# Jackpot: Non-Interactive Aggregatable Lotteries

Nils Fleischhacker, Mathias Hall-Andersen, Mark Simkin, and Benedikt Wagner

13. December 2024













Goal: Select a committee of size  $\approx N/k$  such that:

• You can't be selected with probability > 1/k.



Goal: Select a committee of size  $\approx N/k$  such that:

- You can't be selected with probability > 1/k.
- Honest participants are selected with 1/k.



Goal: Select a committee of size  $\approx N/k$  such that:

- You can't be selected with probability > 1/k.
- Honest participants are selected with 1/k.
- Participants can't correlate their selection.











If  $x_j \leq t$  you win the lottery.



If  $x_j \leq t$  you win the lottery.



If  $x_j \leq t$  you win the lottery.

Problem: Storing the "winning tickets" takes a lot of space.



If  $x_j = H(i, j, \text{seed})$  you win the lottery.

















$$\xi := H(i, \text{seed})$$













#### But what's a VRF other than a vector commitment for long random vectors?

$$\mathsf{sk}_3 \longrightarrow \mathsf{VRF} \xrightarrow{\tau_3} x_3$$

 $(\operatorname{com}_j, St_j) \leftarrow \operatorname{Com}((x_{j,1}, \ldots, x_{j,\ell}))$ 

$$(\operatorname{com}_j, St_j) \leftarrow \operatorname{Com}((x_{j,1}, \dots, x_{j,\ell}))$$

$$st_j \longrightarrow 0$$
pen  $\tau_{j,i}$ 

$$(\operatorname{com}_j, St_j) \leftarrow \operatorname{Com}((x_{j,1}, \dots, x_{j,\ell}))$$

$$St_j \longrightarrow 0$$
pen  $\tau_{j,\gamma}$ 

If 
$$x_{j,i} = H(i, j, \text{seed})$$
 you win the lottery.

 $(\operatorname{com}_j, St_j) \leftarrow \operatorname{Com}((x_{j,1}, \ldots, x_{j,\ell}))$ 



If  $x_{j,i} = H(i, j, \text{seed})$  you win the lottery.

$$(\operatorname{com}_j, St_j) \leftarrow \operatorname{Com}((x_{j,1}, \dots, x_{j,\ell}))$$



#### ✓ / ∧

If  $x_{j,i} = H(i, j, \text{seed})$  you win the lottery.

Unfortunately we require simulation extractability.

- Unfortunately we require simulation extractability.
- ► Linearly homomorphic vector commitments are inherently not simulation extractable.

- Unfortunately we require simulation extractability.
- ► Linearly homomorphic vector commitments are inherently not simulation extractable.
- But: Only openings have to be aggregateable.

- Unfortunately we require simulation extractability.
- ► Linearly homomorphic vector commitments are inherently not simulation extractable.
- But: Only openings have to be aggregateable.
- Idea: Break homomorphism of commitments but retain it for openings.

- To commit to a vector  $\vec{x}$  of length  $\ell$ :
  - 1. Choose random polynomial f of degree  $\ell + 1$  such that  $f(i) = x_i$ .
  - 2. Compute  $(com_{KZG}, St) \leftarrow KZG.Com(ck_{KZG}, f)$ .
  - 3. Derive  $z_0 = H(com_{KZG})$
  - 4. Compute  $\tau_0 \leftarrow \mathsf{KZG.Open}(\mathsf{ck}_{\mathsf{KZG}}, St, z_0)$ .
  - 5. Full commitment is  $(com_{KZG}, y_0 = f(z_0), \tau_0)$

- To commit to a vector  $\vec{x}$  of length  $\ell$ :
  - 1. Choose random polynomial f of degree  $\ell + 1$  such that  $f(i) = x_i$ .
  - 2. Compute  $(com_{KZG}, St) \leftarrow KZG.Com(ck_{KZG}, f)$ .
  - 3. Derive  $z_0 = H(com_{KZG})$
  - 4. Compute  $\tau_0 \leftarrow \mathsf{KZG.Open}(\mathsf{ck}_{\mathsf{KZG}}, St, z_0)$ .
  - 5. Full commitment is  $(com_{KZG}, y_0 = f(z_0), \tau_0)$
- We can verify that commitments are well formed
  - 1. Derive  $z_0 = \mathsf{H}(\mathsf{com}_{\mathsf{KZG}})$ .
  - 2. Return KZG.Ver( $ck_{KZG}, com_{KZG}, z_0, y_0, \tau_0$ )

- To commit to a vector  $\vec{x}$  of length  $\ell$ :
  - 1. Choose random polynomial f of degree  $\ell + 1$  such that  $f(i) = x_i$ .
  - 2. Compute  $(com_{KZG}, St) \leftarrow KZG.Com(ck_{KZG}, f)$ .
  - 3. Derive  $z_0 = H(com_{KZG})$
  - 4. Compute  $\tau_0 \leftarrow \mathsf{KZG.Open}(\mathsf{ck}_{\mathsf{KZG}}, St, z_0)$ .
  - 5. Full commitment is  $(com_{KZG}, y_0 = f(z_0), \tau_0)$
- We can verify that commitments are well formed
  - 1. Derive  $z_0 = H(com_{KZG})$ .
  - 2. Return KZG.Ver( $ck_{KZG}, com_{KZG}, z_0, y_0, \tau_0$ )
- Openings are simply openings of the KZG commitment.

