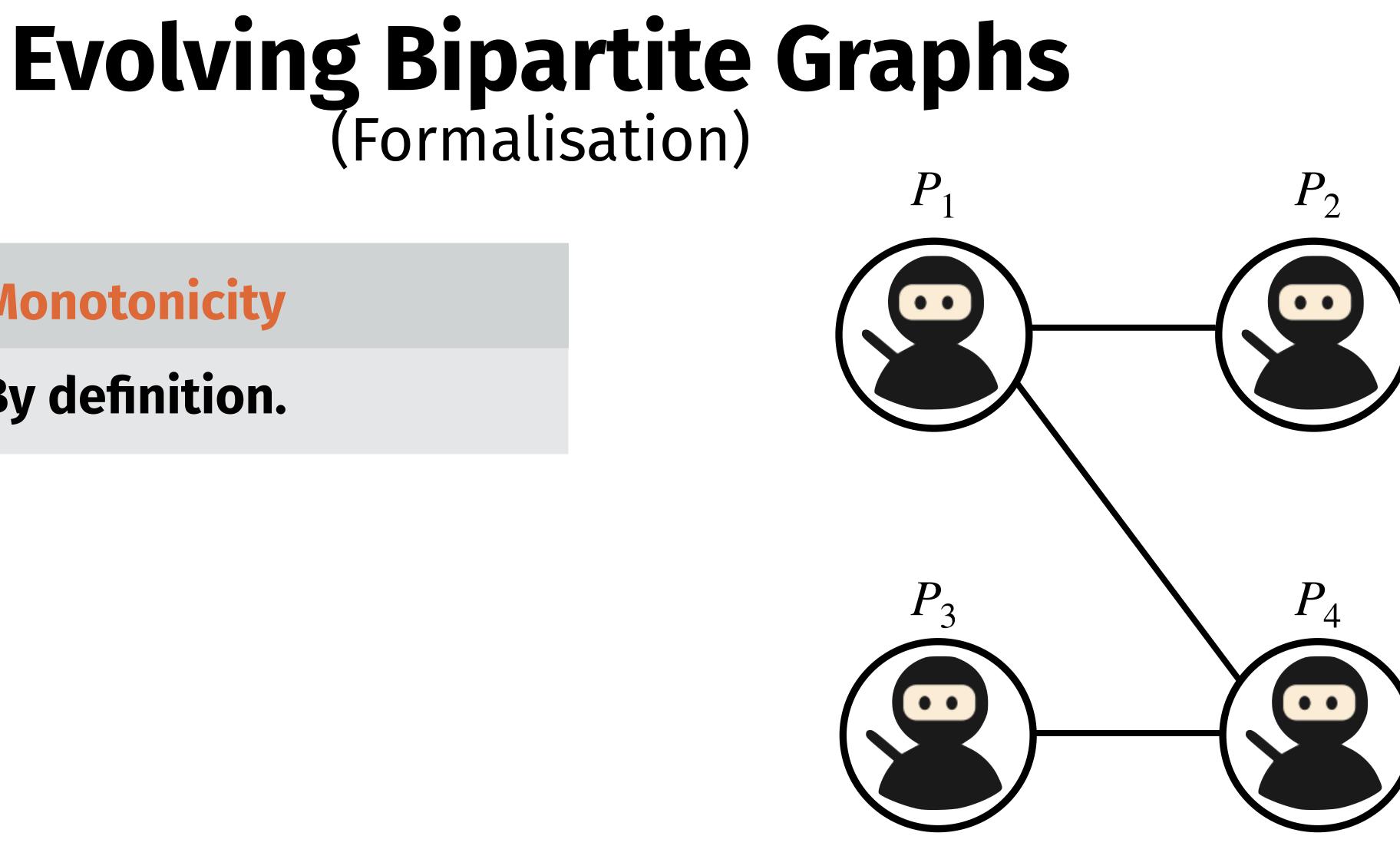
- PRG: $\{0,1\}^n \to \{0,1\}^m$
- Setup $(1^{\lambda}, 1^m) \rightarrow msk$ (the seed)

(Evolving) Access structure $\{P_i, P_j\}$ are **authorized** if there is an **edge** between nodes *i* and *j*.



Monotonicity

By definition.

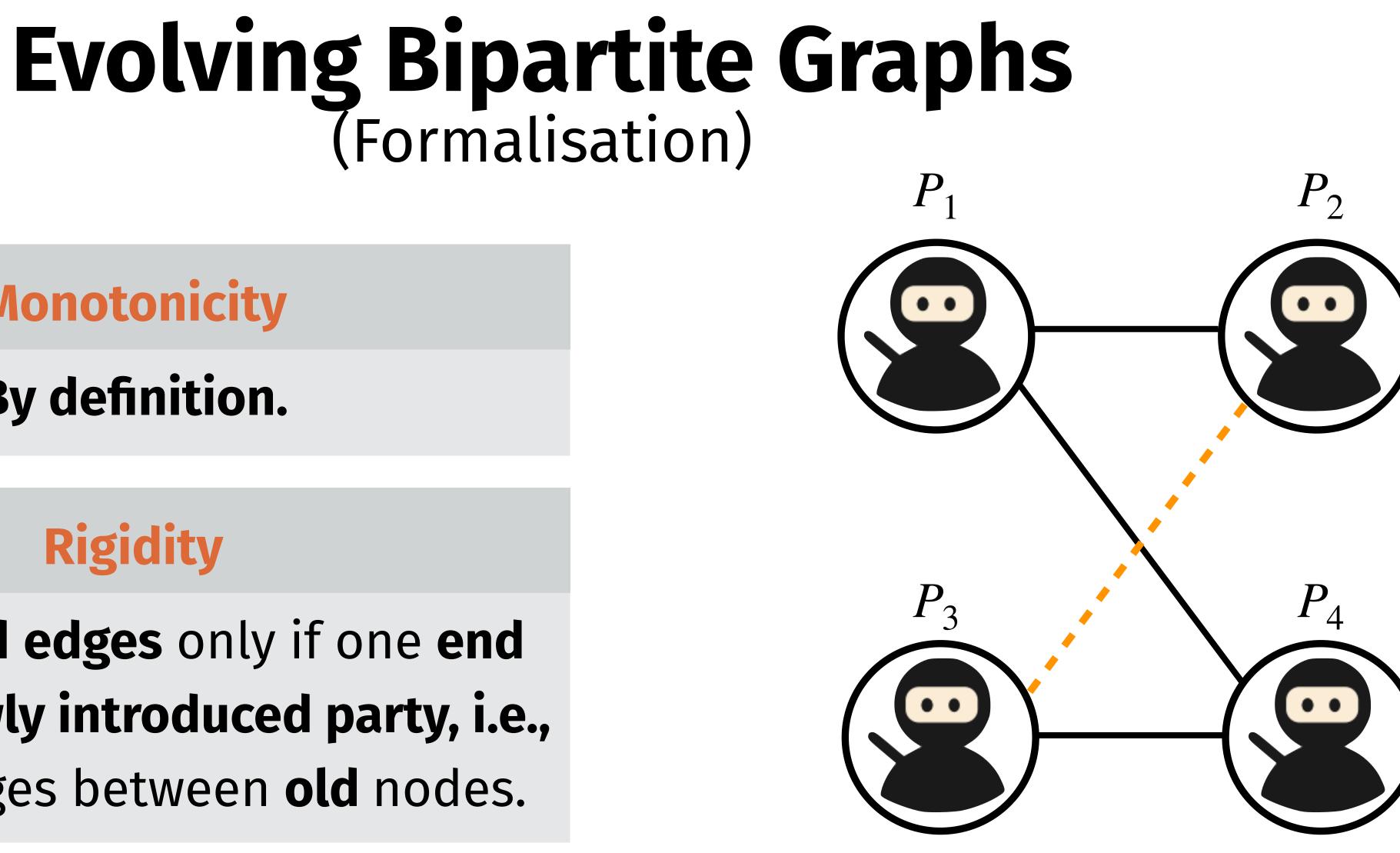


Monotonicity

By definition.

Rigidity

We can add edges only if one end hits the newly introduced party, i.e., no new edges between **old** nodes.



