
Faster Signatures from MPC-in-the-Head
Dung Bui (IRIF), Eliana Carozza (IRIF), Geoffroy Couteau (IRIF,CNRS),

Dahmun Goudarzi (Quarkslab), and Antoine Joux (CISPA)

Kolkata, 10/12/2024

MPC-in-the-Head Paradigm (MPCitH)

MPC-in-the-Head Paradigm (MPCitH)
A compiler that transfers MPC protocol into HVZK proof for arbitrary circuits

w, C(w) = 1

Prover:

- Additive share w

- Execute MPC protocol in
the Head

- Get the views of N parties

MPC-in-the-Head Paradigm (MPCitH)
A compiler that transfers MPC protocol into HVZK proof for arbitrary circuits

w, C(w) = 1

Prover:

- Additive share w

- Execute MPC protocol in
the Head

- Get the views of N parties

Verifier:

- Check the valid output of MPC
protocol

- Verify views are consistent with
commitments

Commit to all (viewi)𝑖∈[𝑁]

P ∈ [N]

(viewi)𝑖≠𝑃

MPC-in-the-Head Paradigm (MPCitH)
A compiler that transfers MPC protocol into HVZK proof for arbitrary circuits

w, C(w) = 1

Prover:

- Additive share w

- Execute MPC protocol in
the Head

- Get the views of N parties

Verifier:

- Check the valid output of MPC
protocol

- Verify views are consistent with
commitments

Commit to all (viewi)𝑖∈[𝑁]

P ∈ [N]

(viewi)𝑖≠𝑃

Security:

	 HVZK: MPC is secure against N -1 corrupted parties

	 There exists a simulator SimP that simulates the views of all parties except for P

	 Soundness error: 1/N

MPC-in-the-Head Paradigm (MPCitH)
A compiler that transfers MPC protocol into HVZK proof for arbitrary circuits

w, C(w) = 1

Prover:

- Additive share w

- Execute MPC protocol in
the Head

- Get the views of N parties

Verifier:

- Check the valid output of MPC
protocol

- Verify views are consistent with
commitments

Commit to all (viewi)𝑖∈[𝑁]

P ∈ [N]

(viewi)𝑖≠𝑃

Security:

	 HVZK: MPC is secure against N -1 corrupted parties

	 There exists a simulator SimP that simulates the views of all parties except for P

	 Soundness error: 1/N
Efficiency:

	 Computation: Underlying MPC protocol with N parties

	 	 Soundness is amplified with parallel repetitions

	 Communication: manner to open views

MPC-in-the-Head Paradigm (MPCitH)
A compiler that transfers MPC protocol into HVZK proof for arbitrary circuits

w, C(w) = 1

Prover:

- Additive share w

- Execute MPC protocol in
the Head

- Get the views of N parties

Verifier:

- Check the valid output of MPC
protocol

- Verify views are consistent with
commitments

Get a signature from any
OWF using Fiat-Shamir

Commit to all (viewi)𝑖∈[𝑁]

P ∈ [N]

(viewi)𝑖≠𝑃

Security:

	 HVZK: MPC is secure against N -1 corrupted parties

	 There exists a simulator SimP that simulates the views of all parties except for P

	 Soundness error: 1/N
Efficiency:

	 Computation: Underlying MPC protocol with N parties

	 	 Soundness is amplified with parallel repetitions

	 Communication: manner to open views

MPCitH protocol:

- Generate shares of witness with shares of preprocessing material

- All shares can be considered as random values

Open all-but-one Views in MPCitH

- Open N-1 out of N random shares (ri)i≤N

w, C(w) = 1

⟦w⟧1, r1 ⟦w⟧2, r2

(⟦w⟧i, ri)i≤N
 ←r {0,1}∗

⟦w⟧N−1, rN−1 (⟦w⟧N, rN)

…

MPCitH protocol:

