
Evolving Secret Sharing
made Short

Danilo Francati
Royal Holloway, University of London

Daniele Venturi
Sapienza University of Rome

Secret Sharing

Dealer P1

P2

P3

secret s

Secret Sharing

Dealer P1

P2

P3

secret s

𝖲𝗁𝖺𝗋𝖾(s) = σ1, σ2, σ3

Secret Sharing

Dealer P1

P2

P3

secret s

σ1

σ2

σ3

𝖲𝗁𝖺𝗋𝖾(s) = σ1, σ2, σ3

Secret Sharing

Dealer P1

P2

P3

secret s

σ1

σ2

σ3

𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍(σ1, σ2) = s

Any t parties can reconstruct the
secret using their shares { }σi

Correctness of t-out-of-n SS

(Correctness)

Secret Sharing

Dealer P1

P2

P3

secret s

σ1

σ2

σ3

(Security)

What’s the secret s?

Secret Sharing

Dealer P1

P2

P3

secret s

σ1

σ2

σ3Any t-1 parties infer no
information about the secret s

Security of t-out-of-n SS

(Security)

What’s the secret s?

Secret Sharing

Dealer P1

P2

P3

secret s

σ1

σ2

σ3

(other access structures)

𝖲𝗁𝖺𝗋𝖾A(s) = σ1, σ2, σ3

σ1

σ2

σ3

Public access structure
A : {0,1}n → {0,1}

Secret Sharing

Dealer P1

P2

P3

secret s

σ1

σ2

σ3

(other access structures)

Public access structure
A : {0,1}n → {0,1}

Any t parties (encoded by string
) s.t. reconstructs

secret s
x ∈ {0,1}n A(x) = 1

Correctness of SS w.r.t. A

Secret Sharing

Dealer P1

P2

P3

secret s

σ1

σ2

σ3

(other access structures)