Dealer

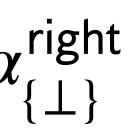
secret s



Dealer

secret s

- Compute Eval(msk^{left}) → y^{left}
 Compute KeyGen(msk^{right}, { ⊥ }) → α^{right}_{{⊥}}
- Set $\sigma_1 = (y^{\text{left}}|_{\{1\}} \bigoplus s, \alpha_{\{\bot\}}^{\text{right}})$



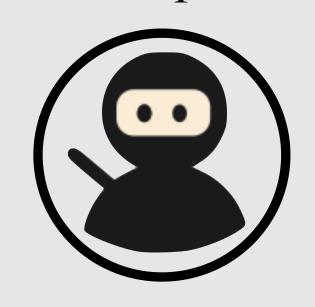
PRG^{left}

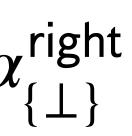
Dealer

 $\sigma_1 = (y^{\mathsf{left}}|_{\{1\}} \oplus s, \alpha_{\{\bot\}}^{\mathsf{right}})$

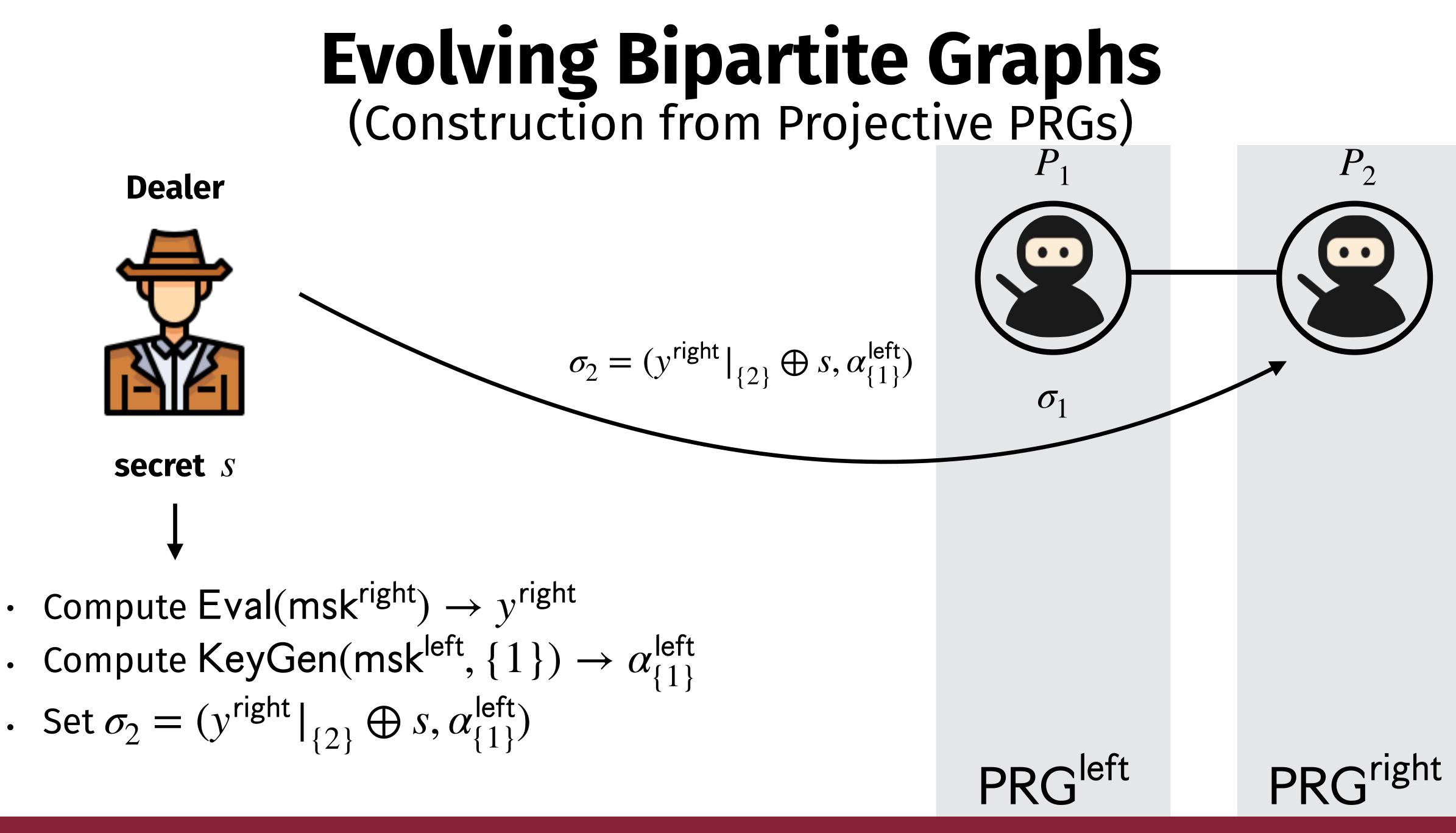
secret s

- Compute Eval(msk^{left}) $\rightarrow y^{\text{left}}$
- Compute KeyGen(msk^{right}, { \bot }) $\rightarrow \alpha_{\{\downarrow\}}^{\text{right}}$
- Set $\sigma_1 = (y^{\text{left}}|_{\{1\}} \oplus s, \alpha_{\{\bot\}}^{\text{right}})$

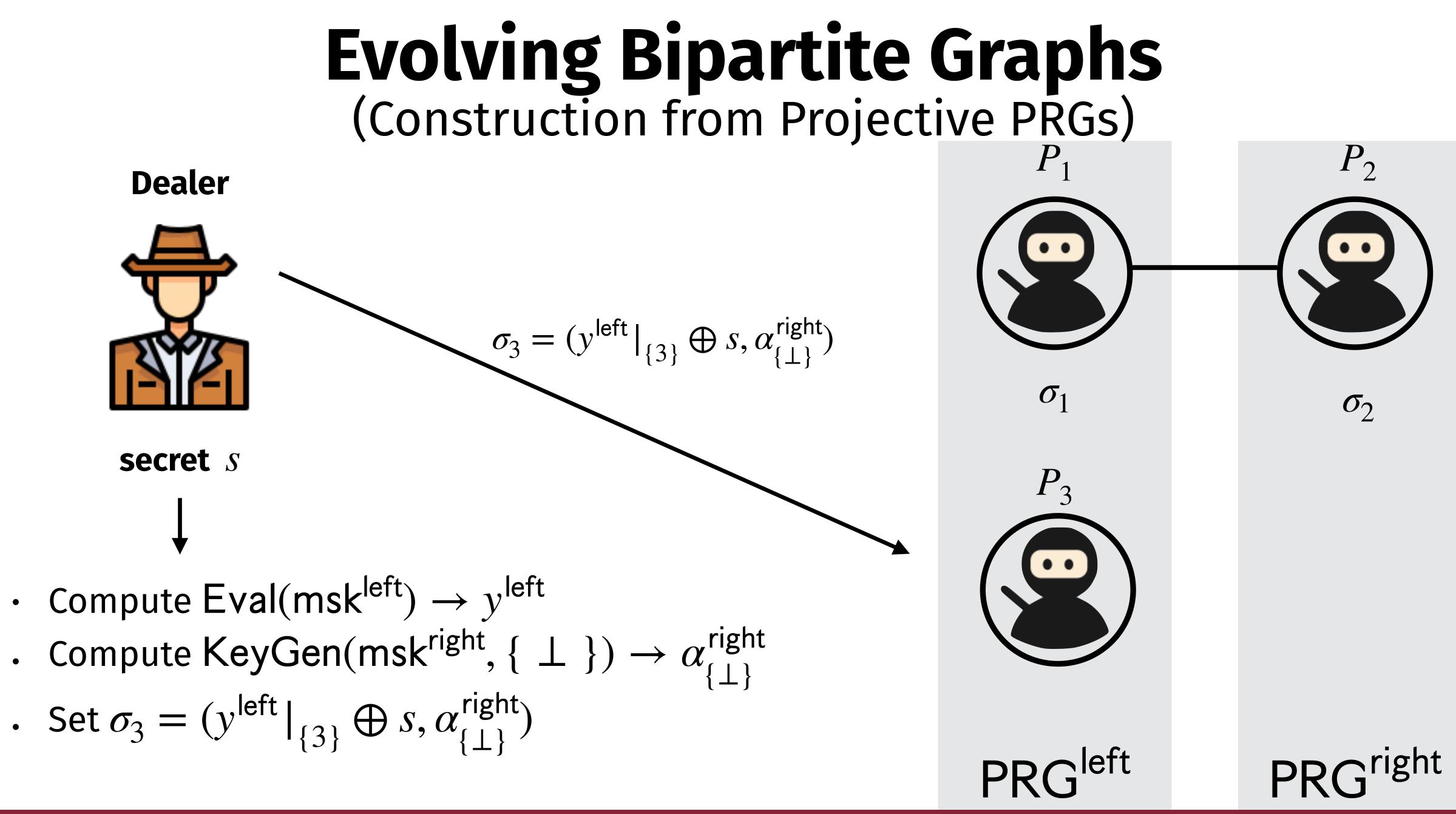




PRG^{left}



- Compute $Eval(msk^{right}) \rightarrow y^{right}$
- Set $\sigma_2 = (y^{\mathsf{right}}|_{\{2\}} \oplus s, \alpha_{\{1\}}^{\mathsf{left}})$