- Generate shares of witness with shares of preprocessing material

- All shares can be considered as random values

Open all-but-one Views in MPCitH

Requirements in MPCitH-based signatures:

 	 Unforgeability security	 	 	 	 	 	 Parallel repetitions

- Open N-1 out of N random shares (ri)i≤N

w, C(w) = 1

⟦w⟧1, r1 ⟦w⟧2, r2

(⟦w⟧i, ri)i≤N
 ←r {0,1}∗

⟦w⟧N−1, rN−1 (⟦w⟧N, rN)

…

Puncturable PRF (PPRF)
Puncturable PRF (PPRF): PRF F with master key K:
	 	 	 	 Punctured point:	

 𝐅(K, x) → y
P ←r {0,1}λ

Punctured key K{P}

msk K - K{P} is succinct

- Compute F(K, x) for all x except P

- F(K,P) is pseudorandom given K{P}

Puncturable PRF (PPRF)
Puncturable PRF (PPRF): PRF F with master key K:
	 	 	 	 Punctured point:	

 𝐅(K, x) → y
P ←r {0,1}λ

Instantiation PPRF: GGM tree

	 	 	 Length-doubling PRG: F(x) → (x0, x1) ∈ {0,1}2λ

Communication is reduced

 from (N-1)⋅λ to logN⋅λ

N leaves

Punctured key K{P}

msk K - K{P} is succinct

- Compute F(K, x) for all x except P

- F(K,P) is pseudorandom given K{P}

Contribution 1: Multi-instance PPRF

Contribution 1: Multi-instance PPRF
-multi-instance PPRF:

- Handle the security related to -repetitions in each signature

- Drop-in replacement of all PPRF in MPCitH-based signatures as considering Q the is number of
queries from AdvA to signing oracle in unforgeability game

(𝑄, 𝜏)
𝜏

Contribution 1: Multi-instance PPRF
-multi-instance PPRF:

- Handle the security related to -repetitions in each signature

- Drop-in replacement of all PPRF in MPCitH-based signatures as considering Q the is number of
queries from AdvA to signing oracle in unforgeability game

(𝑄, 𝜏)
𝜏

New construction of PRG:

Davies-Meyer function F(x, salt) = (F0(x, salt), F1(x, salt))

x, K0, K1

AESK0(x) ⊕ x AESK1
(x) ⊕ x

For -repetitions, is used across all PPRF trees

Instantiate by fixed-key AES-NI (takes only 1.3 cycles per Byte)

Efficient, 12x to 55x speed improvement when plugging in the state of art ([C:JouHut24])

𝜏 (K0, K1)

Contribution 1: Multi-instance PPRF

Contribution 1: Multi-instance PPRF

Q instances, each instance repeats -times using same salt 𝜏

Security:

b ←r {0,1}

b = 0, F(xi, Ki)

b = 1, random

Guess b

Construction of PRG:

is proved in the ideal cipher using H-coefficient technique
-instance -secure PRG(Q, 𝜏) (t, 𝜖)

Contribution 1: Multi-instance PPRF

Q instances, each instance repeats -times using same salt 𝜏

Security:

b ←r {0,1}

b = 0, F(xi, Ki)

b = 1, random

Guess b

Construction of PRG:

is proved in the ideal cipher using H-coefficient technique
-instance -secure PRG(Q, 𝜏) (t, 𝜖)

Security of PPRF: for a GGM tree of N = leaves2D

-instance -secure PPRF(Q, 𝜏) (t, D.𝜖)-secure PRG (t, 𝜖)
Security loss 5 bits

(D = 16, τ = 8, λ = 128)

