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w,  C(w) = 1

Prover:

- Additive share w

- Execute MPC protocol in 
the Head

- Get the views of N parties 

Verifier:

- Check the valid output of MPC 
protocol

- Verify views are consistent with 
commitments

Get a signature from any 
OWF using Fiat-Shamir
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Puncturable PRF (PPRF): PRF F with master key K:  
	 	 	 	 Punctured point:	   

       𝐅(K, x) → y
P ←r {0,1}λ

Instantiation PPRF: GGM tree

	 	 	 Length-doubling PRG:  F(x) → (x0, x1) ∈ {0,1}2λ

Communication is reduced 

 from (N-1)⋅λ to logN⋅λ

N leaves

Punctured key K{P} 

msk K - K{P} is succinct 

- Compute F(K, x) for all x except P

- F(K,P) is pseudorandom given K{P}
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New construction of PRG: 

Davies-Meyer function                       F(x, salt) = (F0(x,  salt),  F1(x, salt))

x,  K0, K1

AESK0(x) ⊕ x AESK1
(x) ⊕ x 

For -repetitions,  is used across all PPRF trees

Instantiate by fixed-key AES-NI (takes only 1.3 cycles per Byte)

Efficient,  12x to 55x speed improvement when plugging in the state of art ([C:JouHut24])

𝜏 (K0, K1)
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Contribution 1: Multi-instance PPRF

Q instances, each instance repeats -times using same salt 𝜏

Security:

b ←r {0,1} 

b = 0, F(xi,  Ki)

b = 1, random 

Guess b

Construction of PRG:


is proved in the ideal cipher using H-coefficient technique
-instance -secure PRG(Q, 𝜏) (t, 𝜖)

Security of PPRF: for a GGM tree of N =  leaves2D

-instance -secure PPRF(Q, 𝜏) (t, D.𝜖)-secure PRG     (t, 𝜖)
Security loss 5 bits 

(D = 16,  τ = 8, λ = 128)
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Instead of sharing over , we share over   bits 𝔽K
2 ℤbs 𝐰 ⋅  𝐥𝐨𝐠(𝐛𝐬) 

Intuition:

     Denote bs = K/w, 

Position of noises:

Compressed vector of x:	  comp(x) = (i1, i2, …, iw−1, iw) ∈ (ℤbs)
w

Vector x:
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Soundness:

Prover can cheat in generating a preprocessing 

     verifier adds a permutation  on r, i.e.,  z = comp(x) – (comp(r)) π  π

MPCitH protocol: 

Parties holds shares of r  (w-regular noise); comp(x), comp(r) :
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Takeaway

New multi-instance PPRF 
- Efficient based on AES-NI 
- Used to bootstrap any MPCitH-
based signatures 
- Benchmark by plugging  
into [C:JouHut24]

New MPCitH-based signature 
- Based on RSD 
- Outperform [EC:CCJ23],  
   competitive efficiency

https://ia.cr/2024/252
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