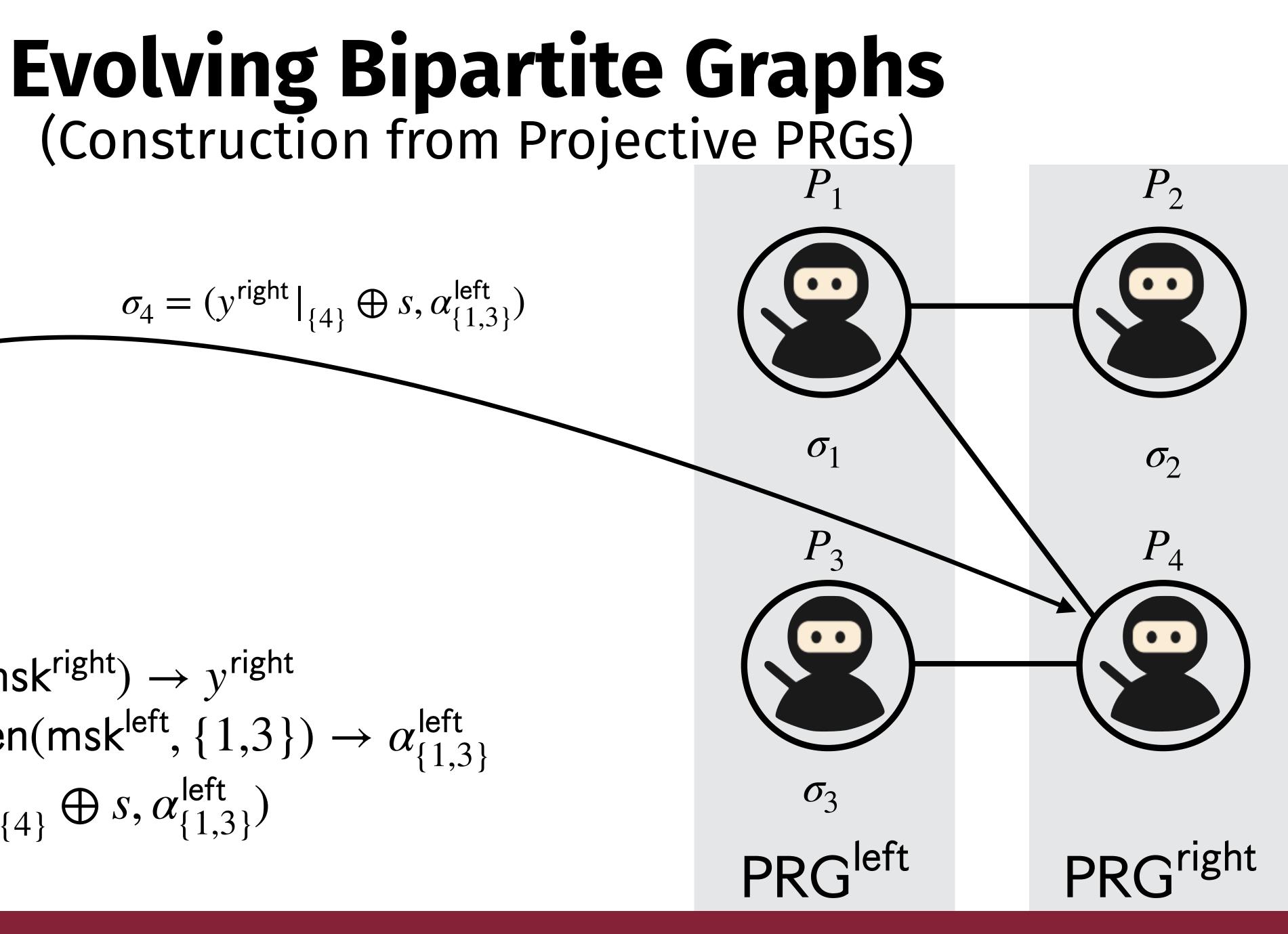
• Set $\sigma_3 = (y^{\text{left}}|_{\{3\}} \oplus s, \alpha_{\{\bot\}}^{\text{right}})$

Dealer

 $\sigma_4 = (y^{\text{right}}|_{\{4\}} \oplus s, \alpha_{\{1,3\}}^{\text{left}})$

secret s

- Compute $Eval(msk^{right}) \rightarrow y^{right}$
- Compute KeyGen(msk^{left}, {1,3}) $\rightarrow \alpha_{\{1,3\}}^{\text{left}}$
- Set $\sigma_4 = (y^{\text{right}}|_{\{4\}} \oplus s, \alpha_{\{1,3\}}^{\text{left}})$



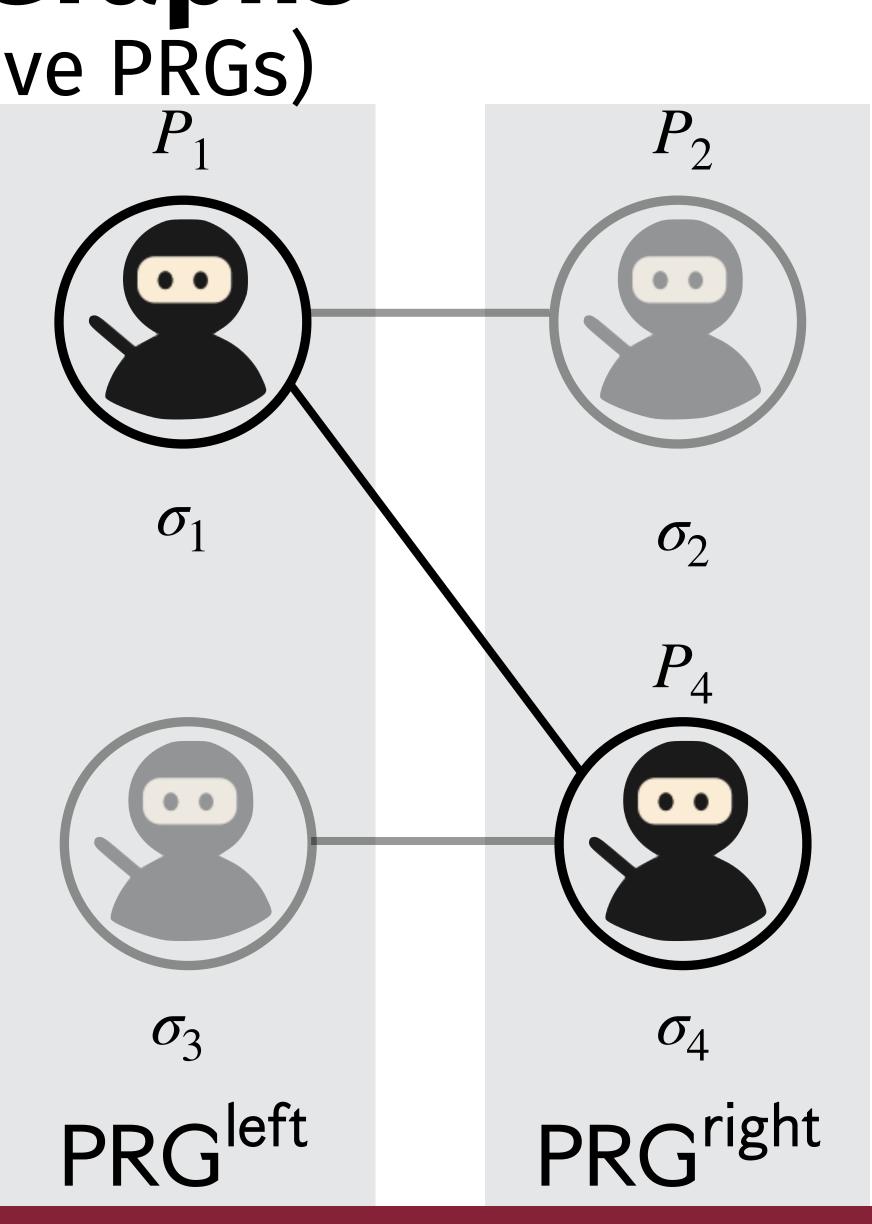
Evolving Bipartite Graphs (Construction from Projective PRGs) P_2 • • σ_1 σ_{γ} σ_3 PRG^{left} σ_4 **PRG**^{right}

 $\sigma_1 = (y^{\mathsf{left}}|_{\{1\}} \bigoplus s, \alpha_{\{\perp\}}^{\mathsf{right}}) \qquad \sigma_4 = (y^{\mathsf{right}}|_{\{4\}} \bigoplus s, \alpha_{\{1,3\}}^{\mathsf{left}})$

$$\sigma_1 = \left. y^{\mathsf{left}} \right|_{\{1\}} \oplus s, \alpha_{\{\perp\}}^{\mathsf{right}} \right) \qquad \sigma_4 = \left. \left(y^{\mathsf{right}} \right|_{\{4\}} \right)$$

Take the encryption of the secret from the share of the older party: $y^{\mathsf{left}}|_{\{1\}} \oplus s$

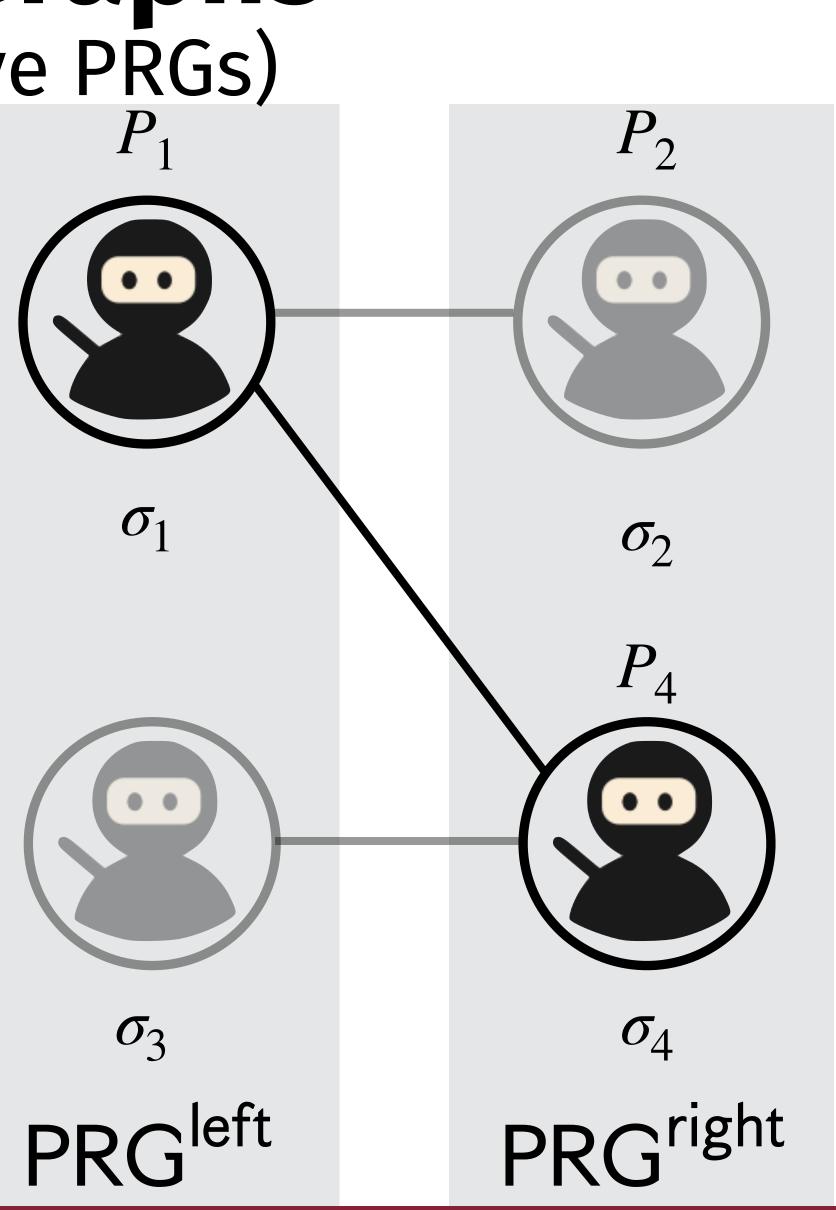
 $\oplus s, \alpha^{\mathsf{left}}_{\{1,3\}})$



