Faster Signatures from MPC-in-the-Head

Dung Bui (IRIF), Eliana Carozza (IRIF), Geoffroy Couteau (IRIF,CNRS), Dahmun Goudarzi (Quarkslab), and Antoine Joux (CISPA)

Kolkata, 10/12/2024

A compiler that transfers MPC protocol into HVZK proof for arbitrary circuits

A compiler that transfers MPC protocol into HVZK proof for arbitrary circuits

Verifier:

- Check the valid output of MPC protocol
- Verify views are consistent with commitments

A compiler that transfers MPC protocol into HVZK proof for arbitrary circuits

Security:

HVZK: MPC is secure against N -1 corrupted parties There exists a simulator SimP that simulates the views of all parties except for P Soundness error: 1/N

A compiler that transfers MPC protocol into HVZK proof for arbitrary circuits

Security:

HVZK: MPC is secure against N -1 corrupted parties There exists a simulator SimP that simulates the views of all parties except for P Soundness error: 1/N

Efficiency:

Computation: Underlying MPC protocol with N parties Soundness is amplified with parallel repetitions Communication: manner to open views

A compiler that transfers MPC protocol into HVZK proof for arbitrary circuits

Security:

HVZK: MPC is secure against N -1 corrupted parties There exists a simulator SimP that simulates the views of all parties except for P Soundness error: 1/N

Efficiency:

Computation: Underlying MPC protocol with N parties Soundness is amplified with parallel repetitions Communication: manner to open views Get a signature from any OWF using Fiat-Shamir

Open all-but-one Views in MPCitH

MPCitH protocol:

- Generate shares of witness with shares of preprocessing material
- All shares can be considered as random values

- Open N-1 out of N random shares $(r_i)_{i \le N}$

Open all-but-one Views in MPCitH

MPCitH protocol:

- Generate shares of witness with shares of preprocessing material
- All shares can be considered as random values

- Open N-1 out of N random shares $(r_i)_{i < N}$

Requirements in MPCitH-based signatures: Unforgeability security

Parallel repetitions

Puncturable PRF (PPRF)

Puncturable PRF (PPRF): PRF F with master key K:

PRF **F** with master key K: $F(K, x) \rightarrow y$ Punctured point: $P \leftarrow_r \{0,1\}^{\lambda}$

msk K

\bigcirc	\Longrightarrow
\sim	

- K{P} is succinct
- Compute F(K, x) for all x except P
- **F**(K,P) is pseudorandom given K{P}

Puncturable PRF (PPRF)

Puncturable PRF (PPRF):PRF F with master key K: $F(K, x) \rightarrow y$ Punctured point: $P \leftarrow_r \{0,1\}^{\lambda}$

msk K

- K{P} is succinct

- Compute F(K, x) for all x except P
- **F**(K,P) is pseudorandom given K{P}

Instantiation PPRF: GGM tree

Length-doubling PRG: $F(x) \rightarrow (x_0, x_1) \in \{0, 1\}^{2\lambda}$

Communication is reduced from (N-1) $\cdot \lambda$ to logN $\cdot \lambda$

(Q, τ) -multi-instance PPRF:

- Handle the security related to τ -repetitions in each signature
- Drop-in replacement of all PPRF in MPCitH-based signatures as considering Q the is number of queries from AdvA to signing oracle in unforgeability game

(Q, τ) -multi-instance PPRF:

- Handle the security related to τ -repetitions in each signature
- Drop-in replacement of all PPRF in MPCitH-based signatures as considering Q the is number of queries from AdvA to signing oracle in unforgeability game

New construction of PRG:

Davies-Meyer function

For τ -repetitions, (K_0, K_1) is used across all PPRF trees Instantiate by fixed-key AES-NI (takes only 1.3 cycles per Byte) Efficient, 12x to 55x speed improvement when plugging in the state of art ([C:JouHut24])

Construction of PRG:

$$F(x, K_0, K_1) = (AES_{K_0}(x) \bigoplus x, AES_{K_1}(x) \bigoplus x)$$

Security:

is proved in the **ideal cipher** using H-coefficient technique (Q, τ) -instance (t, ϵ) -secure PRG

Q instances, each instance repeats τ -times using same salt

Construction of PRG:

$$F(x, K_0, K_1) = (AES_{K_0}(x) \bigoplus x, AES_{K_1}(x) \bigoplus x)$$

Security:

is proved in the **ideal cipher** using H-coefficient technique (Q, τ) -instance (t, ϵ) -secure PRG

Q instances, each instance repeats τ -times using same salt

Security of PPRF: for a GGM tree of N = 2^{D} leaves (t, ϵ)-secure PRG $\rightarrow (Q, \tau)$ -instance ($t, D.\epsilon$)-secure PPRF

Security loss 5 bits $(D = 16, \tau = 8, \lambda = 128)$

Assumption: Regular syndrome decoding (RSD),

Sample a matrix $H \in \mathbb{F}_2^{k \times K}$, $\mathbf{x} \in \mathbb{F}_2^K$ such that \mathbf{x} is w-regular noise vector, set $\mathbf{y} = H \cdot \mathbf{x}$ Given (H,y), it is hard to find \mathbf{x}

