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C’est très CHIC:  
A compact password-authenticated 
key exchange from lattice-based KEM



Protocol

PAKE: Password Authenticated Key Exchange

PAKE 
protocol 

keyA = keyB if pwA = pwB 
else keyA, keyB independent 

pwA pwB

keyA keyB

Alice Bob



Timeline
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Real-world adoption of symmetric PAKE protocols
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Real-world attacks
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Towards post-quantum security…
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EKE and OEKE design patterns

apk

c*

(sk, pk) ← KEM.Keygen 
apk ← IC.Enc(pwA, pk) 

c ← IC.Dec(pwA, c*) 
K ← KEM.Decaps(sk, c) 

key ← H(pk, apk, c, K, …)

pk ← IC.Dec(pwB, apk) 
(K, c) ← KEM.Encaps(pk) 
c* ← IC.Enc(pwB, c) 
key ← H(pk, apk, c, K, …)

apk

(c, tag)

(sk,pk) ← KEM.Keygen 
apk ← IC.Enc(pwA, pk) 

 
 

K ← KEM.Decaps(sk, c) 
(key, tag’) ← H(pk, apk, c, K, …) 

check if tag == tag’

pk     ← IC.Dec(pwB, apk) 
(K, c) ← KEM.Encaps(pk) 
(key, tag) ← H(pk, apk, c, K, …)

EKE

OEKE
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Challenges in instantiating IC over groups

• Usually, ideal ciphers are instantiated with block ciphers. 

• But what if we have an IC over a group? 

• The domain of the IC and its instantiation must coincide; otherwise, it becomes trivial for an 
adversary to mount an offline dictionary attack. The attack proceeds as follows: 

1. Intercept apk = IC.Enc(pw, pk). 

2. Decrypt  apk  using a candidate password  pw*. 

3. If pk* = IC.Dec(pw*, apk) does not belong to the public key space, then pw* is incorrect.



ML-KEM public keys

• Sample ρ ∈ {0,1}256 

• A ← Expand(ρ) ∈ Rqk*k 

• t ← A * s + e 

• pk ← (ρ, t)

x + =

A s e t

ρ ∈ {0,1}256 t ∈ Rqk



ML-KEM public keys

• Rq is a ring where the elements are polynomials with coefficients in Zq 

• FIPS 203 specifications set q = 3329 

• 211 < 3329 < 212 

• To encode a single element in Z3329, we need 12 bits

Z3329

Z4096



2-round Feistel [MRR20]

pk ∈ Gr ∈ {0,1}3λ

s T

Hpw

POPF

• Password-encrypt with a 
2-round Feistel (2F). 

• Public key on the right 
wire; random coins on the 
left wire. 

• Ciphertext expands pk. 

• Only one hash onto group 
needed instead of IC over 
the group. 

• Modular approach with 
game-based definition 
POPF. However, 2F permits 
some malleability and 
POPF is insufficient for 
(O)EKE constructions.

H’pw



A modified 2-round Feistel [SGJ23]

pk ∈ Gr ∈ {0,1}2λ

s T

IC

HIC

• Replace XOR operation 
with IC to avoid 
malleability 

• IC over bit strings 

• Modular approach with 
UC definition: Half-Ideal 
Cipher (HIC) 

• Why “half-ideal”? The s-
part is random.

Hpw

H’pw

easy to instantiate



Compact HIC
pk

r ∈ {0,1}*

s T

IC

M ∈ GSplit

• Can we split the public 
and feed both wires of the 
2F?Hpw

H’pw



Compact HIC
pk

r ∈ {0,1}256

s T

IC

t ∈ Rk3329Split • In particular, we are 
interested in the trivial 
breakdown of ML-KEM 
public keys. 

• Compact: avoids 
ciphertext expansion! 

• Effectively, de-randomizes 
HIC.

Hpw

H’pw



Compact HIC
pk

r ∈ {0,1}2λ

s T

IC

M ∈ GλSplit

• In general, (O)EKE 
constructions require 
public keys to be 
uniformly distributed. 

• HIC requires uniform r. 

• We can combine both 
requirements into a single 
definition w.r.t. function 
Split. 