$$\sigma_1 = \left. y^{\mathsf{left}} \right|_{\{1\}} \oplus s, \alpha^{\mathsf{right}}_{\{\perp\}} \right) \qquad \sigma_4 = \left. \left(y^{\mathsf{right}} \right|_{\{4\}} \right)$$

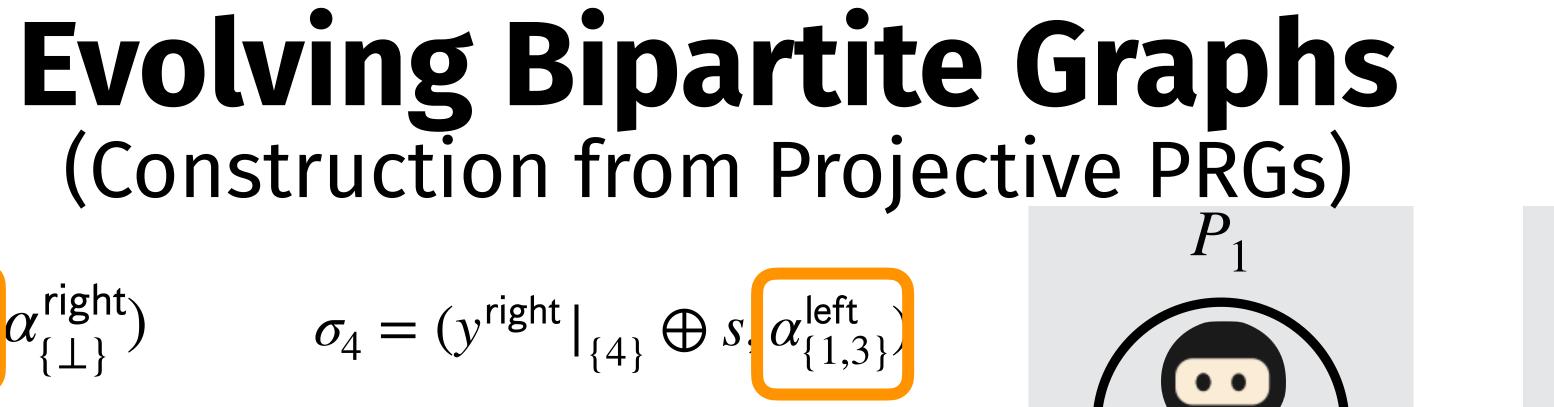
Take the **encryption of the secret** from the **share** of the older party: $y^{\mathsf{left}}|_{\{1\}} \oplus s$ Use the **projective key** of the **recent** party to re-compute the pseudorandom value: $\mathsf{Eval}(\alpha_{\{1,3\}}^{\mathsf{left}}) \to y^{\mathsf{left}}|_{\{1,3\}}$ and **restrict** the output to $y^{\mathsf{left}}|_{\{1,3\}}$

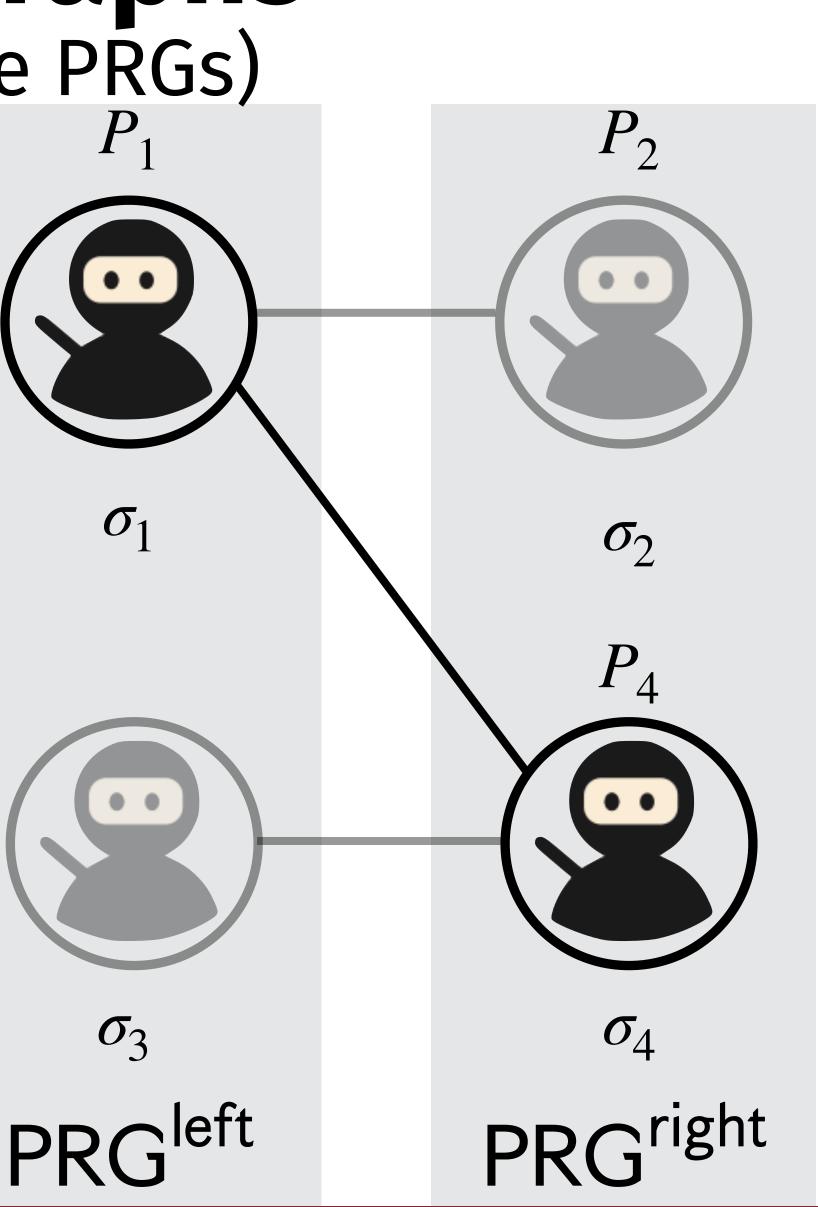
 $\bigoplus S$



$$\sigma_1 = \left(y^{\mathsf{left}} \big|_{\{1\}} \oplus s, \alpha^{\mathsf{right}}_{\{\perp\}} \right) \qquad \sigma_4 = \left(y^{\mathsf{right}} \big|_{\{4\}} \right)$$

