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Monotonicity

If parties  can reconstruct (authorized set) the secret s  
 

then parties  (superset of  ) can reconstruct (authorized set) the secret s

{P1, P2, P3}
⇓

{P1, P2, P3, P4}

Monotone Access Structure  (informal)A

Required to define security of SS
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Our Work

Extend the notion of Evolving Secret Sharing  
to the Computational Setting. 

1. New Evolving Secret Sharing schemes for specific  
Evolving Access Structures. 

2. Reducing the share size of these Evolving Secret Sharing schemes  
(we can leverage computationally secure primitives  😁  ).

Objectives
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The dealer knows  will be 
polynomial but no guarantees 

on its upper bound.

n
Unknown polynomial bound
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An evolving access structure is usually represented as incrementally defined sets: 
 

without caring if these sets have an efficient (polynomial) representation.
A1 ⊆ A2 ⊆ A3 ⊆ A4 ⊆ … ⊆ An

Information Theoretic representation of the Evolving Access Structure A

(having an efficient representation is important for the computational case) 
Examples of efficient representable access structures

Graphs

P1

P2

P3

Parties  are authorized (i.e., )  
if edge  exists

{Pi, Pj} An(Pi, Pj) = 1
Pi → Pj

Circuits

P2

P1

P3 {0,1}

Parties  are authorized if the circuit 
evaluates to 1

{Pij}j∈[t]
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⟹
A4

• Can we add a new node? 

• Can we add new edges? Edges 
between new or old nodes? 

• Can we remove edges?

⟹
A4

• Can we add new inputs wires? 

• Can we add new AND gates?  
After which gate (e.g., OR, 
AND)? 

• Can we remove old gates?

⟹
How does the Representation evolves?

Graphs

Circuits

P1

P2

P3

P2

P1

P3 {0,1} ⟹

A3

A3

A4

A4

Determined by two properties: 
Monotonicity + Rigidity 

                           (next slide)

Evolution of representation
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Rigidity
Setting: No CRS + Shares of old parties remain unchanged

If a set  is unathorized w.r.t.  
 

the same set  is unathorized w.r.t. 

U = {Pi1, …, Pit} ⊆ [n − 1] An−1
⇓

U An

Rigid Evolving Access Structure (informal)

After the arrival of -th party (which defines the new access structure ),  
the newly inserted authorized sets MUST contain , i.e., 

for every , we have .

n An
Pn

X ∈ An∖An−1 n ∈ X

!! TAKEAWAY !!
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Given  and , the ’s bits associated to indexes   
(where ) are pseudorandom.

αT 𝖤𝗏𝖺𝗅(𝗆𝗌𝗄) → y y [m]∖T
T = {i1, …, ik}

Security
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Evolving Bipartite Graphs
(Projective PRGs)

𝖯𝖱𝖦 : {0,1}n → {0,1}m

 (the seed)𝖲𝖾𝗍𝗎𝗉(1λ,1m) → 𝗆𝗌𝗄

 (the projective seed)𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, T ⊆ [m]) → αT

 must be succinct (i.e., sublinear) compared to . 
[A] Gave a construction based on RSA where . 

[A] Applebaum, Benny, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Tianren Liu, Vinod Vaikuntanathan.  
“Succinct computational secret sharing."  

STOC 23.  

αT |T |
|αT | ∈ 𝗉𝗈𝗅𝗒(λ)

Succinctness
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{Pi, Pj}
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(Evolving) Access structure
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Evolving Bipartite Graphs
(Formalisation)

P1 P2

P3 P4

By definition.

Monotonicity

We can add edges only if one end 
hits the newly introduced party, i.e., 
no new edges between old nodes.