• Experiment UNI-PK: 
(_,pk0) ← Keygen 
(r0, M0) ← Split(pk0) 
(r1, M1) ← {0,1}2λ x Gλ 

b ← {0,1} 
b’ ← A(rb,Mb) 
return b == b’ 

Hpw

H’pw



Compact HIC
pk

r ∈ {0,1}2λ

s T

IC

pkSplit

• The randomized identity 
Split recovers standard 
public key uniformity (also 
know as fuzziness 
[BCP+23]). 

• Leads back to the HIC 
construction [SGJ23].

Hpw

H’pw



Compact HIC
pk

ρ || r ∈ {0,1}2λ

s T

IC

bSplit • FrodoKEM determines 
seed ρ ∈ {0,1}128. 

• A Randomized Split can 
easily extend FrodoKEM 
keys by appending 
random bits to ρ, ensuring 
it reaches the required 
length. 

• This approach requires no 
modifications to 
FrodoKEM.

Hpw

H’pw



HIC

Compact HIC
pk

r ∈ {0,1}*

s T

IC

M ∈ GSplit

• FHIC features honest 
interfaces accessible by 
the environment Z, but no 
control over randomness r 
is provided. 

• Unfortunately, we lose the 
modular HIC abstraction. 

• Solution: Direct proof.

Hpw

H’pw



Compact HIC
pk

r ∈ {0,1}*

s T

IC

M ∈ GSplit

• How to instantiate hash-
onto-group H? 

★ FrodoKEM makes it 
easy because it uses 
power-of-two 
modulus. Simply use 
an eXtendable Output 
Function (XOF). 

★ For ML-KEM we reuse 
the rejection sampling 
procedure used to 
expand ρ into a matrix 
A of polynomial 
coefficient modulus 
3329.

Hpw

H’pw



The CHIC protocol

apk

(c, tag)

(sk, pk) ← KEM.Keygen 
(r, M) ← Split(pk) 

(s, T) ← m2Fpw(r, M) 
apk ← (s, T)  

 
 

K ← KEM.Decaps(sk, c) 
(key, tag’) ← H(pk, apk, c, K, …) 

check if tag == tag’

(s, T) ←apk 
(r, M) ← m2F-1pw(s, T) 
pk ← Split-1(r, M) 
(K, c) ← KEM.Encaps(pk) 
(key, tag) ← H(pk, apk, c, K, …)

CHIC



Requirements from KEM

CHIC UC-realizes FPAKE [CHK05] in the RO and IC model provided that KEM has the following 
properties: 

• One-wayness of ciphertexts: OW-CPA, but OW-PCA leads to tighter reduction. 

• Anonymity of ciphertexts: ANO-PCA. Actively-secure KEM is necessary. 

• Uniformity of public keys: UNI-PK.



Benchmarks

CPA KEM CCA KEM CHIC

Keygen Enc Dec Keygen Enc Dec Start Resp End

Kyber512 25 29 9 45 49 12 70 74 14

Kyber768 28 36 41 49 59 65 75 85 93

Kyber1024 36 56 53 61 87 83 89 123 117

Experimental results in microseconds. Comparison of execution times of CHIC 
participants (two initiator stages and responder single stage) with respect to key 
exchange using only a CPA or CCA Kyber KEM.



On timing-attacks

Final remarks / future work

• The rejection-sampling of ML-KEM is not constant-time, meaning Keygen is not constant-
time. 

• Timing attacks potentially affect any ML-KEM to PAKE compiler, regardless of how we 
instantiate the hash onto group H. 

• FIPS 203 allows to limit the number of iterations of SampleNTT to 280, with a probability of 
failure of 2-261.  

• We are exploring how to implement a constant-time Keygen algorithm for ML-KEM and use it 
to instantiate the hash-to-group operation.



On IC-256-256

Final remarks / future work

• AES has only been standardized only with a 128-bit block size. However, our proofs requires 
avoiding collisions across different block cipher keys. Therefore, we need to instantiate the IC 
with a block cipher with 256-bit size blocks and 256-bit length keys. 

• To meet this requirement, we used Rijndael-256-256. If AES must be used, domain extenders 
can provide a solution [CDMS10]. 

• NIST is currently considering standardizing Rijndael-256-256 [edu.lu/pdmd3].

http://edu.lu/pdmd3


On quantum adversaries 

Final remarks / future work

• The current proof is in the RO and IC model. 

• However, a harvest-now-decrypt-later attack is ineffective against CHIC because the 
ciphertexts are post-quantum secure.



Thank you for your attention