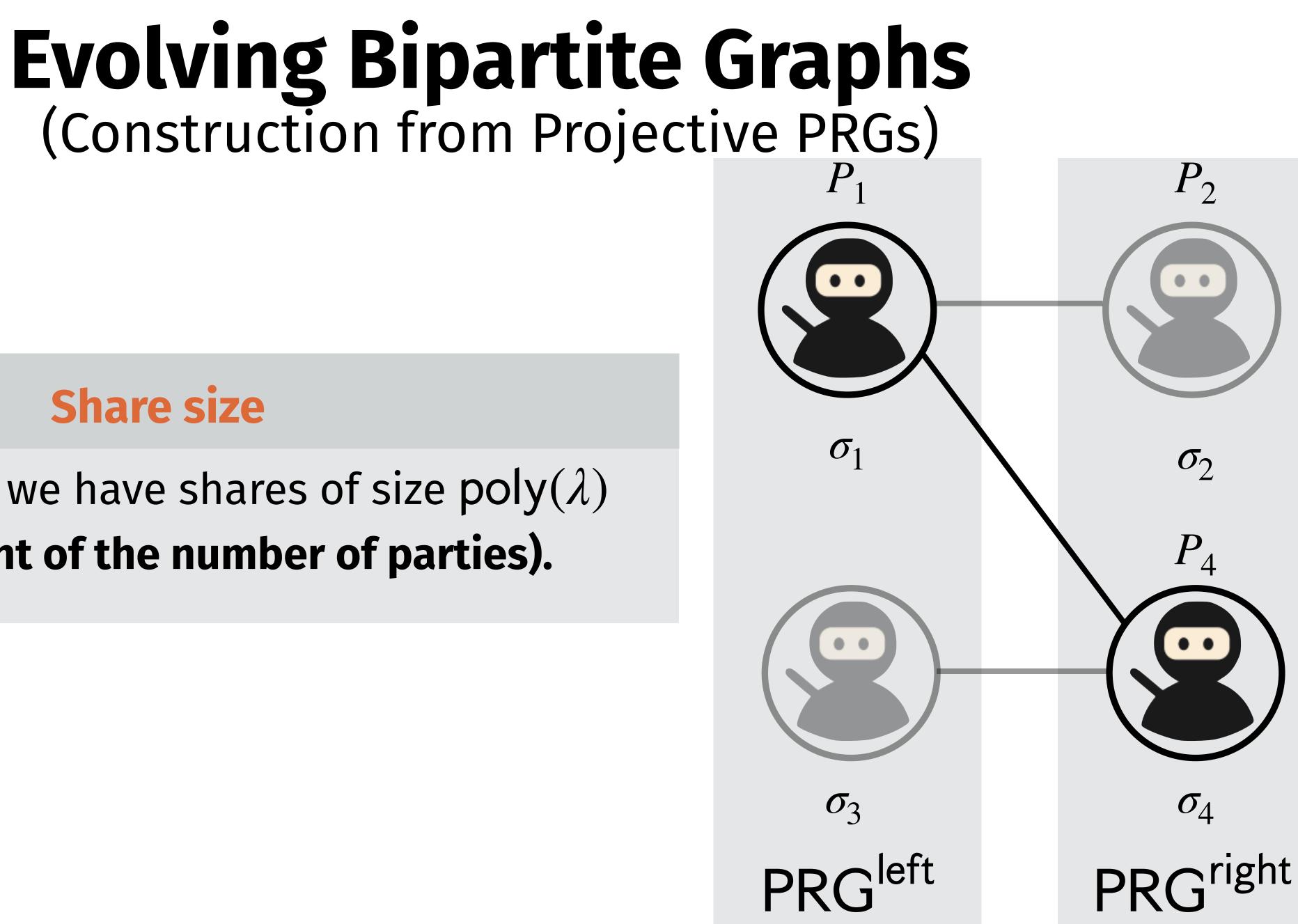
Take the **encryption of the secret** from the **share** of the older party: $y^{\mathsf{left}}|_{\{1\}} \oplus s$ Use the **projective key** of the **recent** party to re-compute the pseudorandom value: $\mathsf{Eval}(\alpha_{\{1,3\}}^{\mathsf{left}}) \to y^{\mathsf{left}}|_{\{1,3\}}$ and **restrict** the output to $y^{\mathsf{left}}|_{\{1\}}$ Get the secret $s = y^{\text{left}}|_{\{1\}} \oplus s \oplus y^{\text{left}}|_{\{1\}}$





Share size

Assuming **RSA**, we have shares of size $poly(\lambda)$ (independent of the number of parties).



Evolving Threshold (Formalisation)

Let $t_1 \leq t_2 \leq \ldots \leq t_n$. The threshold access structure A_i at time $i \in [n]$ is defined as follows: $A_i = A_{i-1} \cup \{ \text{all sets } X \subseteq [n] \text{ of size at least } t_i \}$

Evolving Threshold Access Structure

Evolving Threshold (Formalisation)

Evolving Threshold Access Structure

Let $t_1 \leq t_2 \leq \ldots \leq t_n$. The threshold access structure A_i at time $i \in [n]$ is defined as follows: $A_i = A_{i-1} \cup \{ \text{all sets } X \subseteq [n] \text{ of size at least } t_i \}$

Fix
$$t_1 = 2$$
, $t_2 = 2$, t_3

$$A_{1} = \emptyset$$

$$A_{2} = \{\{1,2\}\}$$

$$A_{3} = \{\{1,2\},\{2,3\},\{4,4\},\{2,3\}$$

EXAMPLE

 $= 2, t_4 = 4.$

 $\{1,3\},\{1,2,3\}\}$ $\{1,3\},\{1,2,3\},\{1,2,3,4\}\}$

Evolving Threshold (Formalisation)

Evolving Threshold Access Structure

Let $t_1 \leq t_2 \leq \ldots \leq t_n$. The threshold access structure A_i at time $i \in [n]$ is defined as follows: $A_i = A_{i-1} \cup \{ \text{all sets } X \subseteq [n] \text{ of size at least } t_i \}$

Fix
$$t_1 = 2$$
, $t_2 = 2$, t_3

$$A_{1} = \emptyset$$

$$A_{2} = \{\{1,2\}\}\}$$

$$A_{3} = \{\{1,2\},\{2,3$$

Rigidity

EXAMPLE

 $= 2, t_4 = 4.$

 $\{1,3\},\{1,2,3\}\}$ $\{1,3\},\{1,2,3\},\{1,2,3,4\}\}$

 $t_1 \leq t_2 \leq \dots$

Evolving Threshold (Construction from OWF)

Dealer

secret s

1

 $t_1 \leq t_2 \leq \dots$

Evolving Threshold (Construction from OWF)

Dealer

secret *s*

- Sample random f_1 of degree $t_1 1$ such that $f_1(0) = s$
- Sample random PRG seed k_1

1

 $t_1 \leq t_2 \leq \dots$

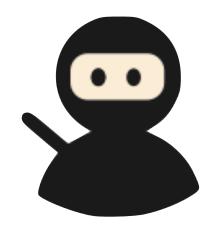
Evolving Threshold (Construction from OWF)

Dealer

secret s

- Sample random f_1 of degree $t_1 1$ such that $f_1(0) = s$
- Sample random PRG seed k_1

 $\sigma_1 = (f_1(1), k_1)$



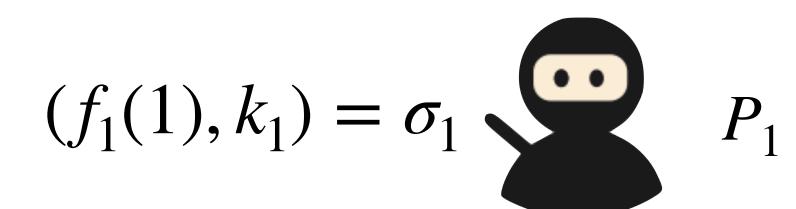
1

 $t_1 \leq t_2 \leq \dots$

Evolving Threshold (Construction from OWF)

Dealer

secret s



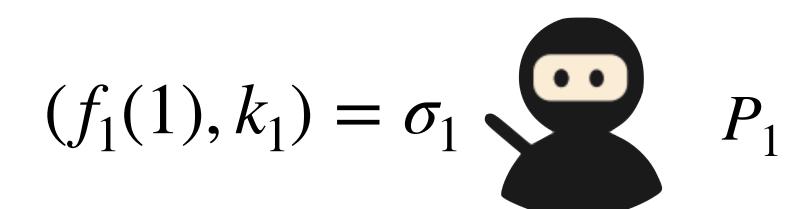
 $t_1 \leq t_2 \leq \dots$

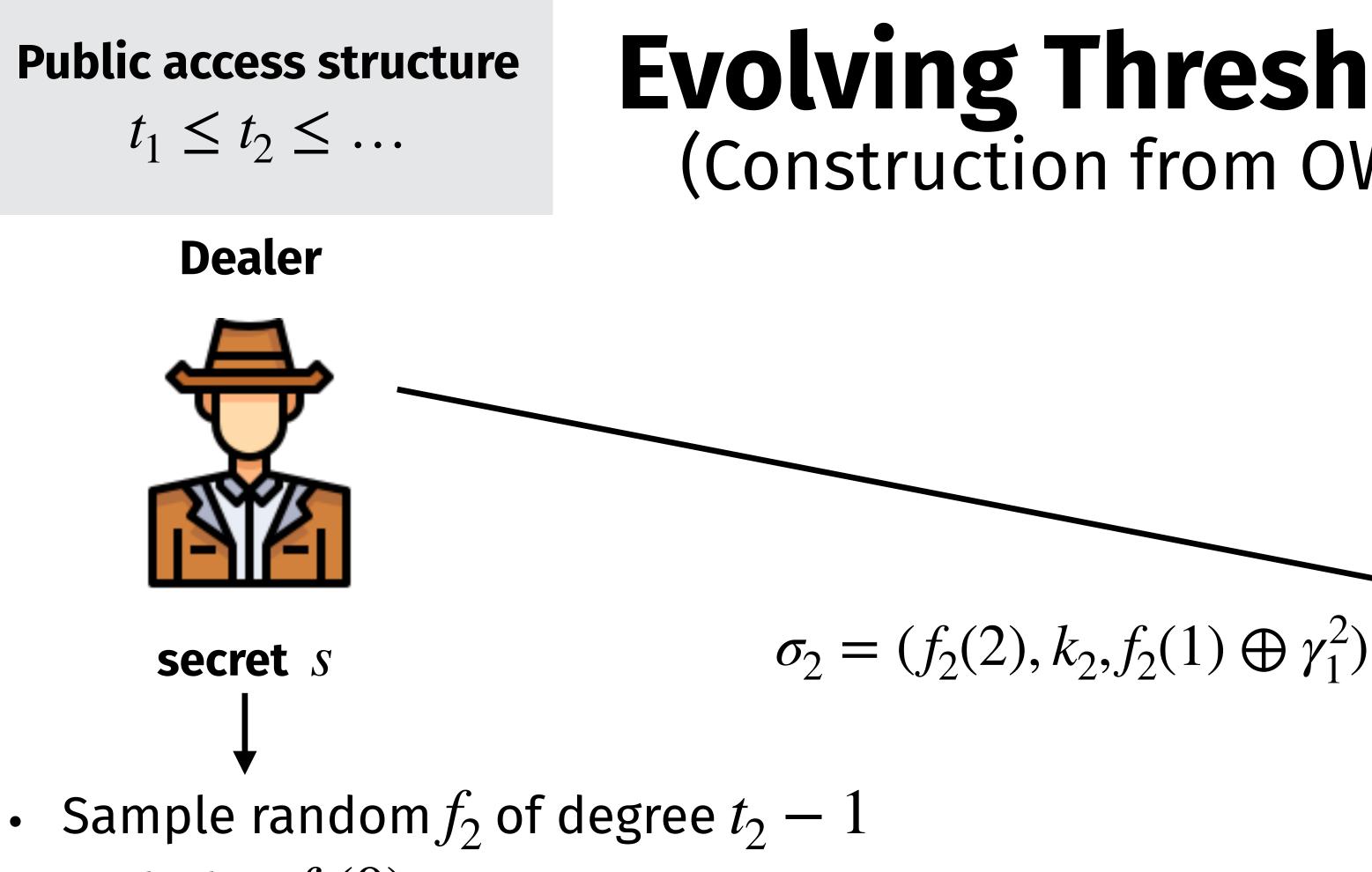
Evolving Threshold (Construction from OWF)

