HELIOPOLIS: Verifiable Computation over Homomorphically Encrypted Data from Interactive Oracle Proofs is Practical

Diego F. Aranha, Anamaria Costache, Antonio Guimarães, Eduardo Soria-Vazquez

Norwegian University of Science and Technology

Context

Homomorphic Encryption (HE) Cloud Input Data Encrypt Code Encrypted Processing **Output Data** Decrypt

Functionally Complete

Secure

• (reasonably) practical

Secure

• Functionally Complete

• (reasonably) practical

Main VC-HE approach so far

Main VC-HE approach so far

Prove(HE(

<u>Problem:</u> VC and HE are not friendly

Verifiable Computation

Efficient if working with:

- Fields
- Algebraic operations

Homomorphic Encryption

Efficient if working with*:

- Huge rings with composite moduli
- Rounding and modular reductions

* considering <u>ciphertext</u> operations

Cleartext operation

A = 35 B = 62

A***B** = **2170**

- 1. Linear, algebraic operation
- 2. Easy to embed in a Field
- 3. Takes 2 bytes of memory
- 4. Takes picoseconds

Homomorphic Operation A = Encrypt(35) B = Encrypt(62) A*B = Mod-Switching(Key-Switching(Tensor_Multiplication(A,B)))

- **1. Not algebraic**
- 2. Efficiency requires amortization
- 3. Takes kilobytes of memory
- 4. Takes microseconds

VC-HE so far

Prove(HE(

<u>Problem:</u> VC and HE are not friendly

<u>Problem:</u> VC and HE are not friendly

Verifiable Computation

Proof systems typically require:

- Hash functions
- Large fields

Homomorphic Encryption

Most efficient if working with:

- Rings or small fields
- Algebraic operations

* considering <u>plaintext</u> operations

Our approach (HE-IOPs)

The first intuition: Instead of proving HE, can we HE the proof?

Dutput

<u>Problem:</u> VC and HE are not friendly

The first intuition: Instead of proving HE, can we HE the proof?

Problem: VC and HE are

Our method: HE the <u>information</u> <u>theoretic component</u> of the proof system

Dutput

$$Y = f(X)$$

HE Interactive Oracle Proof (HE-IOP) The result of HE.f(Encrypt(X)) is some encryption of Y Challenge **Verifier Prover Concurrent work: GGW24** E.f(Encrypt(X)) ryption of Y

HE-IOPs

- We present a **generic reduction** from **HE-IOP** to the underlying **IOP**
- An **adversary** against the **HE-IOP** can be used against the underlying **IOP**
- Most parameters of the **IOP** are preserved
- We provide **zero-knowledge** (*requires circuit privacy)

- We present a
- An adversary
- Most paramet
- We provide **ze**

Why is this better than "HE the proof"?

lying IOP

underlying IOP

Verifiable Computation

Proof systems typically require:

- Hash functions
- Large fields

Homomorphic Encryption

Most efficient if working with:

- Rings or small fields
- Algebraic operations

* considering <u>plaintext</u> operations

Verifiable Computation

Proof systems typically require:

- Hash functions
- Large fields

Homomorphic Encryption

Most efficient if working with:

- Rings or small fields X
- Algebraic operations

* considering plaintext operations

In practice

We implement HE-batched-FRI: an HE-IOP version of

(batched) FRI (Fast Reed-Solomon IOP of proximity)

We imple HE-FRI is not only an instance of an HE-IOP! FRI is often used to compile other IOPs!

Practical challenge 1: The field

FRI

• Typically works with:

$$|\mathbb{F}_p| \approx 2^{256}$$

- 1. Extension field: $|\mathbb{F}_{p^d}| \approx 2^{256}$
- 2. Efficiently implement it with a tower of extensions: $|\mathbb{F}_{p^{2^{2}}} \dots| \approx 2^{256}$
- **3.** Tensoring:
 - Each \mathbb{F}_{p^k} component in a different ciphertext

Table 3: Practical parameters for FRI based on the maximum size of the input polynomial d.

Maximum input size $\log_2(d)$	D	р	$\log_2(p)$	$\log_2(\mathbb{F}_{p^D})$
15	16	65537	16.0	256.0
20	11	23068673	24.5	269.1
25	9	469762049	28.8	259.3
30	7	75161927681	36.1	252.9
35	7	206158430209	37.6	263.1
40	6	6597069766657	42.6	255.5
45	5	1337006139375617	50.2	251.2

HE schemes:

BGV/BFV ✓✓

Verifiable Computation

Proof systems typically require:

- Hash functions
- Large fields

Homomorphic Encryption

Most efficient if working with:

- Rings or small fields
- <u>Algebraic operations</u>

* considering plaintext operations

Verifiable Computation

Proof systems typically require:

Homomorphic Encryption

Most efficient if working with:

Hash function

• Large fields

All problems solved?

aintext operations

Hash functions

- Large fields
- Deep
- **Requirements for ZK**

Homomorphic Encryption

Most efficient if working with:

- Rings or small fields
- <u>Algebraic operations</u>
- Small depth
- Batched computation

* considering <u>plaintext</u> operations

Practical challenge 2: The depth

Shallow RS Encoding

- Low-depths NTTs are broadly used in HE
- Depth: from O(log(n)) to 2
- Cost: from O(n log n) to O(n√n)

Shallow Folding

- **Does not** change overall complexity!
- Depth: from O(log(n)) to 1
- Cost: from O(n) to O(n log n)

Everything is **configurable**! Cost and depth are trade-offs.