Public access structure
A : {0,1}n → {0,1}

Any t parties (encoded by string
) s.t. infer no

information about the secret s.
x ∈ {0,1}n A(x) = 0

Security of SS w.r.t. A

Any t parties (encoded by string
) s.t. reconstructs

secret s
x ∈ {0,1}n A(x) = 1

Correctness of SS w.r.t. A

Monotonicity

If parties can reconstruct (authorized set) the secret s

then parties (superset of) can reconstruct (authorized set) the secret s

{P1, P2, P3}
⇓

{P1, P2, P3, P4}

Monotone Access Structure (informal)A

Required to define security of SS

Evolving Secret Sharing

Dealer P1

secret s

Public access structure
A1 : {0,1}1 → {0,1}

Evolving Secret Sharing

Dealer P1

secret s

Public access structure
A1 : {0,1}1 → {0,1}

𝖲𝗁𝖺𝗋𝖾A1(s) = σ1

Evolving Secret Sharing

Dealer P1

secret s

Public access structure
A1 : {0,1}1 → {0,1}

𝖲𝗁𝖺𝗋𝖾A1(s) = σ1

σ1

Evolving Secret Sharing

Dealer P1

P2

secret s

σ1

Public access structure
A1 : {0,1}1 → {0,1}

Evolving Secret Sharing

Dealer P1

P2

secret s

σ1

Public access structure
A1 : {0,1}1 → {0,1}

Public access structure
A2 : {0,1}2 → {0,1}

Evolving Secret Sharing

Dealer P1

P2

secret s

σ1

Public access structure
A1 : {0,1}1 → {0,1}

𝖲𝗁𝖺𝗋𝖾A2({σi}i∈[1], s) = σ2

Public access structure
A2 : {0,1}2 → {0,1}

Evolving Secret Sharing

Dealer P1

P2

secret s

σ1

Public access structure
A1 : {0,1}1 → {0,1}

𝖲𝗁𝖺𝗋𝖾A2({σi}i∈[1], s) = σ2

Public access structure
A2 : {0,1}2 → {0,1}

σ2

Evolving Secret Sharing

Dealer P1

P2

secret s

σ1

Public access structure
A2 : {0,1}2 → {0,1}

𝖲𝗁𝖺𝗋𝖾A3({σi}i∈[2], s) = σ3

Public access structure
A3 : {0,1}3 → {0,1}

σ3

P3

σ2

Evolving Secret Sharing

Dealer

secret s

Public access structure
A2λ : {0,1}2λ → {0,1}

𝖲𝗁𝖺𝗋𝖾A2λ({σi}i∈[2λ−1], s) = σ2λ

⋮

(Information Theoretic Case)
P1

P2

σ1

P3

σ2

σ3

P2λσ2λ

σ2λ

Properties of Evolving Secret Sharing

Properties of Evolving Secret Sharing

For every is a monotone access structure (as in the non-evolving case).
AND

For every , we have

i ∈ [n], Ai

i ∈ [n − 1] Ai ⊆ Ai+1

Monotone Evolving Access Structure (informal)A

Properties of Evolving Secret Sharing

For every is a monotone access structure (as in the non-evolving case).
AND

For every , we have

i ∈ [n], Ai

i ∈ [n − 1] Ai ⊆ Ai+1

Monotone Evolving Access Structure (informal)A

Let a set of t parties (encoded by the string).
Correctness: If Reconstruction is possible.

Security: if No information revealed.

{Pi1, …, Pit−1
, Pn} x ∈ {0,1}n

An(x) = 1 ⇒
An(x) = 0 ⇒

Security/Correctness w.r.t. Evolving setting (informal)

Properties of Evolving Secret Sharing

For every is a monotone access structure (as in the non-evolving case).
AND

For every , we have

i ∈ [n], Ai

i ∈ [n − 1] Ai ⊆ Ai+1

Monotone Evolving Access Structure (informal)A

Let a set of t parties (encoded by the string).
Correctness: If Reconstruction is possible.

Security: if No information revealed.

{Pi1, …, Pit−1
, Pn} x ∈ {0,1}n

An(x) = 1 ⇒
An(x) = 0 ⇒

Security/Correctness w.r.t. Evolving setting (informal)

can depend on the number of current
parties, e.g.,

|σn |
|σn | ∈ O(n) ⋅ 𝗉𝗈𝗅𝗒(λ)

Share size

Properties of Evolving Secret Sharing

For every is a monotone access structure (as in the non-evolving case).
AND

For every , we have

i ∈ [n], Ai

i ∈ [n − 1] Ai ⊆ Ai+1

Monotone Evolving Access Structure (informal)A

Let a set of t parties (encoded by the string).
Correctness: If Reconstruction is possible.

Security: if No information revealed.

{Pi1, …, Pit−1
, Pn} x ∈ {0,1}n

An(x) = 1 ⇒
An(x) = 0 ⇒

Security/Correctness w.r.t. Evolving setting (informal)

can depend on the number of current
parties, e.g.,

|σn |
|σn | ∈ O(n) ⋅ 𝗉𝗈𝗅𝗒(λ)

Share size
The evolution of the access structure is NOT

known in advance by the dealer.
(otherwise, evolving SS is trivial)

Unknown evolution

Properties of Evolving Secret Sharing

For every is a monotone access structure (as in the non-evolving case).
AND

For every , we have

i ∈ [n], Ai

i ∈ [n − 1] Ai ⊆ Ai+1

Monotone Evolving Access Structure (informal)A

Let a set of t parties (encoded by the string).
Correctness: If Reconstruction is possible.

Security: if No information revealed.

{Pi1, …, Pit−1
, Pn} x ∈ {0,1}n

An(x) = 1 ⇒
An(x) = 0 ⇒

Security/Correctness w.r.t. Evolving setting (informal)

can depend on the number of current
parties, e.g.,

|σn |
|σn | ∈ O(n) ⋅ 𝗉𝗈𝗅𝗒(λ)

Share size
The evolution of the access structure is NOT

known in advance by the dealer.
(otherwise, evolving SS is trivial)

Unknown evolution

Our Work

Extend the notion of Evolving Secret Sharing
to the Computational Setting.

Our Work

Extend the notion of Evolving Secret Sharing
to the Computational Setting.

1. New Evolving Secret Sharing schemes for specific
Evolving Access Structures.

2. Reducing the share size of these Evolving Secret Sharing schemes
(we can leverage computationally secure primitives 😁).

