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• The argument is subtle
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- : simulation of S via OMCDH𝖡𝖲1, 𝖡𝖲2

  can only argue Q-OMUF for Q opened sessions (OMUF-1)→

- : send commitment instead of S𝖡𝖲3

 OMUF-2 at cost of signature and communication size→
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• Instantiate NIZK with an OR-proof: 


- either signature S is well-formed


- or  is a DDH tuple(X, Y, Z) = H(0)

One-more Unforgeability
Avoiding Rewinding
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we can argue that S is 

well-formed without rewinding
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