- To commit to a vector  $\vec{x}$  of length  $\ell$ :
  - 1. Choose random polynomial f of degree  $\ell + 1$  such that  $f(i) = x_i$ .
  - 2. Compute  $(com_{KZG}, St) \leftarrow KZG.Com(ck_{KZG}, f)$ .
  - 3. Derive  $z_0 = H(com_{KZG})$
  - 4. Compute  $\tau_0 \leftarrow \mathsf{KZG.Open}(\mathsf{ck}_{\mathsf{KZG}}, St, z_0)$ .
  - 5. Full commitment is  $(com_{KZG}, y_0 = f(z_0), \tau_0)$
- We can verify that commitments are well formed
  - 1. Derive  $z_0 = H(com_{KZG})$ .
  - 2. Return KZG.Ver( $ck_{KZG}, com_{KZG}, z_0, y_0, \tau_0$ )
- Openings are simply openings of the KZG commitment.
- Openings can be aggregated.
  - 1. Derive  $\xi := \mathsf{H}'(i, (\operatorname{com}_j)_{j=1}^L, (x_j)_{j=1}^L).$
  - 2. Return  $\tau := \sum_{j=1}^{L} \xi^{j-1} \tau_j$

- To commit to a vector  $\vec{x}$  of length  $\ell$ :
  - 1. Choose random polynomial f of degree  $\ell + 1$  such that  $f(i) = x_i$ .
  - 2. Compute  $(com_{KZG}, St) \leftarrow KZG.Com(ck_{KZG}, f)$ .
  - 3. Derive  $z_0 = H(com_{KZG})$
  - 4. Compute  $\tau_0 \leftarrow \mathsf{KZG.Open}(\mathsf{ck}_{\mathsf{KZG}}, St, z_0)$ .
  - 5. Full commitment is  $(com_{KZG}, y_0 = f(z_0), \tau_0)$
- We can verify that commitments are well formed
  - 1. Derive  $z_0 = H(com_{KZG})$ .
  - 2. Return KZG.Ver( $ck_{KZG}, com_{KZG}, z_0, y_0, \tau_0$ )
- Openings are simply openings of the KZG commitment.
- Openings can be aggregated.
  - 1. Derive  $\xi := \mathsf{H}'(i, (\operatorname{com}_j)_{j=1}^L, (x_j)_{j=1}^L).$
  - 2. Return  $\tau := \sum_{j=1}^{L} \xi^{j-1} \tau_j$
- Aggregated openings can be verified using the linear homomorphism of KZG.
  - 1. Individually verify that all commitments are well formed.
  - 2. Derive  $\xi := \mathsf{H}'(i, (\operatorname{com}_j)_{j=1}^L, (x_j)_{j=1}^L)$
  - 3. Compute  $x := \sum_{j=1}^{L} \xi^{j-1} x_j$  and  $\operatorname{com} := \prod_{j=1}^{L} \operatorname{com}_{\mathsf{KZG},j}^{\xi^{j-1}}$ .
  - 4. Return KZG.Ver( $ck_{KZG}, com, i, x, \tau$ ).

# Comparison

|        | Tickets L V  | /RF-BLS [B] | Ours   | [B] Ra  | atio VRF-BLS/ | 'Ours    |
|--------|--------------|-------------|--------|---------|---------------|----------|
| _      | 1            | 48          |        | 80      |               | 0.6      |
|        | 16           | 768         | 80     |         | 9.6           |          |
|        | 256          | 12288       | 80     |         | 153.6         |          |
|        | 1024         | 49152       | 80     |         | 614.4         |          |
|        | 2048         | 98304       | 80     |         | 1228.8        |          |
|        |              |             |        |         |               |          |
|        |              | L = 1       | L = 16 | L = 256 | L = 1024      | L = 2048 |
| Ours   | Aggregate [m | s] 0.038    | 0.390  | 2.377   | 6.899         | 14.242   |
| Ours   | Ver [ms]     | 1.413       | 1.959  | 3.948   | 8.875         | 15.422   |
| VRF-BL | S Ver [ms]   | 1.663       | 2.990  | 7.959   | 19.010        | 33.838   |