Objectives

“Computational” Evolution

Dealer

secret s

Public access structure
A2λ : {0,1}2λ → {0,1}

𝖲𝗁𝖺𝗋𝖾A2λ({σi}i∈[2λ−1], s) = σ2λ

⋮

P1

P2

σ1

P3

σ2

σ3

P2λσ2λ

σ2λ

“Computational” Evolution

Dealer

secret s

Public access structure
A2λ : {0,1}2λ → {0,1}

𝖲𝗁𝖺𝗋𝖾A2λ({σi}i∈[2λ−1], s) = σ2λ

⋮

P1

P2

σ1

P3

σ2

σ3

P2λσ2λ

σ2λ

“Computational” Evolution

Dealer

secret s

Public access structure
An : {0,1}n → {0,1}

𝖲𝗁𝖺𝗋𝖾An
({σi}i∈[n−1], s) = σn

⋮

P1

P2

σ1

P3

σ2

σ3

Pnσn

σn

“Computational” Evolution

Dealer

secret s

Public access structure
An : {0,1}n → {0,1}

𝖲𝗁𝖺𝗋𝖾An
({σi}i∈[n−1], s) = σn

⋮

P1

P2

σ1

P3

σ2

σ3

Pnσn

σn

The dealer knows will be
polynomial but no guarantees

on its upper bound.

n
Unknown polynomial bound

“Computational” Representation

“Computational” Representation

An evolving access structure is usually represented as incrementally defined sets:

without caring if these sets have an efficient (polynomial) representation.
A1 ⊆ A2 ⊆ A3 ⊆ A4 ⊆ … ⊆ An

Information Theoretic representation of the Evolving Access Structure A

“Computational” Representation

An evolving access structure is usually represented as incrementally defined sets:

without caring if these sets have an efficient (polynomial) representation.
A1 ⊆ A2 ⊆ A3 ⊆ A4 ⊆ … ⊆ An

Information Theoretic representation of the Evolving Access Structure A

(having an efficient representation is important for the computational case)
Examples of efficient representable access structures

“Computational” Representation

An evolving access structure is usually represented as incrementally defined sets:

without caring if these sets have an efficient (polynomial) representation.
A1 ⊆ A2 ⊆ A3 ⊆ A4 ⊆ … ⊆ An

Information Theoretic representation of the Evolving Access Structure A

(having an efficient representation is important for the computational case)
Examples of efficient representable access structures

Graphs

P1

P2

P3

Parties are authorized (i.e.,)
if edge exists

{Pi, Pj} An(Pi, Pj) = 1
Pi → Pj

“Computational” Representation

An evolving access structure is usually represented as incrementally defined sets:

without caring if these sets have an efficient (polynomial) representation.
A1 ⊆ A2 ⊆ A3 ⊆ A4 ⊆ … ⊆ An

Information Theoretic representation of the Evolving Access Structure A

(having an efficient representation is important for the computational case)
Examples of efficient representable access structures

Graphs

P1

P2

P3

Parties are authorized (i.e.,)
if edge exists

{Pi, Pj} An(Pi, Pj) = 1
Pi → Pj

Circuits

P2

P1

P3 {0,1}

Parties are authorized if the circuit
evaluates to 1

{Pij}j∈[t]

How does the Representation evolves?

How does the Representation evolves?
Graphs

P3
P1

P2

A3

How does the Representation evolves?
Graphs

P3
P1

P2

A3

⟹
A4

• Can we add a new node?

• Can we add new edges? Edges
between new or old nodes?

• Can we remove edges?

How does the Representation evolves?
Graphs

P3
P1

P2

A3

⟹
A4

• Can we add a new node?

• Can we add new edges? Edges
between new or old nodes?

• Can we remove edges?

Circuits

P2

P1

P3 {0,1}

A3

How does the Representation evolves?
Graphs

P3
P1

P2

A3

⟹
A4

• Can we add a new node?

• Can we add new edges? Edges
between new or old nodes?

• Can we remove edges?

Circuits

P2

P1

P3 {0,1}

A3

⟹
A4

• Can we add new inputs wires?