Dealer

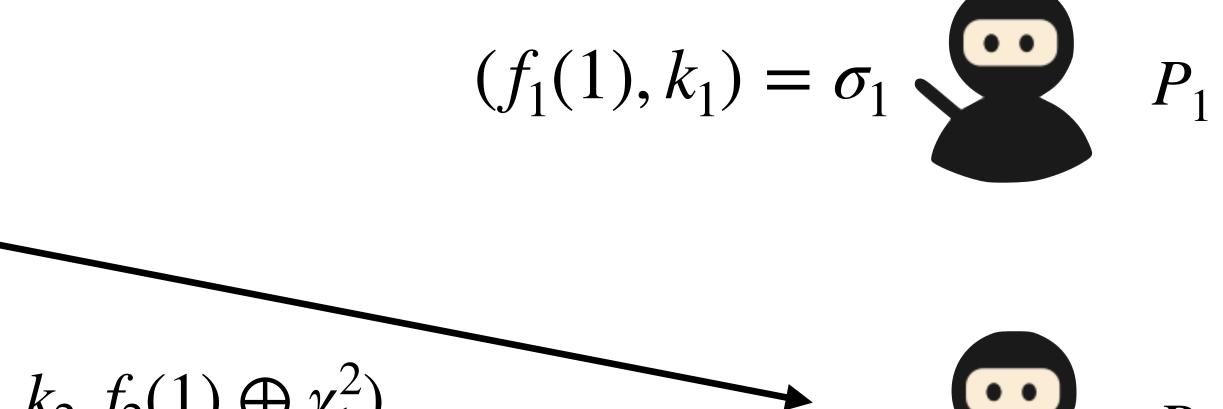
secret *s*

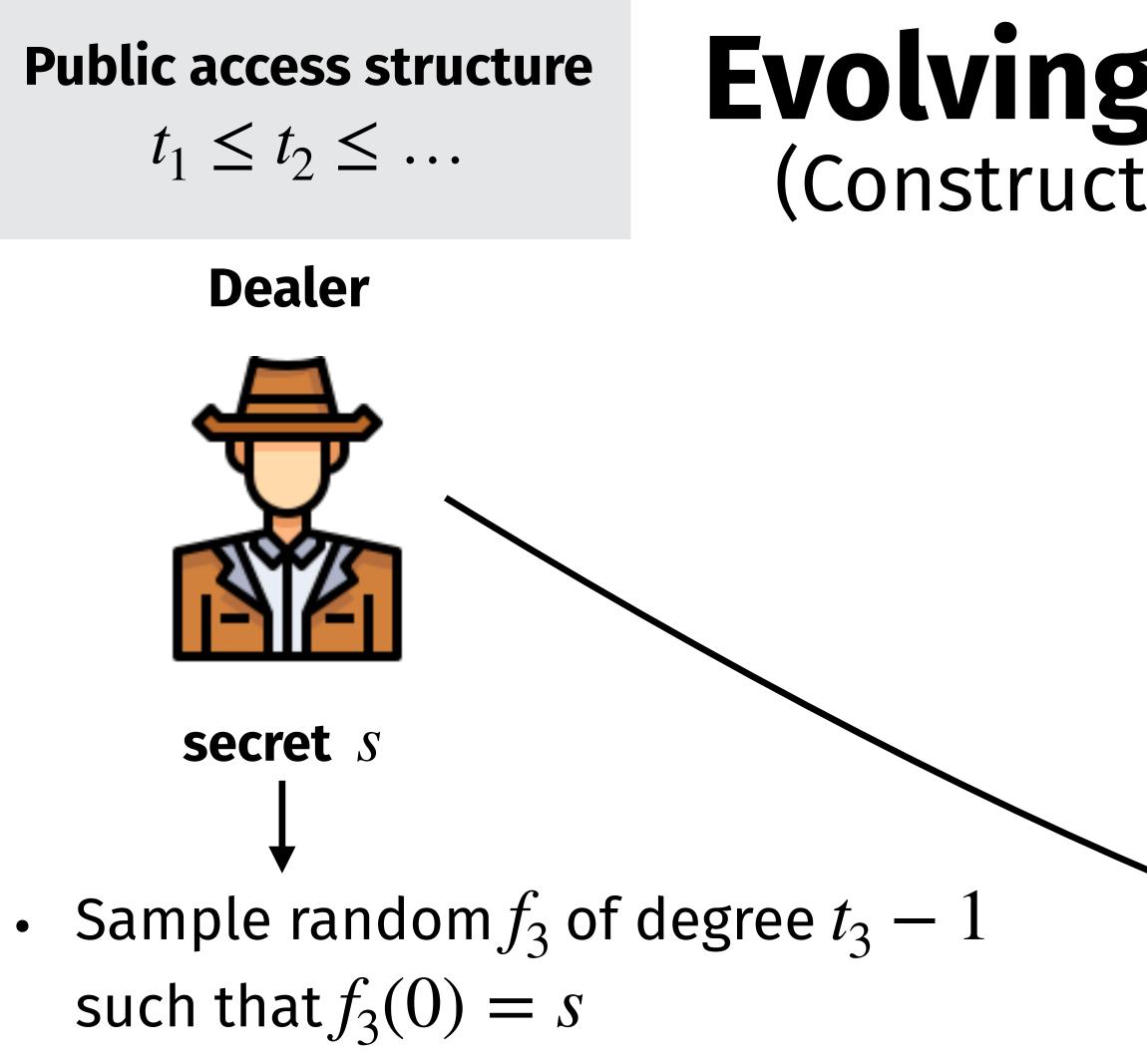
- Sample random f_2 of degree $t_2 1$ such that $f_2(0) = s$
- Sample random PRG seed k_2
- Let γ_1^2 the next unused block of PRG(k_1)



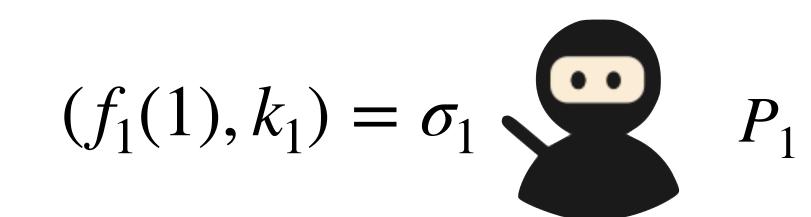


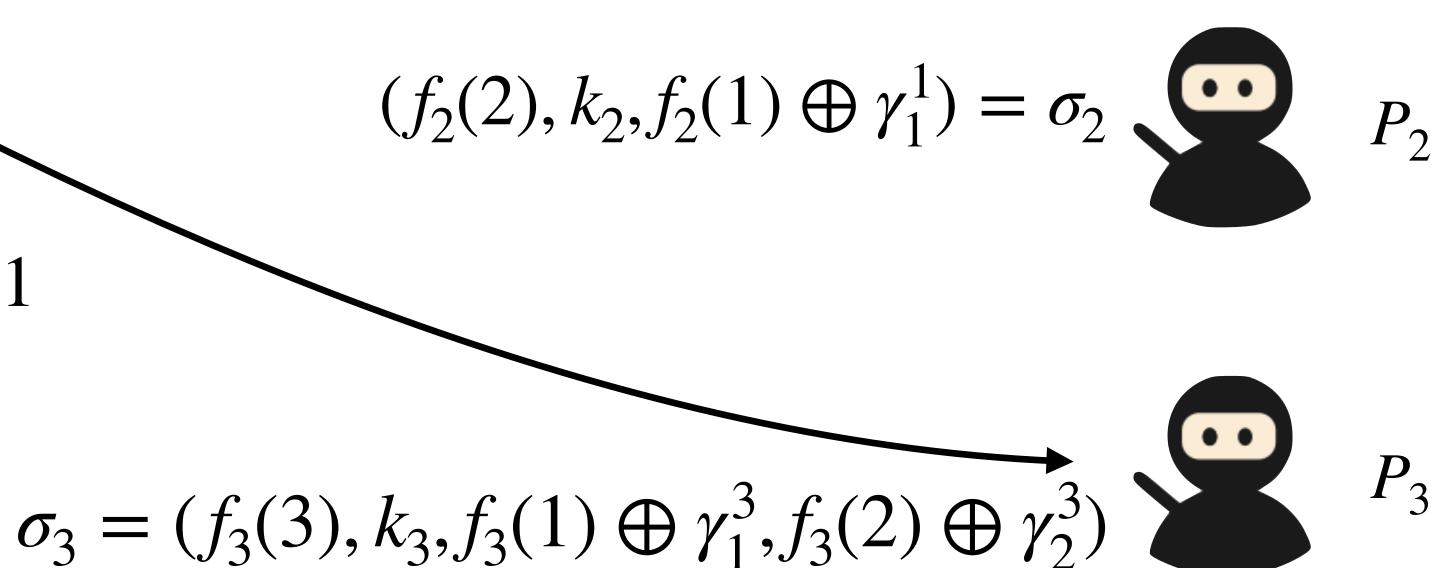
- such that $f_2(0) = s$
- Sample random PRG seed k_2
- Let γ_1^2 the next unused block of $PRG(k_1)$

