
Asiacrypt’ 24, Kolkata, India

Afonso Arriaga(1), Manuel Barbosa(2,3,4), Stanislaw Jarecki(5), Marjan Škrobot(1)

(1) SnT - University of Luxembourg, Esch-sur-Alzette, Luxembourg
(2) FCUP, University of Porto, Porto, Portugal
(3) INESC TEC, Porto, Portugal
(4) Max Planck Institute for Security and Privacy, Bochum, Germany
(5) University of California, Irvine, USA

C’est très CHIC:
A compact password-authenticated
key exchange from lattice-based KEM

Protocol

PAKE: Password Authenticated Key Exchange

PAKE
protocol

keyA = keyB if pwA = pwB
else keyA, keyB independent

pwA pwB

keyA keyB

Alice Bob

Timeline

PAKE: Password Authenticated Key Exchange

EKE [BM92,BPR00]

SPAKE2 [AP05]

OEKE [BCP03]

PACE [BFK09]

CPace [HL19]

sPAKE [MRR20]

EKE-KEM [SGJ23]
CAKE/OCAKE [BCP+23]

PAKE-KEM [PZ23]

PAKEM [AHH+24]
CHIC [this paper]

SPEKE [Jab96]
SAE [Har08]

Real-world adoption of symmetric PAKE protocols

PAKE: Password Authenticated Key Exchange

EKE [BM92,BPR00]

SPAKE2 [AP05]

PACE [BFK09]

CPace [HL19]

sPAKE [MRR20]

EKE-KEM [SGJ23]
CAKE/OCAKE [BCP+23]

PAKE-KEM [PZ23]

SAE [Har08]

PAKEM [AHH+24]
CHIC [this paper]

OEKE [BCP03]

SPEKE [Jab96]

Real-world attacks

PAKE: Password Authenticated Key Exchange

EKE [BM92,BPR00]

SPAKE2 [AP05]

PACE [BFK09]

CPace [HL19]

sPAKE [MRR20]

EKE-KEM [SGJ23]
CAKE/OCAKE [BCP+23]

PAKE-KEM [PZ23]

Dragonblood [VR20]
PAKEM [AHH+24]
CHIC [this paper]

SAE [Har08]

OEKE [BCP03]

SPEKE [Jab96]

Towards post-quantum security…

PAKE: Password Authenticated Key Exchange

EKE [BM92,BPR00]

SPAKE2 [AP05]

PACE [BFK09]

CPace [HL19]

sPAKE [MRR20]

EKE-KEM [SGJ23]
CAKE/OCAKE [BCP+23]

PAKE-KEM [PZ23]

SAE [Har08]

PAKEM [AHH+24]
CHIC [this paper]

Dragonblood [VR20]

OEKE [BCP03]

SPEKE [Jab96]

EKE and OEKE design patterns

apk

c*

(sk, pk) ← KEM.Keygen
apk ← IC.Enc(pwA, pk)

c ← IC.Dec(pwA, c*)
K ← KEM.Decaps(sk, c)

key ← H(pk, apk, c, K, …)

pk ← IC.Dec(pwB, apk)
(K, c) ← KEM.Encaps(pk)
c* ← IC.Enc(pwB, c)
key ← H(pk, apk, c, K, …)

apk

(c, tag)

(sk,pk) ← KEM.Keygen
apk ← IC.Enc(pwA, pk)

K ← KEM.Decaps(sk, c)
(key, tag’) ← H(pk, apk, c, K, …)

check if tag == tag’

pk ← IC.Dec(pwB, apk)
(K, c) ← KEM.Encaps(pk)
(key, tag) ← H(pk, apk, c, K, …)

EKE

OEKE

EKE and OEKE design patterns

apk

c*

(sk, pk) ← KEM.Keygen
apk ← IC.Enc(pwA, pk)

c ← IC.Dec(pwA, c*)
K ← KEM.Decaps(sk, c)

key ← H(pk, apk, c, K, …)

pk ← IC.Dec(pwB, apk)
(K, c) ← KEM.Encaps(pk)
c* ← IC.Enc(pwB, c)
key ← H(pk, apk, c, K, …)

apk

(c, tag)