• Can we add new AND gates?
After which gate (e.g., OR,
AND)?

• Can we remove old gates?

⟹
A4

• Can we add a new node?

• Can we add new edges? Edges
between new or old nodes?

• Can we remove edges?

⟹
A4

• Can we add new inputs wires?

• Can we add new AND gates?
After which gate (e.g., OR,
AND)?

• Can we remove old gates?

⟹
How does the Representation evolves?

Graphs

Circuits

P1

P2

P3

P2

P1

P3 {0,1} ⟹

A3

A3

A4

A4

Determined by two properties:
Monotonicity + Rigidity

 (next slide)

Evolution of representation

Rigidity
Setting: No CRS + Shares of old parties remain unchanged

Rigidity
Setting: No CRS + Shares of old parties remain unchanged

If a set is unathorized w.r.t.

the same set is unathorized w.r.t.

U = {Pi1, …, Pit} ⊆ [n − 1] An−1
⇓

U An

Rigid Evolving Access Structure (informal)

Rigidity
Setting: No CRS + Shares of old parties remain unchanged

If a set is unathorized w.r.t.

the same set is unathorized w.r.t.

U = {Pi1, …, Pit} ⊆ [n − 1] An−1
⇓

U An

Rigid Evolving Access Structure (informal)

After the arrival of -th party (which defines the new access structure),
the newly inserted authorized sets MUST contain , i.e.,

for every , we have .

n An
Pn

X ∈ An∖An−1 n ∈ X

!! TAKEAWAY !!

Evolving Bipartite Graphs
(Projective PRGs)

Evolving Bipartite Graphs
(Projective PRGs)

𝖯𝖱𝖦 : {0,1}n → {0,1}m

Evolving Bipartite Graphs
(Projective PRGs)

𝖯𝖱𝖦 : {0,1}n → {0,1}m

 (the seed)𝖲𝖾𝗍𝗎𝗉(1λ,1m) → 𝗆𝗌𝗄

Evolving Bipartite Graphs
(Projective PRGs)

𝖯𝖱𝖦 : {0,1}n → {0,1}m

 (the seed)𝖲𝖾𝗍𝗎𝗉(1λ,1m) → 𝗆𝗌𝗄

 (the projective seed)𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, T ⊆ [m]) → αT

Evolving Bipartite Graphs
(Projective PRGs)

 𝖤𝗏𝖺𝗅(𝗆𝗌𝗄) → y ∈ {0,1}m

𝖤𝗏𝖺𝗅(αT) → y ∈ {0,1}|T|

Correctness

𝖯𝖱𝖦 : {0,1}n → {0,1}m

 (the seed)𝖲𝖾𝗍𝗎𝗉(1λ,1m) → 𝗆𝗌𝗄

 (the projective seed)𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, T ⊆ [m]) → αT

Evolving Bipartite Graphs
(Projective PRGs)

 𝖤𝗏𝖺𝗅(𝗆𝗌𝗄) → y ∈ {0,1}m

𝖤𝗏𝖺𝗅(αT) → y ∈ {0,1}|T|

Correctness Identical to 𝖯𝖱𝖦(𝗆𝗌𝗄)

𝖯𝖱𝖦 : {0,1}n → {0,1}m

 (the seed)𝖲𝖾𝗍𝗎𝗉(1λ,1m) → 𝗆𝗌𝗄

 (the projective seed)𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, T ⊆ [m]) → αT

Evolving Bipartite Graphs
(Projective PRGs)

 𝖤𝗏𝖺𝗅(𝗆𝗌𝗄) → y ∈ {0,1}m

𝖤𝗏𝖺𝗅(αT) → y ∈ {0,1}|T|

Correctness Identical to 𝖯𝖱𝖦(𝗆𝗌𝗄)
Identical to , i.e.,
the PRG output restricted on

indexes

𝖯𝖱𝖦(𝗆𝗌𝗄) |T

T

𝖯𝖱𝖦 : {0,1}n → {0,1}m

 (the seed)𝖲𝖾𝗍𝗎𝗉(1λ,1m) → 𝗆𝗌𝗄

 (the projective seed)𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, T ⊆ [m]) → αT

Evolving Bipartite Graphs
(Projective PRGs)

Given and , the ’s bits associated to indexes
(where) are pseudorandom.

