Jackpot: Non-Interactive Aggregatable
Lotteries

Nils Fleischhacker, Mathias Hall-Andersen, Mark Simkin, and Benedikt Wagner

13. December 2024

GORTZ CYBER SECURITY IN THE AGE
INSTITUT OF LARGE-SCALE ADVERSARIES



Why Lotteries?




Why Lotteries?




Why Lotteries?

Goal: Select a committee of size ~ N /k such that:
» You can't be selected with probability > 1/k.




Why Lotteries?

Goal: Select a committee of size ~ N /k such that:
» You can't be selected with probability > 1/k.
» Honest participants are selected with 1/k.




Why Lotteries?

Goal: Select a committee of size ~ N /k such that:
» You can't be selected with probability > 1/k.
» Honest participants are selected with 1/k.

» Participants can't correlate their selection.
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If z; <t you win the lottery.

Problem: Storing the “winning tickets" takes a lot of space.



A Lottery Using Small Codomain VRFs

Idea: Use linearly homomorphic VRF with codomain [k].
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If x; = H(i, 7, seed) you win the lottery.
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A Lottery Using Small Codomain VRFs
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Unfortunately no such VRF is known.
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A Lottery Using Small Codomain VRFs
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But what's a VRF other than a vector commitment for long random vectors?

sks —| VRF :

> T3




Using a Vector Commitment

(comj, Stj) + Com((zj1,.--,2jz))



Using a Vector Commitment

(comj, St;) < Com((zj1,...,%j5¢))

St; Tji




Using a Vector Commitment

(comj, St;) < Com((zj1,.-.,%j¢))

St; Tji

If x;; = H(4,j,seed) you win the lottery.



Using a Vector Commitment

St;

(comj, St;) < Com((zj1,.-.,%j¢))
Tji
Open oy Ver
7/ — ]7Z
X

If x;; = H(4,j,seed) you win the lottery.

COIIlj




Using a Vector Commitment

(comj7 Stj) — Com((xj,l, 500 ,xj,g))

Fortunately, we do know of linearly homomorphic vector commitments.
Notably KZG commitments.
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If x;; = H(4,j,seed) you win the lottery.
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» Unfortunately we require simulation extractability.

» Linearly homomorphic vector commitments are inherently not simulation extractable.
» But: Only openings have to be aggregateable.

» Idea: Break homomorphism of commitments but retain it for openings.
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A Simulation Extractable VC from KZG

» To commit to a vector ¥ of length ¢:

Choose random polynomial f of degree ¢ + 1 such that f(i) = z;.
Compute (comkzg, St) «— KZG.Com(ckkzs, f).

Derive zp = H(comkzg)

Compute g <+ KZG.Open(ckgzs, St, 20)-
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» To commit to a vector ¥ of length ¢:
1. Choose random polynomial f of degree ¢ + 1 such that f(i) = ;.
2. Compute (comgyzg, St) < KZG.Com(ckkzes, f)-
3. Derive zp = H(comkzg)
4. Compute 7y + KZG.Open(ckkzs, St, 20).
5. Full commitment is (comkzg, yo = f(20), T0)
» We can verify that commitments are well formed
1. Derive zy = H(comkzg).
2. Return KZG.Ver(ckkzgs, comkze, 20, Yo, To)
» Openings are simply openings of the KZG commitment.
» Openings can be aggregated.
1. Derive £ := H'(i, (comj)jLzl, (xj)]Lzl).
2. Return := Zle &1
» Aggregated openings can be verified using the linear homomorphism of KZG.
1. Individually verify that all commitments are well formed.
2. Derive & := H'(4, (comj)le, (xj)JLzl)
3. Compute = := Zle &~z and com := Hle comyyg ;-
4. Return KZG.Ver(ckgzg, com, i, x, 7). ‘
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Comparison

Tickets L VRF-BLS [B] Ours [B] Ratio VRF-BLS/Ours

1 48 80 0.6

16 768 80 9.6

256 12288 80 153.6

1024 49152 80 614.4

2048 98304 80 1228.8
L=1 L=16 L=256 L=1024 L =2048
Ours Aggregate [ms] 0.038 0.390 2.377 6.899 14.242
Ours Ver [ms] 1.413 1.959 3.948 8.875 15.422
VRF-BLS Ver [ms] 1.663 2.990 7.959 19.010 33.838







