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Can we have 
both 

HE and VC, 
efficiently? How?
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Main VC-HE approach so far

Prove( HE(       ) )

⚠ Problem: VC and HE are not friendly



Verifiable Computation

Efficient if working with:

● Fields
● Algebraic operations

Homomorphic Encryption

Efficient if working with*:

● Huge rings with composite 
moduli

● Rounding and modular 
reductions

* considering ciphertext operations



Cleartext operation

A = 35                B = 62

A*B = 2170

1. Linear, algebraic operation
2. Easy to embed in a Field
3. Takes 2 bytes of memory
4. Takes picoseconds

Homomorphic Operation

A = Encrypt(35)    B = Encrypt(62)

A*B = Mod-Switching(

Key-Switching(

Tensor_Multiplication(A,B) ) )

1. Not algebraic
2. Efficiency requires 

amortization
3. Takes kilobytes of memory
4. Takes microseconds
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VC-HE so far

Prove(HE( Circuit ) )

⚠ Problem: VC and HE are not friendly

The first intuition:
Instead of proving HE,
can we HE the proof?



Verifiable Computation

Proof systems typically require:

● Hash functions
● Large fields

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations

* considering plaintext operations
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VC-HE so far

⚠ Problem: VC and HE are not friendly

Prove( HE(       ) )

The first intuition:
Instead of proving HE,
can we HE the proof?

Our method: HE the information 
theoretic component of the proof 

system
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HE Interactive Oracle Proof (HE-IOP)

Prover Verifier

Challenge

The result of HE.f( Encrypt(X) ) 
is some encryption of Y

The result of HE.f( Encrypt(X) ) 
is some encryption of Y

Concurrent work: GGW24
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HE-IOPs

● We present a generic reduction from HE-IOP to the underlying IOP

● An adversary against the HE-IOP can be used against the underlying IOP

● Most parameters of the IOP are preserved

● We provide zero-knowledge (*requires circuit privacy)

Why is this better than 
“HE the proof”?
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Verifiable Computation

Proof systems typically require:

● Hash functions
● Large fields

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations

* considering plaintext operations

✔
✔



In practice
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We implement HE-batched-FRI: an HE-IOP version of 

(batched) FRI (Fast Reed-Solomon IOP of proximity)

HE-FRI is not only an instance 
of an HE-IOP!

FRI is often used to compile 
other IOPs!



Practical challenge 1: The field



FRI HE-FRI

● Typically works with: 1. Extension field:

 

2. Efficiently implement it with a 
tower of extensions:

 

3. Tensoring: 
- Each             component in a 

different ciphertext



HE schemes:

BGV/BFV  ✓ ✓                             FHEW/TFHE ✓ ⚠                                        CKKS ❌❌
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Verifiable Computation

Proof systems typically require:

● Hash functions
● Large fields

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations

* considering plaintext operations

✔
✔✔
✔

All problems solved?



FRI

 

● Hash functions
● Large fields
● Deep
● Requirements for ZK

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations
● Small depth
● Batched computation

* considering plaintext operations

✔
✔✔
✔



Practical challenge 2: The depth



Shallow RS Encoding                                    Shallow Folding

● Low-depths NTTs are broadly 

used in HE

● Depth: from O(log(n)) to 2

● Cost: from O(n log n) to O(n√n) 

● Does not change overall 

complexity!

● Depth: from O(log(n)) to 1

● Cost: from O(n) to O(n log n)

Everything is configurable! Cost and depth are trade-offs.





FRI

 

● Hash functions
● Large fields
● Deep
● Requirements for ZK

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations
● Small depth
● Batched computation

* considering plaintext operations

✔
✔✔
✔

✔ ✔



Practical challenge 3: ZK and HE overhead



HE Packing

Plaintext space:

Problem - On each check:

● The verifier wants to learn just 2 points (performance)

● The prover doesn’t want the verifier to learn more than 2 points (ZK)

● HE packing provides at least N = 212 points



Repack and (optionally) decompose

Solves HE overhead: The verifier can have HE parameters independent of the 
circuit (in practice)



HE Packing

Plaintext space:

Problem - On each check:

● The verifier wants to learn just 2 points (performance)

● The prover doesn’t want the verifier to learn more than 2 points (ZK)

● HE packing provides at least N = 212 points

● (repacked) HE packing provides 2 points



FRI

 

● Hash functions
● Large fields
● Deep
● Requirements for ZK

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations
● Small depth
● Batched computation

* considering plaintext operations

✔
✔✔
✔

✔ ✔

✔ ✔



Results



Results for 4096 batched polynomials
For up to 211:

FRI0 (optimized for prover):

● P time: 0.2 – 5.45s
● V time: 7.08 – 12.29 ms
● Memory: 0.5 – 3.7 GB

FRI3 (optimized for verifier):

● P time: 2.74 – 78.98 s
● V time: 4.10 – 5.61 ms
● Memory: 2.0 – 23.7 GBProver: up to 32 threads - Verifier: single-threaded



Implementation

● Batched for 4096 or 8192 polynomials

● Non-interactive (Fiat-Shamir using BLAKE3)

● Python with optimizations in C/CPP

● Publicly available: https://github.com/antoniocgj/HELIOPOLIS 

● Artifact accepted: IACR Results Reproduced

https://github.com/antoniocgj/HELIOPOLIS
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Images used in this presentation

● User faces: “Plump Interface Duotone Icons” by Streamline, Creative Commons 
Attribution 4.0 International, available at 
https://iconduck.com/sets/plump-interface-duotone-icons

 

● Neural network: Creative Commons Attribution-Share Alike 3.0 Unported, by 
Cburnett, available at 
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg

● FFT illustration: Creative Commons Attribution-ShareAlike 4.0, by Tikz - 
Alexandros Tsagkaropoulos,  available at https://tikz.net/fft-algorithm-analysis/ 

https://iconduck.com/sets/plump-interface-duotone-icons
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://tikz.net/fft-algorithm-analysis/
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Reed-Solomon encoding

Image from: https://tikz.net/fft-algorithm-analysis/, by Tikz - Alexandros Tsagkaropoulos,  Creative Commons Attribution-ShareAlike 4.0
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