αT 𝖤𝗏𝖺𝗅(𝗆𝗌𝗄) → y y [m]∖T
T = {i1, …, ik}

Security

𝖯𝖱𝖦 : {0,1}n → {0,1}m

 (the seed)𝖲𝖾𝗍𝗎𝗉(1λ,1m) → 𝗆𝗌𝗄

 (the projective seed)𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, T ⊆ [m]) → αT

Evolving Bipartite Graphs
(Projective PRGs)

𝖯𝖱𝖦 : {0,1}n → {0,1}m

 (the seed)𝖲𝖾𝗍𝗎𝗉(1λ,1m) → 𝗆𝗌𝗄

 (the projective seed)𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄, T ⊆ [m]) → αT

 must be succinct (i.e., sublinear) compared to .
[A] Gave a construction based on RSA where .

[A] Applebaum, Benny, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Tianren Liu, Vinod Vaikuntanathan.
“Succinct computational secret sharing."

STOC 23.

αT |T |
|αT | ∈ 𝗉𝗈𝗅𝗒(λ)

Succinctness

Evolving Bipartite Graphs
(Formalisation)

P1 P2

P3 P4

 are authorized
if there is an edge between nodes

 and .

{Pi, Pj}

i j

(Evolving) Access structure

Evolving Bipartite Graphs
(Formalisation)

P1 P2

P3 P4

By definition.

Monotonicity

Evolving Bipartite Graphs
(Formalisation)

P1 P2

P3 P4

By definition.

Monotonicity

We can add edges only if one end
hits the newly introduced party, i.e.,
no new edges between old nodes.

Rigidity

Evolving Bipartite Graphs
P1

(Construction from Projective PRGs)
Dealer

secret s

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

Evolving Bipartite Graphs
P1

(Construction from Projective PRGs)
Dealer

secret s

• Compute
• Compute

• Set

𝖤𝗏𝖺𝗅(𝗆𝗌𝗄𝗅𝖾𝖿𝗍) → y 𝗅𝖾𝖿𝗍

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄𝗋𝗂𝗀𝗁𝗍, { ⊥ }) → α𝗋𝗂𝗀𝗁𝗍
{⊥}

σ1 = (y 𝗅𝖾𝖿𝗍 |{1} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥})

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

Evolving Bipartite Graphs
P1

(Construction from Projective PRGs)
Dealer

secret s

• Compute
• Compute

• Set

𝖤𝗏𝖺𝗅(𝗆𝗌𝗄𝗅𝖾𝖿𝗍) → y 𝗅𝖾𝖿𝗍

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄𝗋𝗂𝗀𝗁𝗍, { ⊥ }) → α𝗋𝗂𝗀𝗁𝗍
{⊥}

σ1 = (y 𝗅𝖾𝖿𝗍 |{1} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥})

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

σ1 = (y 𝗅𝖾𝖿𝗍 |{1} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥})

Evolving Bipartite Graphs
P1 P2

(Construction from Projective PRGs)
Dealer

secret s

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

• Compute
• Compute

• Set

𝖤𝗏𝖺𝗅(𝗆𝗌𝗄𝗋𝗂𝗀𝗁𝗍) → y𝗋𝗂𝗀𝗁𝗍

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄𝗅𝖾𝖿𝗍, {1}) → α 𝗅𝖾𝖿𝗍
{1}

σ2 = (y𝗋𝗂𝗀𝗁𝗍 |{2} ⊕ s, α 𝗅𝖾𝖿𝗍
{1})

σ2 = (y𝗋𝗂𝗀𝗁𝗍 |{2} ⊕ s, α 𝗅𝖾𝖿𝗍
{1}) σ1

Evolving Bipartite Graphs

P3

P1 P2
(Construction from Projective PRGs)

Dealer

secret s

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

• Compute
• Compute

• Set

𝖤𝗏𝖺𝗅(𝗆𝗌𝗄𝗅𝖾𝖿𝗍) → y 𝗅𝖾𝖿𝗍

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄𝗋𝗂𝗀𝗁𝗍, { ⊥ }) → α𝗋𝗂𝗀𝗁𝗍
{⊥}

σ3 = (y 𝗅𝖾𝖿𝗍 |{3} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥})

