
Practical Blind Signatures in Pairing-free Groups
• Michael Klooß

• Michael Reichle

• Benedikt Wagner

ETH Zurich

ETH Zurich

Ethereum Foundation

Blind Signatures

signer user

pk, sk pk, m

2

 σ

Correctness:

• honest signatures verify

Blind Signatures

signer user

pk, sk pk, m

2

 σ

Blindness:

• signatures are unlinkable to
signing sessions

Correctness:

• honest signatures verify

Blind Signatures

signer user

pk, sk pk, m

2

 σ

One-more Unforgeability:

• user can obtain at most Q
signatures from Q sessions
with distinct messages

Blindness:

• signatures are unlinkable to
signing sessions

Correctness:

• honest signatures verify

Blind Signatures

signer user

pk, sk pk, m

2

 σ

One-more Unforgeability:

• user can obtain at most Q
signatures from Q sessions
with distinct messages

Blindness:

• signatures are unlinkable to
signing sessions

Correctness:

• honest signatures verify

OMUF-2: count finished
sessions towards Q

Blind Signatures

signer user

pk, sk pk, m

2

 σ

One-more Unforgeability:

• user can obtain at most Q
signatures from Q sessions
with distinct messages

Blindness:

• signatures are unlinkable to
signing sessions

Correctness:

• honest signatures verify

OMUF-1: count started
sessions towards Q

OMUF-2: count finished
sessions towards Q

Blind Signatures in Pairing-free Curves

3

Selective Overview

Blind Signatures in Pairing-free Curves

3

Selective Overview

[PS96] [AO00]

polylog OMUF

[HKL19]

polylog OMUF

Blind Signatures in Pairing-free Curves

3

Selective Overview

[Abe01]

proof

[PS96] [AO00]

polylog OMUF

[HKL19]

polylog OMUF

Blind Signatures in Pairing-free Curves

3

Selective Overview

[Abe01]

proof

[Fis06]

non

black-box

[PS96] [AO00]

polylog OMUF

[HKL19]

polylog OMUF

Blind Signatures in Pairing-free Curves

3

Selective Overview

[Abe01]

proof

[Fis06]

non

black-box

[PS96] [AO00]

polylog OMUF

[HKL19]

polylog OMUF

[BLLOR21]

ROS

Blind Signatures in Pairing-free Curves

3

Selective Overview

[Abe01]

proof

[Fis06]

non

black-box

[PS96] [AO00]

polylog OMUF

[HKL19]

polylog OMUF

[BLLOR21]

ROS

[KLX22] [TZ22] [CKMTZ23]

AGM

AGM

Blind Signatures in Pairing-free Curves

3

Selective Overview

[Abe01]

proof

[Fis06]

non

black-box

[PS96] [AO00]

polylog OMUF

[HKL19]

polylog OMUF

[BLLOR21]

ROS

[FW24]

non

black-box

[KLX22] [TZ22] [CKMTZ23]

AGM

AGM

Blind Signatures in Pairing-free Curves

3

Selective Overview

[CTZ24]

[Abe01]

proof

[Fis06]

non

black-box

[PS96] [AO00]

polylog OMUF

[HKL19]

polylog OMUF

[BLLOR21]

ROS

[FW24]

non

black-box

[KLX22] [TZ22] [CKMTZ23]

AGM

AGM

Blind Signatures in Pairing-free Curves

3

Selective Overview

[CTZ24]

[Abe01]

proof

[Fis06]

non

black-box

[PS96] [AO00]

polylog OMUF

[HKL19]

polylog OMUF

[BLLOR21]

ROS

[FW24]

non

black-box

[KLX22] [TZ22] [CKMTZ23]

AGM

AGM

This Work

Efficiency
Pairing-free blind signature without the AGM

4

Scheme Signature Size Communication Size Security Assumption

BS1 + BS2
[CTZ24] OMUF-1 OMCDH

BS3 [CTZ24] OMUF-2 CDH

Our Work OMUF-2 DDH

1𝔾 + 4ℤp

𝗉𝗈𝗅𝗒(λ)