Assumption: Regular syndrome decoding (RSD),

Sample a matrix $H \in \mathbb{F}_2^{k \times K}$, $\mathbf{x} \in \mathbb{F}_2^K$ such that \mathbf{x} is w-regular noise vector, set $\mathbf{y} = H \cdot \mathbf{x}$ Given (H,y), it is hard to find \mathbf{x}

Intuition:

Denote bs = K/w,

Compressed vector of **x**:

comp(x) =
$$(i_1, i_2, ..., i_{w-1}, i_w) \in (\mathbb{Z}_{bs})^w$$

Instead of sharing over \mathbb{F}_2^K , we share over $\mathbb{Z}_{bs} \rightarrow \mathbf{w} \cdot \mathbf{log}(\mathbf{bs})$ bits

Key idea: $\mathbf{x} \in \mathbb{F}_2^K$ is w-regular noise:

sample $\mathbf{r} \leftarrow_{\mathbf{r}} \mathbb{F}_{2}^{K}$ is w-regular noise vector $\mathbf{z} = \operatorname{comp}(\mathbf{x}) - \operatorname{comp}(\mathbf{r}) \in (\mathbb{Z}_{bs})^{w}$ (positions of noise) $\rightarrow \mathbf{x} = \mathbf{r}$ shifted by \mathbf{z}

r can be considered as a mask of **x**

Key idea: $\mathbf{x} \in \mathbb{F}_2^K$ is w-regular noise:sample $\mathbf{r} \leftarrow_r$

sample $\mathbf{r} \leftarrow_{\mathbf{r}} \mathbb{F}_{2}^{\mathbf{K}}$ is w-regular noise vector $\mathbf{z} = \operatorname{comp}(\mathbf{x}) - \operatorname{comp}(\mathbf{r}) \in (\mathbb{Z}_{bs})^{w}$ (positions of noise) $\rightarrow \mathbf{x} = \mathbf{r}$ shifted by \mathbf{z}

r can be considered as a mask of **x**

MPCitH protocol:

Parties holds shares of $\mathbf{r} \in \mathbb{F}_2^K$ (w-regular noise); comp(\mathbf{x}), comp(\mathbf{r}) $\in (\mathbb{Z}_{bs})^w$:

- All parties broadcast their shares of z = comp(x) comp(r) and reconstruct z
- All parties locally shift cyclically their share of r by z

Key idea: $\mathbf{x} \in \mathbb{F}_2^K$ is w-regular noise:sample $\mathbf{r} \leftarrow_r \mathbb{F}_2^K$ is $\mathbf{z} = \operatorname{comp}(\mathbf{x}) - \operatorname{comp}(\mathbf{x})$

sample $\mathbf{r} \leftarrow_{\mathbf{r}} \mathbb{F}_{2}^{\mathbf{K}}$ is w-regular noise vector $\mathbf{z} = \operatorname{comp}(\mathbf{x}) - \operatorname{comp}(\mathbf{r}) \in (\mathbb{Z}_{bs})^{w}$ (positions of noise)

 \rightarrow **x** = **r** shifted by **z**

r can be considered as a mask of **x**

MPCitH protocol:

Parties holds shares of $\mathbf{r} \in \mathbb{F}_2^K$ (w-regular noise); comp(\mathbf{x}), comp(\mathbf{r}) $\in (\mathbb{Z}_{bs})^w$:

- All parties broadcast their shares of z = comp(x) comp(r) and reconstruct z
- All parties locally shift cyclically their share of r by z

Soundness:

Prover can cheat in generating a preprocessing

→ verifier adds a permutation π on **r**, i.e., **z** = comp(**x**) – π (comp(**r**))

Takeaway

New multi-instance PPRF

- Efficient based on AES-NI
- Used to bootstrap any MPCitHbased signatures
- Benchmark by plugging

into [C:JouHut24]

New MPCitH-based signature

- Based on RSD
- Outperform [EC:CCJ23], competitive efficiency

https://ia.cr/2024/252

References: [C:JouHut24] MPC in the head using the subfield bilinear collision problem, by J. Huth and A. Joux, in CRYPTO 2024 [EC:CCJ23] Short signatures from regular syndrome decoding in the head, by E. Carozza, G. Couteau, and A. Joux, in EUROCRYPT 2023

Takeaway

New multi-instance PPRF

- Efficient based on AES-NI
- Used to bootstrap any MPCitHbased signatures
- Benchmark by plugging into [C:JouHut24]

New MPCitH-based signature

- Based on RSD
- Outperform [EC:CCJ23], competitive efficiency

https://ia.cr/2024/252

Thank you

References: [C:JouHut24] MPC in the head using the subfield bilinear collision problem, by J. Huth and A. Joux, in CRYPTO 2024 [EC:CCJ23] Short signatures from regular syndrome decoding in the head, by E. Carozza, G. Couteau, and A. Joux, in EUROCRYPT 2023