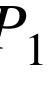


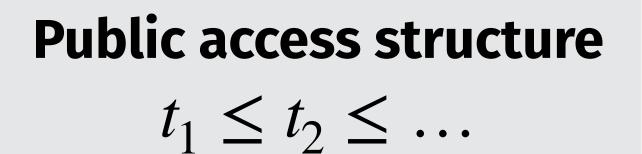


- Sample random PRG seed k_3
- For $i \in [2]$, let γ_i^3 the next unused block of $PRG(k_i)$

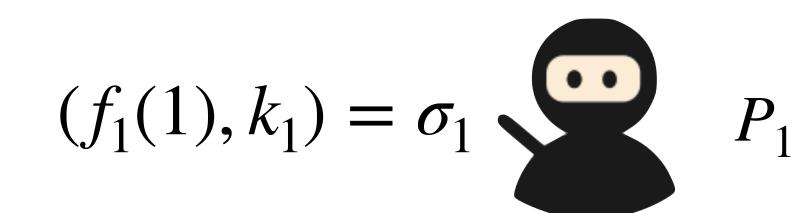






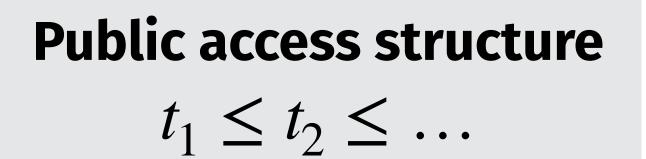


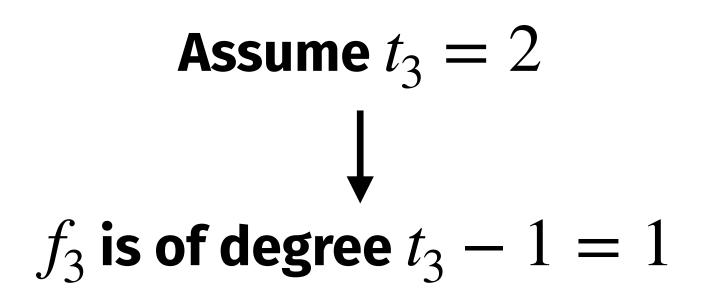
Assume $t_3 = 2$

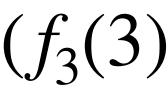


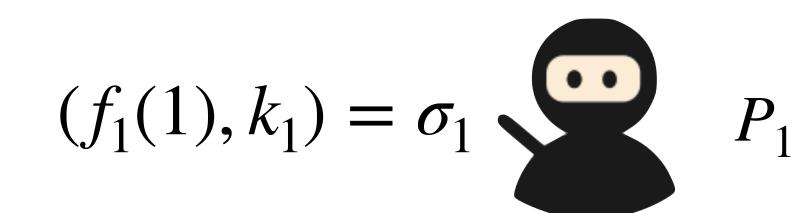
$(f_2(2), k_2, f_2(1) \oplus \gamma_1^1) = \sigma_2$

$(f_3(3), k_3, f_3(1) \oplus \gamma_1^3, f_3(2) \oplus \gamma_2^3) = \sigma_3$



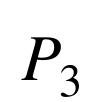


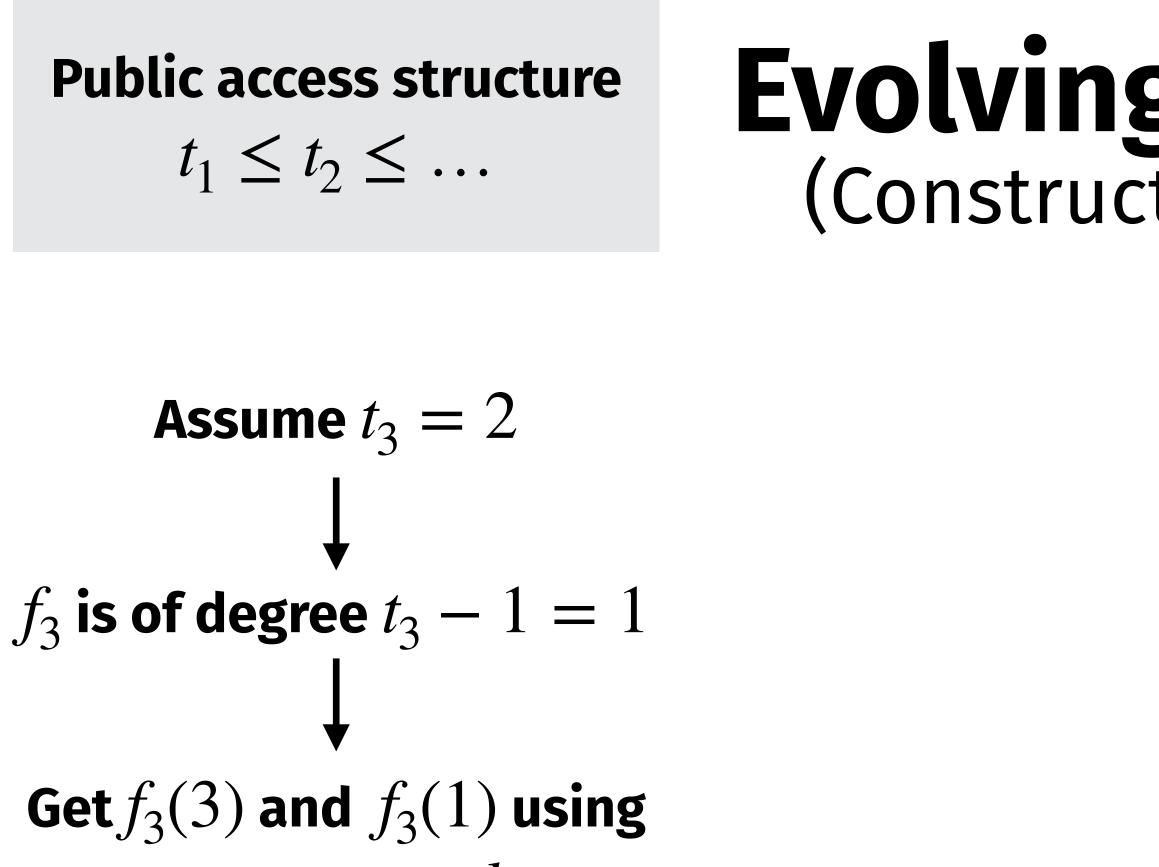




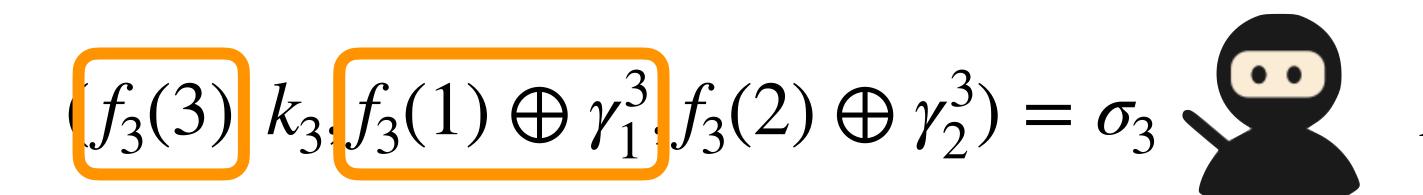
$(f_2(2), k_2, f_2(1) \oplus \gamma_1^1) = \sigma_2$