5𝔾 + 5ℤp

𝗉𝗈𝗅𝗒(λ)2𝔾 + 5ℤp

𝗉𝗈𝗅𝗒(λ)

Efficiency
Pairing-free blind signature without the AGM

4

Scheme Signature Size Communication Size Security Assumption

BS1 + BS2
[CTZ24] OMUF-1 OMCDH

BS3 [CTZ24] OMUF-2 CDH

Our Work OMUF-2 DDH

1𝔾 + 4ℤp

𝗉𝗈𝗅𝗒(λ)

5𝔾 + 5ℤp

𝗉𝗈𝗅𝗒(λ)2𝔾 + 5ℤp

𝗉𝗈𝗅𝗒(λ)

CTZ’24

5

signer user

𝗉𝗄 = X, 𝗌𝗄 = x 𝗉𝗄 = X, m

replace pairing-based verification of blind BLS

via FS-compiled -protocolΣ

High-level Overview

CTZ’24

5

signer user

𝗉𝗄 = X, 𝗌𝗄 = x 𝗉𝗄 = X, m

replace pairing-based verification of blind BLS

via FS-compiled -protocolΣ

S = xH(m)

High-level Overview

CTZ’24

5

signer user

𝗉𝗄 = X, 𝗌𝗄 = x 𝗉𝗄 = X, m

 C
 C = H(m) + rG

replace pairing-based verification of blind BLS

via FS-compiled -protocolΣ

S = xH(m)

High-level Overview

CTZ’24

5

signer user

𝗉𝗄 = X, 𝗌𝗄 = x 𝗉𝗄 = X, m

 C
 C = H(m) + rG

 D

 D = xC

replace pairing-based verification of blind BLS

via FS-compiled -protocolΣ

S = xH(m)

High-level Overview

CTZ’24

5

signer user

𝗉𝗄 = X, 𝗌𝗄 = x 𝗉𝗄 = X, m

 C
 C = H(m) + rG

 D

 D = xC

replace pairing-based verification of blind BLS

via FS-compiled -protocolΣ

S = xH(m)

 S = D − rX
 = x(H(m) + rG) − r(xG)

High-level Overview

CTZ’24

5

signer user

𝗉𝗄 = X, 𝗌𝗄 = x 𝗉𝗄 = X, m

 C
 C = H(m) + rG

 D

 D = xC

replace pairing-based verification of blind BLS

via FS-compiled -protocolΣ

S = xH(m)

 S = D − rX
 = x(H(m) + rG) − r(xG)

High-level Overview

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

CTZ’24

5

signer user

𝗉𝗄 = X, 𝗌𝗄 = x 𝗉𝗄 = X, m

 C
 C = H(m) + rG

 D

 D = xC

 σ = (S, π)

blind into proof (R, c, z) π = (R′￼, c′￼, z′￼)

replace pairing-based verification of blind BLS

via FS-compiled -protocolΣ

S = xH(m)

 S = D − rX
 = x(H(m) + rG) − r(xG)

High-level Overview

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

Our Approach

6

𝗉𝗄 = (U, V, H), m

replace pairing-based verification of [KRS23]

via FS-compiled -protocolΣ

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

signer user

Our Approach

6

𝗉𝗄 = (U, V, H), m

replace pairing-based verification of [KRS23]

via FS-compiled -protocolΣ

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

S1 = uV + s(H(m)U + H)

S2 = sG

signer user

Our Approach

6

𝗉𝗄 = (U, V, H), m

 C
 C = H(m)U + rG

replace pairing-based verification of [KRS23]

via FS-compiled -protocolΣ

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

S1 = uV + s(H(m)U + H)

S2 = sG

signer user

Our Approach

6

𝗉𝗄 = (U, V, H), m

 C
 C = H(m)U + rG

replace pairing-based verification of [KRS23]

via FS-compiled -protocolΣ

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

S1 = uV + s(H(m)U + H)