(sk,pk) ← KEM.Keygen
apk ← IC.Enc(pwA, pk)

K ← KEM.Decaps(sk, c)
(key, tag’) ← H(pk, apk, c, K, …)

check if tag == tag’

pk ← IC.Dec(pwB, apk)
(K, c) ← KEM.Encaps(pk)
(key, tag) ← H(pk, apk, c, K, …)

EKE

OEKE

sPAKE [MRR20]

CAKE [BCP+23]

OCAKE [BCP+23]

EKE-KEM [SGJ23]

PAKE-KEM [PZ23]

PAKEM [AHH+24]

CHIC [this paper]

Challenges in instantiating IC over groups

• Usually, ideal ciphers are instantiated with block ciphers.

• But what if we have an IC over a group?

• The domain of the IC and its instantiation must coincide; otherwise, it becomes trivial for an
adversary to mount an offline dictionary attack. The attack proceeds as follows:

1. Intercept apk = IC.Enc(pw, pk).

2. Decrypt apk using a candidate password pw*.

3. If pk* = IC.Dec(pw*, apk) does not belong to the public key space, then pw* is incorrect.

ML-KEM public keys

• Sample ρ ∈ {0,1}256

• A ← Expand(ρ) ∈ Rqk*k

• t ← A * s + e

• pk ← (ρ, t)

x + =

A s e t

ρ ∈ {0,1}256 t ∈ Rqk

ML-KEM public keys

• Rq is a ring where the elements are polynomials with coefficients in Zq

• FIPS 203 specifications set q = 3329

• 211 < 3329 < 212

• To encode a single element in Z3329, we need 12 bits

Z3329

Z4096

2-round Feistel [MRR20]

pk ∈ Gr ∈ {0,1}3λ

s T

Hpw

POPF

• Password-encrypt with a
2-round Feistel (2F).

• Public key on the right
wire; random coins on the
left wire.

• Ciphertext expands pk.

• Only one hash onto group
needed instead of IC over
the group.

• Modular approach with
game-based definition
POPF. However, 2F permits
some malleability and
POPF is insufficient for
(O)EKE constructions.

H’pw

A modified 2-round Feistel [SGJ23]

pk ∈ Gr ∈ {0,1}2λ

s T

IC

HIC

• Replace XOR operation
with IC to avoid
malleability

• IC over bit strings

• Modular approach with
UC definition: Half-Ideal
Cipher (HIC)

• Why “half-ideal”? The s-
part is random.

Hpw

H’pw

easy to instantiate

Compact HIC
pk

r ∈ {0,1}*

s T

IC

M ∈ GSplit

• Can we split the public
and feed both wires of the
2F?Hpw

H’pw

Compact HIC
pk

r ∈ {0,1}256

s T

IC

t ∈ Rk3329Split • In particular, we are
interested in the trivial
breakdown of ML-KEM
public keys.

• Compact: avoids
ciphertext expansion!

• Effectively, de-randomizes
HIC.

Hpw

H’pw

Compact HIC
pk

r ∈ {0,1}2λ

s T

IC

M ∈ GλSplit

• In general, (O)EKE
constructions require
public keys to be
uniformly distributed.

• HIC requires uniform r.

• We can combine both
requirements into a single
definition w.r.t. function
Split.

• Experiment UNI-PK:
(_,pk0) ← Keygen
(r0, M0) ← Split(pk0)
(r1, M1) ← {0,1}2λ x Gλ

b ← {0,1}
b’ ← A(rb,Mb)
return b == b’

Hpw

H’pw

Compact HIC
pk

r ∈ {0,1}2λ

s T

IC

pkSplit

• The randomized identity
Split recovers standard
public key uniformity (also
know as fuzziness
[BCP+23]).