σ3 = (y 𝗅𝖾𝖿𝗍 |{3} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥})

σ1 σ2

Evolving Bipartite Graphs
Dealer

secret s P3 P4

P1 P2
(Construction from Projective PRGs)

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

• Compute
• Compute

• Set

𝖤𝗏𝖺𝗅(𝗆𝗌𝗄𝗋𝗂𝗀𝗁𝗍) → y𝗋𝗂𝗀𝗁𝗍

𝖪𝖾𝗒𝖦𝖾𝗇(𝗆𝗌𝗄𝗅𝖾𝖿𝗍, {1,3}) → α 𝗅𝖾𝖿𝗍
{1,3}

σ4 = (y𝗋𝗂𝗀𝗁𝗍 |{4} ⊕ s, α 𝗅𝖾𝖿𝗍
{1,3})

σ4 = (y𝗋𝗂𝗀𝗁𝗍 |{4} ⊕ s, α 𝗅𝖾𝖿𝗍
{1,3})

σ1 σ2

σ3

Evolving Bipartite Graphs

P3 P4

P1 P2
(Construction from Projective PRGs)

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

σ1 σ2

σ3 σ4

σ1 = (y 𝗅𝖾𝖿𝗍 |{1} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥}) σ4 = (y𝗋𝗂𝗀𝗁𝗍 |{4} ⊕ s, α 𝗅𝖾𝖿𝗍

{1,3})

Evolving Bipartite Graphs

P3 P4

P1 P2
(Construction from Projective PRGs)

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

σ1 σ2

σ3 σ4

σ1 = (y 𝗅𝖾𝖿𝗍 |{1} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥}) σ4 = (y𝗋𝗂𝗀𝗁𝗍 |{4} ⊕ s, α 𝗅𝖾𝖿𝗍

{1,3})

Take the encryption of the secret from the share of the
older party:
y 𝗅𝖾𝖿𝗍 |{1} ⊕ s

Evolving Bipartite Graphs

P3 P4

P1 P2
(Construction from Projective PRGs)

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

σ1 σ2

σ3 σ4

σ1 = (y 𝗅𝖾𝖿𝗍 |{1} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥}) σ4 = (y𝗋𝗂𝗀𝗁𝗍 |{4} ⊕ s, α 𝗅𝖾𝖿𝗍

{1,3})

Take the encryption of the secret from the share of the
older party:
y 𝗅𝖾𝖿𝗍 |{1} ⊕ s

Use the projective key of the recent party to re-compute the
pseudorandom value:

 and restrict the output to 𝖤𝗏𝖺𝗅(α 𝗅𝖾𝖿𝗍
{1,3}) → y 𝗅𝖾𝖿𝗍 |{1,3} y 𝗅𝖾𝖿𝗍 |{1}

Evolving Bipartite Graphs

P3 P4

P1 P2
(Construction from Projective PRGs)

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

σ1 σ2

σ3 σ4

σ1 = (y 𝗅𝖾𝖿𝗍 |{1} ⊕ s, α𝗋𝗂𝗀𝗁𝗍
{⊥}) σ4 = (y𝗋𝗂𝗀𝗁𝗍 |{4} ⊕ s, α 𝗅𝖾𝖿𝗍

{1,3})

Get the secret = s y 𝗅𝖾𝖿𝗍 |{1} ⊕ s ⊕ y 𝗅𝖾𝖿𝗍 |{1}

Take the encryption of the secret from the share of the
older party:
y 𝗅𝖾𝖿𝗍 |{1} ⊕ s

Use the projective key of the recent party to re-compute the
pseudorandom value:

 and restrict the output to 𝖤𝗏𝖺𝗅(α 𝗅𝖾𝖿𝗍
{1,3}) → y 𝗅𝖾𝖿𝗍 |{1,3} y 𝗅𝖾𝖿𝗍 |{1}

Evolving Bipartite Graphs

P3 P4

P1 P2
(Construction from Projective PRGs)

𝖯𝖱𝖦𝗅𝖾𝖿𝗍 𝖯𝖱𝖦𝗋𝗂𝗀𝗁𝗍

σ1 σ2

σ3 σ4

Assuming RSA, we have shares of size
(independent of the number of parties).