S2 = sG

 D1 = uV + s(C + H)
 D2 = sG

 D

signer user

 S1 = D1 − tS2

 S2 = D2 + s′￼G

Our Approach

6

𝗉𝗄 = (U, V, H), m

 C
 C = H(m)U + rG

replace pairing-based verification of [KRS23]

via FS-compiled -protocolΣ

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

S1 = uV + s(H(m)U + H)

S2 = sG

 D1 = uV + s(C + H)
 D2 = sG

 D

signer user

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

 S1 = D1 − tS2

 S2 = D2 + s′￼G

Our Approach

6

𝗉𝗄 = (U, V, H), m

 C
 C = H(m)U + rG

replace pairing-based verification of [KRS23]

via FS-compiled -protocolΣ

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

S1 = uV + s(H(m)U + H)

S2 = sG

 D1 = uV + s(C + H)
 D2 = sG

 D

signer user

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

 S1 = D1 − tS2

 S2 = D2 + s′￼G

Our Approach

6

𝗉𝗄 = (U, V, H), m

 C
 C = H(m)U + rG

replace pairing-based verification of [KRS23]

via FS-compiled -protocolΣ

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

S1 = uV + s(H(m)U + H)

S2 = sG

 σ = (S, π)

blind into proof (R, c, z) π = (R′￼, c′￼, z′￼)

 D1 = uV + s(C + H)
 D2 = sG

 D

signer user

Blindness

7

Similar to [CTZ24] and [KRS23]

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

 S1 = D1 − tS2

 S2 = D2 + s′￼G

𝗉𝗄 = (U, V, H), m

 C
 C = H(m)U + rG

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

 σ = (S, π)

blind into proof (R, c, z) π = (R′￼, c′￼, z′￼)

 D1 = uV + s(C + H)
 D2 = sG

 D

signer user

One-more Unforgeability
Approach of [CTZ24]

• Instantiate FS-compiled NIZK with an OR-proof:

- either signature S is well-formed

- or know DLog of

π

Y = H(0)

8

One-more Unforgeability
Approach of [CTZ24]

• Instantiate FS-compiled NIZK with an OR-proof:

- either signature S is well-formed

- or know DLog of

π

Y = H(0)

• Knowledge soundness of NIZK guarantees:

8

One-more Unforgeability
Approach of [CTZ24]

• Instantiate FS-compiled NIZK with an OR-proof:

- either signature S is well-formed

- or know DLog of

π

Y = H(0)

• Knowledge soundness of NIZK guarantees:

8

- signature S is of the correct format OR we can learn DLog of Y

One-more Unforgeability
Approach of [CTZ24]

• Instantiate FS-compiled NIZK with an OR-proof:

- either signature S is well-formed

- or know DLog of

π

Y = H(0)

• Knowledge soundness of NIZK guarantees:

8

- signature S is of the correct format OR we can learn DLog of Y

• Strategy:

One-more Unforgeability
Approach of [CTZ24]

• Instantiate FS-compiled NIZK with an OR-proof:

- either signature S is well-formed

- or know DLog of

π

Y = H(0)

• Knowledge soundness of NIZK guarantees:

8

1. under DLog, S is of the correct form

- signature S is of the correct format OR we can learn DLog of Y

• Strategy:

One-more Unforgeability
Approach of [CTZ24]

• Instantiate FS-compiled NIZK with an OR-proof:

- either signature S is well-formed

- or know DLog of

π

Y = H(0)

• Knowledge soundness of NIZK guarantees:

8

1. under DLog, S is of the correct form

2. DLog of Y is used to simulate without knowing 𝗌𝗄

- signature S is of the correct format OR we can learn DLog of Y

• Strategy:

One-more Unforgeability
Approach of [CTZ24]

• The argument is subtle

9

One-more Unforgeability
Approach of [CTZ24]