• Leads back to the HIC
construction [SGJ23].

Hpw

H’pw

Compact HIC
pk

ρ || r ∈ {0,1}2λ

s T

IC

bSplit • FrodoKEM determines
seed ρ ∈ {0,1}128.

• A Randomized Split can
easily extend FrodoKEM
keys by appending
random bits to ρ, ensuring
it reaches the required
length.

• This approach requires no
modifications to
FrodoKEM.

Hpw

H’pw

HIC

Compact HIC
pk

r ∈ {0,1}*

s T

IC

M ∈ GSplit

• FHIC features honest
interfaces accessible by
the environment Z, but no
control over randomness r
is provided.

• Unfortunately, we lose the
modular HIC abstraction.

• Solution: Direct proof.

Hpw

H’pw

Compact HIC
pk

r ∈ {0,1}*

s T

IC

M ∈ GSplit

• How to instantiate hash-
onto-group H?

★ FrodoKEM makes it
easy because it uses
power-of-two
modulus. Simply use
an eXtendable Output
Function (XOF).

★ For ML-KEM we reuse
the rejection sampling
procedure used to
expand ρ into a matrix
A of polynomial
coefficient modulus
3329.

Hpw

H’pw

The CHIC protocol

apk

(c, tag)

(sk, pk) ← KEM.Keygen
(r, M) ← Split(pk)

(s, T) ← m2Fpw(r, M)
apk ← (s, T)

K ← KEM.Decaps(sk, c)
(key, tag’) ← H(pk, apk, c, K, …)

check if tag == tag’

(s, T) ←apk
(r, M) ← m2F-1pw(s, T)
pk ← Split-1(r, M)
(K, c) ← KEM.Encaps(pk)
(key, tag) ← H(pk, apk, c, K, …)

CHIC

Requirements from KEM

CHIC UC-realizes FPAKE [CHK05] in the RO and IC model provided that KEM has the following
properties:

• One-wayness of ciphertexts: OW-CPA, but OW-PCA leads to tighter reduction.

• Anonymity of ciphertexts: ANO-PCA. Actively-secure KEM is necessary.

• Uniformity of public keys: UNI-PK.

Benchmarks

CPA KEM CCA KEM CHIC

Keygen Enc Dec Keygen Enc Dec Start Resp End

Kyber512 25 29 9 45 49 12 70 74 14

Kyber768 28 36 41 49 59 65 75 85 93

Kyber1024 36 56 53 61 87 83 89 123 117

Experimental results in microseconds. Comparison of execution times of CHIC
participants (two initiator stages and responder single stage) with respect to key
exchange using only a CPA or CCA Kyber KEM.

On timing-attacks

Final remarks / future work

• The rejection-sampling of ML-KEM is not constant-time, meaning Keygen is not constant-
time.

• Timing attacks potentially affect any ML-KEM to PAKE compiler, regardless of how we
instantiate the hash onto group H.

• FIPS 203 allows to limit the number of iterations of SampleNTT to 280, with a probability of
failure of 2-261.

• We are exploring how to implement a constant-time Keygen algorithm for ML-KEM and use it
to instantiate the hash-to-group operation.

On IC-256-256

Final remarks / future work

• AES has only been standardized only with a 128-bit block size. However, our proofs requires
avoiding collisions across different block cipher keys. Therefore, we need to instantiate the IC
with a block cipher with 256-bit size blocks and 256-bit length keys.

• To meet this requirement, we used Rijndael-256-256. If AES must be used, domain extenders
can provide a solution [CDMS10].

• NIST is currently considering standardizing Rijndael-256-256 [edu.lu/pdmd3].

http://edu.lu/pdmd3

On quantum adversaries

Final remarks / future work

• The current proof is in the RO and IC model.

• However, a harvest-now-decrypt-later attack is ineffective against CHIC because the
ciphertexts are post-quantum secure.

Thank you for your attention