$(f_3(3), k_3, f_3(1) \oplus \gamma_1^3, f_3(2) \oplus \gamma_2^3) = \sigma_3$

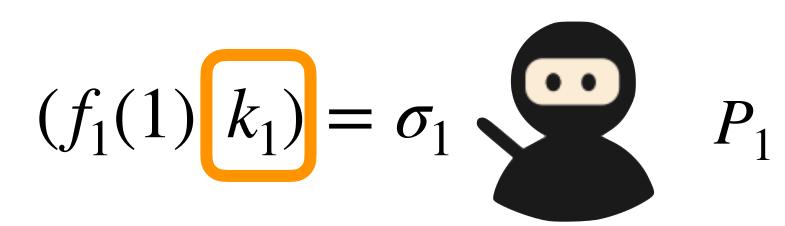




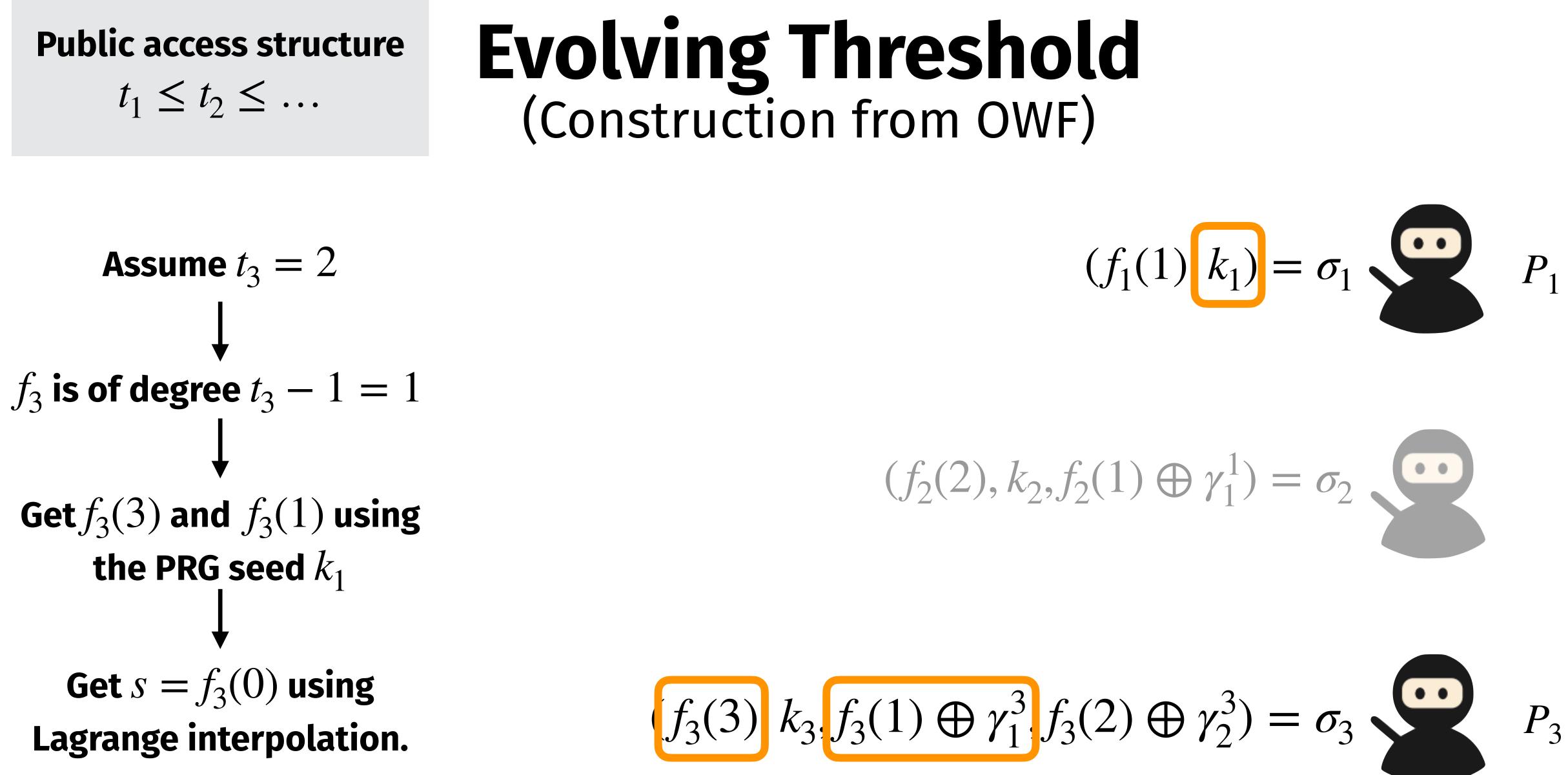
the PRG seed k_1

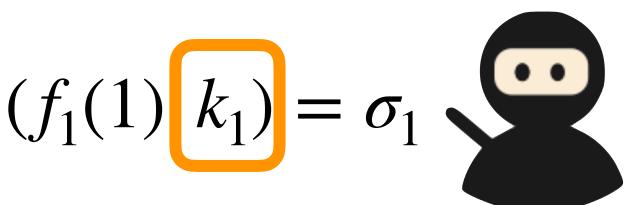


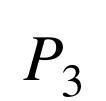
Evolving Threshold (Construction from OWF)

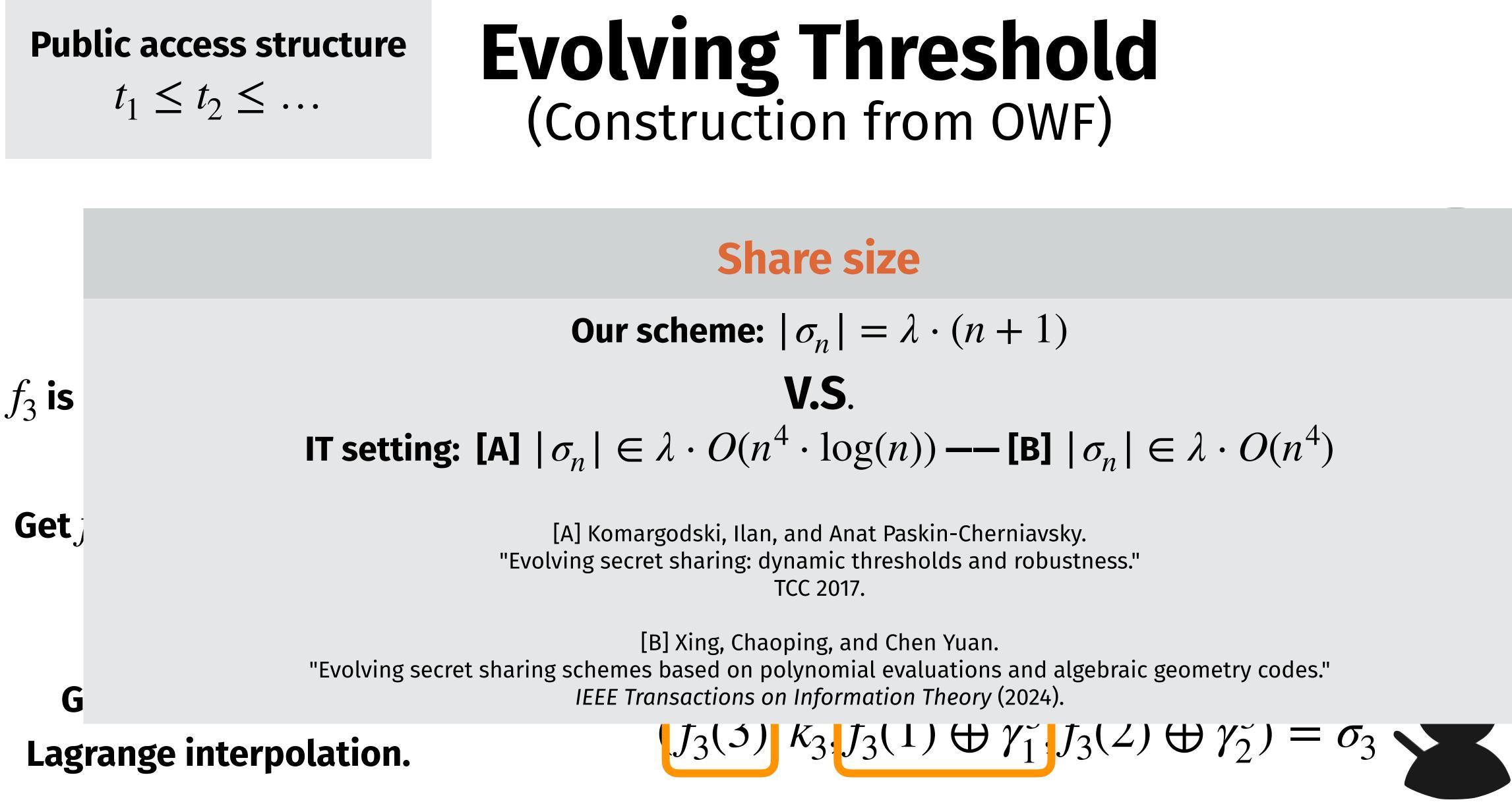


$(f_2(2), k_2, f_2(1) \oplus \gamma_1^1) = \sigma_2$









$$|\sigma_n| = \lambda \cdot (n+1)$$

V.S.
$${}^4 \cdot \log(n)) --- [B] |\sigma_n| \in \lambda \cdot O(n)$$

Other Results (See full version eprint.iacr.org/2023/1534)

Other Results (See full version eprint.iacr.org/2023/1534)

Other Evolving Access Structures

Arbitrary Access Structures (with polynomially many authorized sets)

The computational setting permits to circumvent Mazor's IT lower bound [A].

Monotone Circuits – CNF – DNF

[A] Mazor, Noam. "A lower bound on the share size in evolving secret sharing." *ITC 2023*.

Other Results (See full version eprint.iacr.org/2023/1534)

Other Evolving Access Structures

Arbitrary Access Structures (with polynomially many authorized sets) The computational setting permits to circumvent Mazor's IT lower bound [A].

Monotone Circuits – CNF – DNF

[A] Mazor, Noam. "A lower bound on the share size in evolving secret sharing." ITC 2023.

Evolving information dispersal

[B] Krawczyk, Hugo. "Secret sharing made short." CRYPTO 93.

We extend the notion of **Information Dispersal** to the **evolving setting**. We generalise **Krawczyk's compiler [B]** to the **evolving setting** (for some access structures).