• The argument is subtle

• The output signatures S must be well-formed even if S-branch is simulated

9

One-more Unforgeability
Approach of [CTZ24]

• The argument is subtle

• The output signatures S must be well-formed even if S-branch is simulated

9

- : simulation of S via OMCDH𝖡𝖲1, 𝖡𝖲2

One-more Unforgeability
Approach of [CTZ24]

• The argument is subtle

• The output signatures S must be well-formed even if S-branch is simulated

9

- : simulation of S via OMCDH𝖡𝖲1, 𝖡𝖲2

 can only argue Q-OMUF for Q opened sessions (OMUF-1)→

One-more Unforgeability
Approach of [CTZ24]

• The argument is subtle

• The output signatures S must be well-formed even if S-branch is simulated

9

- : simulation of S via OMCDH𝖡𝖲1, 𝖡𝖲2

 can only argue Q-OMUF for Q opened sessions (OMUF-1)→

- : send commitment instead of S𝖡𝖲3

One-more Unforgeability
Approach of [CTZ24]

• The argument is subtle

• The output signatures S must be well-formed even if S-branch is simulated

9

- : simulation of S via OMCDH𝖡𝖲1, 𝖡𝖲2

 can only argue Q-OMUF for Q opened sessions (OMUF-1)→

- : send commitment instead of S𝖡𝖲3

 OMUF-2 at cost of signature and communication size→

One-more Unforgeability

10

OMUF-2 for Free

signer user

𝗉𝗄 = (U, V, H), m

 C
 C = H(m)U + rG

 D, R R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎)

 D2 = sG

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

 S1 = D1 − tS2

 S2 = D2 + s′￼G

 σ = (S, π)

blind into proof (R, c, z) π = (R′￼, c′￼, z′￼)

 D1 = uV + s(C + H)

One-more Unforgeability

10

OMUF-2 for Free

signer user

𝗉𝗄 = (U, V, H), m

 C
 C = H(m)U + rG

 D, R R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎)

 D2 = sG

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

 is uniform under DDHsH S1 = D1 − tS2

 S2 = D2 + s′￼G

 σ = (S, π)

blind into proof (R, c, z) π = (R′￼, c′￼, z′￼)

 D1 = uV + s(C + H)

One-more Unforgeability

11

signer user

𝗉𝗄 = (U, V, H), m

 C
 C = H(m)U + rG

 $, R

 D1 = $
 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎)

 D2 = sG

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

𝗉𝗄 = (U, V, H), 𝗌𝗄 = u

OMUF-2 for Free

 is uniform under DDHsH S1 = D1 − tS2

 S2 = D2 + s′￼G

 σ = (S, π)

blind into proof (R, c, z) π = (R′￼, c′￼, z′￼)

• Instantiate NIZK with an OR-proof:

- either signature S is well-formed

- or know DLog of Y = H(0)

One-more Unforgeability
Avoiding Rewinding

12

requires rewinding to argue

that S is well-formed

• Instantiate NIZK with an OR-proof:

- either signature S is well-formed

- or know DLog of Y = H(0)

One-more Unforgeability
Avoiding Rewinding

12

• Instantiate NIZK with an OR-proof:

- either signature S is well-formed

- or is a DDH tuple(X, Y, Z) = H(0)

One-more Unforgeability
Avoiding Rewinding

13

we can argue that S is

well-formed without rewinding

Recap
Pairing-free blind signature without the AGM

14

- tighter reduction

- better efficiency

- partial blindness

Scheme Signature Size Communication Size Security Assumption

BS1 + BS2
[CTZ24] OMUF-1 OMCDH

BS3 [CTZ24] OMUF-2 CDH

Our Work OMUF-2 DDH

1𝔾 + 4ℤp

𝗉𝗈𝗅𝗒(λ)

5𝔾 + 5ℤp

𝗉𝗈𝗅𝗒(λ)2𝔾 + 5ℤp

𝗉𝗈𝗅𝗒(λ)