𝗉𝗈𝗅𝗒(λ)
Share size

Evolving Threshold

Let .
The threshold access structure at time is defined as follows:

t1 ≤ t2 ≤ … ≤ tn
Ai i ∈ [n]

Ai = Ai−1 ∪ {all sets X ⊆ [n] of size at least ti}

Evolving Threshold Access Structure

(Formalisation)

Evolving Threshold

Let .
The threshold access structure at time is defined as follows:

t1 ≤ t2 ≤ … ≤ tn
Ai i ∈ [n]

Ai = Ai−1 ∪ {all sets X ⊆ [n] of size at least ti}

Evolving Threshold Access Structure

Fix .

t1 = 2, t2 = 2, t3 = 2, t4 = 4

A1 = ∅
A2 = {{1,2}}
A3 = {{1,2}, {2,3}, {1,3}, {1,2,3}}
A4 = {{1,2}, {2,3}, {1,3}, {1,2,3}, {1,2,3,4}}

EXAMPLE

(Formalisation)

Evolving Threshold
(Formalisation)

Let .
The threshold access structure at time is defined as follows:

t1 ≤ t2 ≤ … ≤ tn
Ai i ∈ [n]

Ai = Ai−1 ∪ {all sets X ⊆ [n] of size at least ti}

Evolving Threshold Access Structure

Fix .

t1 = 2, t2 = 2, t3 = 2, t4 = 4

A1 = ∅
A2 = {{1,2}}
A3 = {{1,2}, {2,3}, {1,3}, {1,2,3}}
A4 = {{1,2}, {2,3}, {1,3}, {1,2,3}, {1,2,3,4}}

EXAMPLE

Monotonicity

Rigidity

Evolving Threshold
(Construction from OWF)

Dealer

secret s

P1

Public access structure
t1 ≤ t2 ≤ …

Evolving Threshold
(Construction from OWF)

Dealer

secret s

• Sample random of degree
 such that

• Sample random PRG seed

f1
t1 − 1 f1(0) = s

k1

P1

Public access structure
t1 ≤ t2 ≤ …

Evolving Threshold
(Construction from OWF)

Dealer

secret s

σ1 = (f1(1), k1)

• Sample random of degree
 such that

• Sample random PRG seed

f1
t1 − 1 f1(0) = s

k1

P1

Public access structure
t1 ≤ t2 ≤ …

Evolving Threshold
(Construction from OWF)

Dealer

secret s

P1

P2

(f1(1), k1) = σ1

Public access structure
t1 ≤ t2 ≤ …

Evolving Threshold
(Construction from OWF)

Dealer

secret s

• Sample random of degree
such that

• Sample random PRG seed
• Let the next unused block of

f2 t2 − 1
f2(0) = s

k2
γ2

1
𝖯𝖱𝖦(k1)

P1

P2

(f1(1), k1) = σ1

Public access structure
t1 ≤ t2 ≤ …

Evolving Threshold
(Construction from OWF)

Dealer

secret s σ2 = (f2(2), k2, f2(1) ⊕ γ2
1)

• Sample random of degree
such that

• Sample random PRG seed
• Let the next unused block of

f2 t2 − 1
f2(0) = s

k2
γ2

1
𝖯𝖱𝖦(k1)

P1

P2

(f1(1), k1) = σ1

Public access structure
t1 ≤ t2 ≤ …

Evolving Threshold
(Construction from OWF)

Dealer

secret s

• Sample random of degree
such that

• Sample random PRG seed
• For , let the next

unused block of

f3 t3 − 1
f3(0) = s

k3
i ∈ [2] γ3

i
𝖯𝖱𝖦(ki)

P1

P2

(f1(1), k1) = σ1

(f2(2), k2, f2(1) ⊕ γ1
1) = σ2

P3

Public access structure
t1 ≤ t2 ≤ …

σ3 = (f3(3), k3, f3(1) ⊕ γ3
1 , f3(2) ⊕ γ3

2)