Rigidity
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• Compute  
• Compute  

• Set 

𝖤𝗏𝖺𝗅(𝗆𝗌𝗄𝗋𝗂𝗀𝗁𝗍) → y𝗋𝗂𝗀𝗁𝗍

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄𝗅𝖾𝖿𝗍, {1}) → α 𝗅𝖾𝖿𝗍
{1}

σ2 = (y𝗋𝗂𝗀𝗁𝗍 |{2} ⊕ s, α 𝗅𝖾𝖿𝗍
{1})

σ2 = (y𝗋𝗂𝗀𝗁𝗍 |{2} ⊕ s, α 𝗅𝖾𝖿𝗍
{1}) σ1



Evolving Bipartite Graphs

P3

P1 P2
(Construction from Projective PRGs)

Dealer

secret  s

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

• Compute  
• Compute  

• Set 

𝖤𝗏𝖺𝗅(𝗆𝗌𝗄𝗅𝖾𝖿𝗍) → y 𝗅𝖾𝖿𝗍

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄𝗋𝗂𝗀𝗁𝗍, { ⊥ }) → α𝗋𝗂𝗀𝗁𝗍
{⊥}

σ3 = (y 𝗅𝖾𝖿𝗍 |{3} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥} )

σ3 = (y 𝗅𝖾𝖿𝗍 |{3} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥} )

σ1 σ2



Evolving Bipartite Graphs
Dealer

secret  s P3 P4

P1 P2
(Construction from Projective PRGs)

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

• Compute  
• Compute  

• Set 

𝖤𝗏𝖺𝗅(𝗆𝗌𝗄𝗋𝗂𝗀𝗁𝗍) → y𝗋𝗂𝗀𝗁𝗍

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄𝗅𝖾𝖿𝗍, {1,3}) → α 𝗅𝖾𝖿𝗍
{1,3}

σ4 = (y𝗋𝗂𝗀𝗁𝗍 |{4} ⊕ s, α 𝗅𝖾𝖿𝗍
{1,3})

σ4 = (y𝗋𝗂𝗀𝗁𝗍 |{4} ⊕ s, α 𝗅𝖾𝖿𝗍
{1,3})

σ1 σ2

σ3
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P3 P4

P1 P2
(Construction from Projective PRGs)
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σ1 = (y 𝗅𝖾𝖿𝗍 |{1} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥} ) σ4 = (y𝗋𝗂𝗀𝗁𝗍 |{4} ⊕ s, α 𝗅𝖾𝖿𝗍

{1,3})

Take the encryption of the secret from the share of the 
older party: 
y 𝗅𝖾𝖿𝗍 |{1} ⊕ s

Use the projective key of the recent party to re-compute the 
pseudorandom value:   

 and restrict the output to 𝖤𝗏𝖺𝗅(α 𝗅𝖾𝖿𝗍
{1,3}) → y 𝗅𝖾𝖿𝗍 |{1,3} y 𝗅𝖾𝖿𝗍 |{1}



Evolving Bipartite Graphs

P3 P4

P1 P2
(Construction from Projective PRGs)

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

σ1 σ2

σ3 σ4

σ1 = (y 𝗅𝖾𝖿𝗍 |{1} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥} ) σ4 = (y𝗋𝗂𝗀𝗁𝗍 |{4} ⊕ s, α 𝗅𝖾𝖿𝗍

{1,3})

Get the secret  = s y 𝗅𝖾𝖿𝗍 |{1} ⊕ s ⊕ y 𝗅𝖾𝖿𝗍 |{1}

Take the encryption of the secret from the share of the 
older party: 
y 𝗅𝖾𝖿𝗍 |{1} ⊕ s

Use the projective key of the recent party to re-compute the 
pseudorandom value:   

 and restrict the output to 𝖤𝗏𝖺𝗅(α 𝗅𝖾𝖿𝗍
{1,3}) → y 𝗅𝖾𝖿𝗍 |{1,3} y 𝗅𝖾𝖿𝗍 |{1}



Evolving Bipartite Graphs

P3 P4

P1 P2
(Construction from Projective PRGs)

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

σ1 σ2

σ3 σ4

Assuming RSA, we have shares of size   
(independent of the number of parties).

𝗉𝗈𝗅𝗒(λ)
Share size
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The threshold access structure  at time  is defined as follows: 

t1 ≤ t2 ≤ … ≤ tn
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Ai = Ai−1 ∪ {all sets X ⊆ [n] of size at least ti}

Evolving Threshold Access Structure 

Fix . 