Hash functions

- Large fields
- Deep
- Requirements for ZK

Homomorphic Encryption

Most efficient if working with:

- Rings or small fields
- Algebraic operations
- Small depth

Batched computation

* considering <u>plaintext</u> operations

Practical challenge 3: ZK and HE overhead

HE Packing

Plaintext space:
$$\mathcal{R}_p \mapsto \mathbb{F}_p \times \mathbb{F}_p \times \cdots \times \mathbb{F}_p$$

<u>Problem</u> - On each check:

- The verifier **wants** to learn just **2 points** (performance)
- The prover **doesn't want** the verifier to learn more than **2 points** (ZK)
- HE packing provides at least $N = 2^{12}$ points

Repack and (optionally) decompose

Parameter Set	k	Ν	$\log_2(q)$	Size (bytes)	Decryption Cost
\mathfrak{P}_0	1	512	12	8192	5120
\mathfrak{P}_1	2	512	25	12288	5632
\mathfrak{P}_2	1	1024	23	16384	11264
\mathfrak{P}_3	4	512		20480	6656
\mathfrak{P}_4	2	1024	52	24576	12288
\mathfrak{P}_5	1	2048		32768	24576

Solves HE overhead: The verifier can have HE parameters **<u>independent</u>** of the circuit (in practice)

HE Packing

Plaintext space:
$$\mathcal{R}_p \mapsto \mathbb{F}_p \times \mathbb{F}_p \times \cdots \times \mathbb{F}_p$$

<u>Problem</u> - On each check:

- The verifier **wants** to learn just **2 points** (performance)
- The prover **doesn't want** the verifier to learn more than **2 points** (ZK)
- HE packing provides at least N = 2¹² points
- (repacked) HE packing provides **2 points**

sh functi

- Large fields
- Deep
- **Requirements for ZK**

Homomorphic Encryption

Most efficient if working with:

- **Rings or small fields**
- **Algebraic operations**
- **Small depth**

Batched computation 🕑

* considering plaintext operations

Results

Results for 4096 batched polynomials

Prover Time (seconds)

Polynomial Size (Log2)

Prover: up to 32 threads - Verifier: single-threaded

For up to 2^{11} :

Verifier (milliseconds)

FRIO (optimized for prover):

- P time: 0.2 5.45s
- V time: 7.08 12.29 ms
 - Memory: 0.5 3.7 GB

FRI3 (optimized for verifier):

- P time: 2.74 78.98 s
- V time: 4.10 5.61 ms
- Memory: 2.0 23.7 GB

Implementation

- Batched for 4096 or 8192 polynomials
- **Non-interactive** (Fiat-Shamir using BLAKE3)
- **Python** with optimizations in **C/CPP**
- Publicly available: https://github.com/antoniocgj/HELIOPOLIS
- Artifact accepted: IACR Results Reproduced

Thank you!

We would like to thank Zvika Brakerski for comments about our repacking optimization for the HE-Batched-FRI protocol. We also want to thank Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan Tiwari and Michał Zajac for a useful conversation about their work [BGK+23] and confirming that their analysis does not require finite fields to be prime. This work was partly done while A. Guimarães was a Ph.D. student at University of Campinas, Brazil. He was supported by the São Paulo Research Foundation under grants 2013/082937, 2019/12783-6, and 2021/09849-5. This work is partially funded by the European Union (GA 101096435). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Images used in this presentation

 User faces: "Plump Interface Duotone Icons" by Streamline, Creative Commons Attribution 4.0 International, available at <u>https://iconduck.com/sets/plump-interface-duotone-icons</u>

 Neural network: Creative Commons Attribution-Share Alike 3.0 Unported, by Cburnett, available at <u>https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg</u>

• FFT illustration: Creative Commons Attribution-ShareAlike 4.0, by Tikz - Alexandros Tsagkaropoulos, available at <u>https://tikz.net/fft-algorithm-analysis/</u>

FRI Folding

Reed-Solomon encoding

Image from: https://tikz.net/fft-algorithm-analysis/, by Tikz - Alexandros Tsagkaropoulos, Creative Commons Attribution-ShareAlike 4.0

