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Verifiable computation (VC)
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Main VC-HE approach so far
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Verifiable Computation

Efficient if working with:

e Fields
e Algebraic operations

Homomorphic Encryption

Efficient if working with*:

e Huge rings with composite
moduli
Rounding and modular
reductions

* considering ciphertext operations




Cleartext operation
A=35 B =62
A*B = 2170

Linear, algebraic operation
Easy to embed in a Field
Takes 2 bytes of memory
Takes picoseconds

P WN

Homomorphic Operation

A = Encrypt(35) B = Encrypt(62)
A*B = Mod-Switching(
Key-Switching(
Tensor_Multiplication(A,B) ) )

Not algebraic

Efficiency requires
amortization

Takes kilobytes of memory
Takes microseconds
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The first intuition:

Instead of proving HE,
can we HE the proof?




Verifiable Computation

Proof systems typically require:

e Hash functions
e Large fields

Homomorphic Encryption

Most efficient if working with:

e Rings or small fields
e Algebraic operations

* considering plaintext operations




Our approach (HE-IOPs)




The first intuition:

Instead of proving HE,
can we HE the proof?




The first intuition:
Instead of proving HE,
can we HE the proof?

Our method: HE the information
theoretic component of the proof
system




Interactive Oracle Proof (IOP)
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HE Interactive Oracle Proof (HE-IOP)

The result of HE.f( Encrypt(X) )
is some encryption of Y

Challenge

Prover




The result of HE.f( Encrypt(X) )
is some encryption of Y

The proof is about the
underlying plaintext!!
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HE Interactive Oracle Proof (HE-IOP)
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HE-IOPs

e We present a generic reduction from HE-IOP to the underlying IOP
e An adversary against the HE-IOP can be used against the underlying IOP
e Most parameters of the IOP are preserved

e We provide zero-knowledge (*requires circuit privacy)



Why is this better than

“HE the proof”?




Verifiable Computation

Proof systems typically require:

e Hash functions
e Large fields

Homomorphic Encryption

Most efficient if working with:

e Rings or small fields
e Algebraic operations

* considering plaintext operations




Verifiable Computation Homomorphic Encryption

Proof systems typically require: Most efficient if working with:
o—Hash-furetons e Rings or small fields $3
o Largefields $¢ e Algebraic operations ¢/

* considering plaintext operations




In practice




We implement HE-batched-FRI: an HE-IOP version of

(batched) FRI (Fast Reed-Solomon IOP of proximity)



HE-FRI is not only an instance
of an HE-IOP!

FRI is often used to compile
other IOPs!




Practical challenge 1. The field




HE-FRI

Extension field:
F 4| ~ 2%
Il

Efficiently implement it with a
tower of extensions:

F oo | n 220
p

Tensoring:
Each IF 2 component in a

p

different ciphertext




Table 3: Practical parameters for FRI based on the maximum size of the input
polynomial d.

Maximum input size log,(d) | D p log,(p) log,(|F,pl)
15 16 65537 16.0 256.0
20 11 23068673 24.5 269.1
25 9 469762049 28.8 259.3
30 7 75161927681 36.1 252.9
39 T 206158430209 37.6 263.1
40 6 6597069766657  42.6 255.9
45 5 1337006139375617  50.2 251:2

HE schemes:

BGV/BFV VvV FHEW/TFHE V' i CKKS xx



Verifiable Computation Homomorphic Encryption

Proof systems typically require: Most efficient if working with:
eo—Hashfunetions '~ e Rings or small fields ¢/
e Large fields / e Algebraic operations ¢/

* considering plaintext operations




All problems solved?




FRI Homomorphic Encryption

Most efficient if working with:

o—Hash-funetions '/ Rings or small fields ¢/
e Large fields /4 Algebraic operations ¢/
e Deep Small depth

e Requirements for ZK Batched computation

* considering plaintext operations




Practical challenge 2: The depth




Shallow RS Encoding Shallow Folding

e Low-depths NTTs are broadly e Does not change overall
used in HE complexity!

e Depth: from O(log(n)) to 2 e Depth: from O(log(n)) to 1

e Cost: from O(n log n) to O(n+n) e Cost: from O(n) to O(n log n)

Everything is configurable! Cost and depth are trade-offs.
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FRI Homomorphic Encryption

Most efficient if working with:

o—Hash-funetions '/ Rings or small fields ¢/
e Large fields /4 Algebraic operations ¢/
e Deep o/ Small depth 4
e Requirements for ZK Batched computation

* considering plaintext operations




Practical challenge 3: ZK and HE overhead




HE Packing

Plaintext space: R, — F), x F, x --- x T,

Problem - On each check:

e The verifier wants to learn just 2 points (performance)
e The prover doesn’t want the verifier to learn more than 2 points (ZK)

e HE packing provides at least N = 212 points



Repack and (optionally) decompose

Parameter Set | kN  log,(q) Size (bytes) Decryption Cost
Vo 1, 2l 12 8192 5120
By 2 912 95 12288 5632
Vo 1 1024 16384 11264
T 1 512 20430 6656
LBa 2 1024 D2 24576 12288
Bs 1 2048 32768 24576

Solves HE overhead: The verifier can have HE parameters independent of the
circuit (in practice)




HE Packing

Plaintext space: R, — F), x F, x --- x T,

Problem - On each check:

e The verifier wants to learn just 2 points (performance)

e The prover doesn’t want the verifier to learn more than 2 points (ZK)
HE " i ] | PI — 24—2 At
e (repacked) HE packing provides 2 points




FRI Homomorphic Encryption

Most efficient if working with:

o—Hash-funetions '/ Rings or small fields ¢/
e Large fields /4 Algebraic operations ¢/
e Deep o/ Small depth 4
e Requirements for ZK .. Batched computation v

* considering plaintext operations




Results




Results for 4096 batched polynomials

== FRI3 (Prover) == FRI3 (Verifier) FRIO (Prover) == FRIO (Verifier)
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Prover: up to 32 threads - Verifier: single-threaded

Verifier (milliseconds)

For up to 2™":
FRIO (optimized for prover):

e Ptime: 0.2 -5.45s
e V\Vtime: 708 —12.29 ms
e Memory: 0.5-3.7GB

FRI3 (optimized for verifier):

e Ptime:2.74-7898s
e \Vtime:410 —5.61ms
e Memory: 2.0 — 23.7 GB



Implementation

e Batched for 4096 or 8192 polynomials
e Non-interactive (Fiat-Shamir using BLAKE3)
e Python with optimizations in C/CPP

e Publicly available: https://github.com/antoniocgj/HELIOPOLIS

e Artifact accepted: IACR Results Reproduced


https://github.com/antoniocgj/HELIOPOLIS

ga https://eprint.iacr.org/2023/1949

Q https://aithub.com/antoniocqi/HELIOPOLIS
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Images used in this presentation

e User faces: “Plump Interface Duotone Icons” by Streamline, Creative Commons
Attribution 4.0 International, available at
https://iconduck.com/sets/plump-interface-duotone-icons

e Neural network: Creative Commons Attribution-Share Alike 3.0 Unported, by

Cburnett, available at
https://commons.wikimedia.org/wiki/File:Artificial neural network.svg

e FFT illustration: Creative Commons Attribution-ShareAlike 4.0, by Tikz -
Alexandros Tsagkaropoulos, available at https://tikz.net/fft-algorithm-analysis/
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Reed-Solomon encoding

Depth
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Image from: https://tikz.net/fft-algorithm-analysis/, by Tikz - Alexandros Tsagkaropoulos, Creative Commons Attribution-ShareAlike 4.0
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