Assumption: Regular syndrome decoding (RSD),

	 Sample a matrix such that x is w-regular noise vector, set

 Given (H,y), it is hard to find x
H ∈ 𝔽k ×K

2 , 𝐱 ∈ 𝔽K
2 𝐲 = H ⋅ 𝐱

Contribution 2: New MPCitH-based signature

Assumption: Regular syndrome decoding (RSD),

	 Sample a matrix such that x is w-regular noise vector, set

 Given (H,y), it is hard to find x
H ∈ 𝔽k ×K

2 , 𝐱 ∈ 𝔽K
2 𝐲 = H ⋅ 𝐱

Contribution 2: New MPCitH-based signature

Instead of sharing over , we share over bits 𝔽K
2 ℤbs 𝐰 ⋅ 𝐥𝐨𝐠(𝐛𝐬)

Intuition:

 Denote bs = K/w,

Position of noises:

Compressed vector of x:	 comp(x) = (i1, i2, …, iw−1, iw) ∈ (ℤbs)
w

Vector x:

Contribution 2: New MPCitH-based signature

Contribution 2: New MPCitH-based signature
Key idea:

 is w-regular noise: 	 sample is w-regular noise vector

	 	 	 	 z = comp(x) – comp(r) (positions of noise)

 	 	 	 	 x = r shifted by z

r can be considered as a mask of x

𝐱 ∈ 𝔽K
2 𝐫 ←r 𝔽K

2
∈ (ℤbs)

w

Contribution 2: New MPCitH-based signature
Key idea:

 is w-regular noise: 	 sample is w-regular noise vector

	 	 	 	 z = comp(x) – comp(r) (positions of noise)

 	 	 	 	 x = r shifted by z

r can be considered as a mask of x

𝐱 ∈ 𝔽K
2 𝐫 ←r 𝔽K

2
∈ (ℤbs)

w

MPCitH protocol:

Parties holds shares of r (w-regular noise); comp(x), comp(r) :

- All parties broadcast their shares of z = comp(x) – comp(r) and reconstruct z

- All parties locally shift cyclically their share of r by z

∈ 𝔽K
2 ∈ (ℤbs)

w

Contribution 2: New MPCitH-based signature
Key idea:

 is w-regular noise: 	 sample is w-regular noise vector

	 	 	 	 z = comp(x) – comp(r) (positions of noise)

 	 	 	 	 x = r shifted by z

r can be considered as a mask of x

𝐱 ∈ 𝔽K
2 𝐫 ←r 𝔽K

2
∈ (ℤbs)

w

Soundness:

Prover can cheat in generating a preprocessing

 verifier adds a permutation on r, i.e., z = comp(x) – (comp(r)) π π

MPCitH protocol:

Parties holds shares of r (w-regular noise); comp(x), comp(r) :

- All parties broadcast their shares of z = comp(x) – comp(r) and reconstruct z

- All parties locally shift cyclically their share of r by z

∈ 𝔽K
2 ∈ (ℤbs)

w

Takeaway

New multi-instance PPRF
- Efficient based on AES-NI
- Used to bootstrap any MPCitH-
based signatures
- Benchmark by plugging
into [C:JouHut24]

New MPCitH-based signature
- Based on RSD
- Outperform [EC:CCJ23],
 competitive efficiency

https://ia.cr/2024/252

References: [C:JouHut24] MPC in the head using the subfield bilinear collision problem, by J. Huth and A. Joux, in CRYPTO 2024
 [EC:CCJ23] Short signatures from regular syndrome decoding in the head, by E. Carozza, G. Couteau, and A. Joux, in EUROCRYPT 2023

Takeaway

New multi-instance PPRF
- Efficient based on AES-NI
- Used to bootstrap any MPCitH-
based signatures
- Benchmark by plugging
into [C:JouHut24]

New MPCitH-based signature
- Based on RSD
- Outperform [EC:CCJ23],
 competitive efficiency

https://ia.cr/2024/252

Thank you

References: [C:JouHut24] MPC in the head using the subfield bilinear collision problem, by J. Huth and A. Joux, in CRYPTO 2024
 [EC:CCJ23] Short signatures from regular syndrome decoding in the head, by E. Carozza, G. Couteau, and A. Joux, in EUROCRYPT 2023