Evolving Threshold
(Construction from OWF)

P1(f1(1), k1) = σ1

P2
(f2(2), k2, f2(1) ⊕ γ1

1) = σ2

P3

Public access structure
t1 ≤ t2 ≤ …

(f3(3), k3, f3(1) ⊕ γ3
1 , f3(2) ⊕ γ3

2) = σ3

Assume t3 = 2

Evolving Threshold
(Construction from OWF)

P1(f1(1), k1) = σ1

P2
(f2(2), k2, f2(1) ⊕ γ1

1) = σ2

P3

Public access structure
t1 ≤ t2 ≤ …

(f3(3), k3, f3(1) ⊕ γ3
1 , f3(2) ⊕ γ3

2) = σ3

Assume t3 = 2

 is of degree f3 t3 − 1 = 1

Evolving Threshold
(Construction from OWF)

P1(f1(1), k1) = σ1

P2
(f2(2), k2, f2(1) ⊕ γ1

1) = σ2

P3

Public access structure
t1 ≤ t2 ≤ …

(f3(3), k3, f3(1) ⊕ γ3
1 , f3(2) ⊕ γ3

2) = σ3

Assume t3 = 2

 is of degree f3 t3 − 1 = 1

Get and using
the PRG seed
f3(3) f3(1)

k1

Evolving Threshold
(Construction from OWF)

P1(f1(1), k1) = σ1

P2
(f2(2), k2, f2(1) ⊕ γ1

1) = σ2

P3

Public access structure
t1 ≤ t2 ≤ …

(f3(3), k3, f3(1) ⊕ γ3
1 , f3(2) ⊕ γ3

2) = σ3

Assume t3 = 2

 is of degree f3 t3 − 1 = 1

Get and using
the PRG seed
f3(3) f3(1)

k1

Get using
Lagrange interpolation.

s = f3(0)

Evolving Threshold
(Construction from OWF)

P1(f1(1), k1) = σ1

P2
(f2(2), k2, f2(1) ⊕ γ1

1) = σ2

P3

Public access structure
t1 ≤ t2 ≤ …

(f3(3), k3, f3(1) ⊕ γ3
1 , f3(2) ⊕ γ3

2) = σ3

Assume t3 = 2

 is of degree f3 t3 − 1 = 1

Get and using
the PRG seed
f3(3) f3(1)

k1

Get using
Lagrange interpolation.

s = f3(0)

Our scheme:

V.S.
IT setting: [A] —— [B]

[A] Komargodski, Ilan, and Anat Paskin-Cherniavsky.
"Evolving secret sharing: dynamic thresholds and robustness."

TCC 2017.

[B] Xing, Chaoping, and Chen Yuan.
"Evolving secret sharing schemes based on polynomial evaluations and algebraic geometry codes."

IEEE Transactions on Information Theory (2024).

|σn | = λ ⋅ (n + 1)

|σn | ∈ λ ⋅ O(n4 ⋅ log(n)) |σn | ∈ λ ⋅ O(n4)

Share size

Other Results
(See full version eprint.iacr.org/2023/1534)

Other Results
(See full version eprint.iacr.org/2023/1534)

Arbitrary Access Structures (with polynomially many authorized sets)
The computational setting permits to circumvent Mazor’s IT lower bound [A].

Monotone Circuits — CNF — DNF
[A] Mazor, Noam.

"A lower bound on the share size in evolving secret sharing."
ITC 2023.

Other Evolving Access Structures

Other Results
(See full version eprint.iacr.org/2023/1534)

Arbitrary Access Structures (with polynomially many authorized sets)
The computational setting permits to circumvent Mazor’s IT lower bound [A].

Monotone Circuits — CNF — DNF
[A] Mazor, Noam.

"A lower bound on the share size in evolving secret sharing."
ITC 2023.

Other Evolving Access Structures

We extend the notion of Information Dispersal to the evolving setting.
We generalise Krawczyk’s compiler [B] to the evolving setting (for some access structures).

[B] Krawczyk, Hugo.
"Secret sharing made short."

CRYPTO 93.

Evolving information dispersal

Thank You!