 
 

 

t1 = 2, t2 = 2, t3 = 2, t4 = 4

A1 = ∅
A2 = {{1,2}}
A3 = {{1,2}, {2,3}, {1,3}, {1,2,3}}
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EXAMPLE

Monotonicity

Rigidity
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Dealer
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 such that  

• Sample random PRG seed 

f1
t1 − 1 f1(0) = s

k1
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Public access structure 
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Evolving Threshold
(Construction from OWF)

Dealer

secret  s

σ1 = ( f1(1), k1)

• Sample random  of degree 
 such that  

• Sample random PRG seed 

f1
t1 − 1 f1(0) = s

k1

P1

Public access structure 
t1 ≤ t2 ≤ …
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Dealer

secret  s

P1

P2

( f1(1), k1) = σ1

Public access structure 
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Evolving Threshold
(Construction from OWF)

Dealer

secret  s

• Sample random  of degree  
such that  

• Sample random PRG seed  
• Let  the next unused block of 

f2 t2 − 1
f2(0) = s

k2
γ2

1
𝖯𝖱𝖦(k1)

P1

P2

( f1(1), k1) = σ1

Public access structure 
t1 ≤ t2 ≤ …



Evolving Threshold
(Construction from OWF)

Dealer

secret  s σ2 = ( f2(2), k2, f2(1) ⊕ γ2
1)

• Sample random  of degree  
such that  

• Sample random PRG seed  
• Let  the next unused block of 

f2 t2 − 1
f2(0) = s

k2
γ2

1
𝖯𝖱𝖦(k1)

P1

P2

( f1(1), k1) = σ1

Public access structure 
t1 ≤ t2 ≤ …



Evolving Threshold
(Construction from OWF)

Dealer

secret  s

• Sample random  of degree  
such that  

• Sample random PRG seed  
• For , let  the next  

unused block of 

f3 t3 − 1
f3(0) = s

k3
i ∈ [2] γ3

i
𝖯𝖱𝖦(ki)

P1

P2

( f1(1), k1) = σ1

( f2(2), k2, f2(1) ⊕ γ1
1) = σ2

P3

Public access structure 
t1 ≤ t2 ≤ …

σ3 = ( f3(3), k3, f3(1) ⊕ γ3
1 , f3(2) ⊕ γ3

2)
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P2
( f2(2), k2, f2(1) ⊕ γ1

1) = σ2
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Public access structure 
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1 , f3(2) ⊕ γ3

2) = σ3

Assume t3 = 2
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Evolving Threshold
(Construction from OWF)

P1( f1(1), k1) = σ1

P2
( f2(2), k2, f2(1) ⊕ γ1

1) = σ2

P3

Public access structure 
t1 ≤ t2 ≤ …

( f3(3), k3, f3(1) ⊕ γ3
1 , f3(2) ⊕ γ3

2) = σ3

Assume t3 = 2

 is of degree f3 t3 − 1 = 1

Get  and   using   
the PRG seed 
f3(3) f3(1)

k1

Get  using 
Lagrange interpolation.

s = f3(0)

Our scheme:    

V.S. 
IT setting:  [A]  —— [B]  

[A] Komargodski, Ilan, and Anat Paskin-Cherniavsky.  
"Evolving secret sharing: dynamic thresholds and robustness."  

TCC 2017. 

[B] Xing, Chaoping, and Chen Yuan.  
"Evolving secret sharing schemes based on polynomial evaluations and algebraic geometry codes."  

IEEE Transactions on Information Theory (2024).

|σn | = λ ⋅ (n + 1)

|σn | ∈ λ ⋅ O(n4 ⋅ log(n)) |σn | ∈ λ ⋅ O(n4)

Share size
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The computational setting permits to circumvent Mazor’s IT lower bound [A]. 

Monotone Circuits — CNF — DNF 
[A] Mazor, Noam.  
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ITC 2023.
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Other Results
(See full version eprint.iacr.org/2023/1534)

Arbitrary Access Structures (with polynomially many authorized sets) 
The computational setting permits to circumvent Mazor’s IT lower bound [A]. 

Monotone Circuits — CNF — DNF 
[A] Mazor, Noam.  

"A lower bound on the share size in evolving secret sharing."  
ITC 2023.

Other Evolving Access Structures

We extend the notion of Information Dispersal to the evolving setting. 
We generalise Krawczyk’s compiler [B] to the evolving setting (for some access structures). 

[B] Krawczyk, Hugo.  
"Secret sharing made short."  

CRYPTO 93.

Evolving information dispersal



Thank You!


