
HELIOPOLIS: Verifiable Computation
over Homomorphically Encrypted
Data from Interactive Oracle Proofs
is Practical

Diego F. Aranha, Anamaria Costache, Antonio Guimarães, Eduardo Soria-Vazquez

Context

Cloud Computing

Input Data

Code

Output Data

Processing

Cloud 😇

Cloud Computing

Input Data

Code

Output Data

Processing

Cloud 😈

Sensitive information?

Cloud Computing

Input Data

Code

Output Data

Processing

Cloud 😈

Sensitive information?

Can we encrypt
everything?

Homomorphic Encryption (HE)

Input Data

Code

Output Data

Encrypted
Processing

Cloud
Encrypt

Decrypt

● Secure ● Functionally Complete ● (reasonably) practical

Homomorphic Encryption (HE)

Input Data

Output Data

Encrypted
Processing

Cloud
Encrypt

Decrypt

● Secure ● Functionally Complete ● (reasonably) practical

Code

Homomorphic Encryption (HE)

Input Data

Output Data

Encrypted
Processing

Cloud
Encrypt

Decrypt

● Secure ● Functionally Complete ● (reasonably) practical

Code

Homomorphic Encryption (HE)

Input Data

Output Data

Encrypted
Processing

Encrypt

Decrypt

● Secure ● Functionally Complete ● (reasonably) practical

Code

Cloud 😇

Homomorphic Encryption (HE)

Input Data

Output Data

Encrypted
Processing

Encrypt

Decrypt

● Secure ● Functionally Complete ● (reasonably) practical

Code

CloudCloud 😈

😈😈

Homomorphic Encryption (HE)

Input Data

Output Data

Encrypted
Processing

Encrypt

Decrypt

● Secure ● Functionally Complete ● (reasonably) practical

Code

CloudCloud 😈

😈😈

Can we verify
the

computation?

Verifiable computation (VC)

Input Data

Code

Output Data

Processing

Cloud

● Sound ● Functionally Complete ● (reasonably) practical

Proof

Proves

Output Data = Code(Input Data)

Verifiable computation (VC)

Input Data

Code

Output Data

Processing

Cloud

● Sound ● Functionally Complete ● (reasonably) practical

Proof

Proves

Output Data = Code(Input Data)

Can we have
both

HE and VC?

Verifiable computation (VC)

Input Data

Code

Output Data

Processing

Cloud

● Sound ● Functionally Complete ● (reasonably) practical

Proof

Proves

Output Data = Code(Input Data)

Can we have
both

HE and VC,
efficiently? How?

Main VC-HE approach so far

Main VC-HE approach so far

Prove(HE())

⚠ Problem: VC and HE are not friendly

Verifiable Computation

Efficient if working with:

● Fields
● Algebraic operations

Homomorphic Encryption

Efficient if working with*:

● Huge rings with composite
moduli

● Rounding and modular
reductions

* considering ciphertext operations

Cleartext operation

A = 35 B = 62

A*B = 2170

1. Linear, algebraic operation
2. Easy to embed in a Field
3. Takes 2 bytes of memory
4. Takes picoseconds

Homomorphic Operation

A = Encrypt(35) B = Encrypt(62)

A*B = Mod-Switching(

Key-Switching(

Tensor_Multiplication(A,B)))

1. Not algebraic
2. Efficiency requires

amortization
3. Takes kilobytes of memory
4. Takes microseconds

VC-HE so far

Prove(HE())

⚠ Problem: VC and HE are not friendly

VC-HE so far

Prove(HE(Circuit))

⚠ Problem: VC and HE are not friendly

The first intuition:
Instead of proving HE,
can we HE the proof?

Verifiable Computation

Proof systems typically require:

● Hash functions
● Large fields

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations

* considering plaintext operations

Our approach (HE-IOPs)

VC-HE so far

⚠ Problem: VC and HE are not friendly

Prove(HE())

The first intuition:
Instead of proving HE,
can we HE the proof?

VC-HE so far

⚠ Problem: VC and HE are not friendly

Prove(HE())

The first intuition:
Instead of proving HE,
can we HE the proof?

Our method: HE the information
theoretic component of the proof

system

Interactive Oracle Proof (IOP)

Prover Verifier

Y = f(X)

Interactive Oracle Proof (IOP)

Prover Verifier

Y = f(X)

Challenge

Interactive Oracle Proof (IOP)

Prover Verifier

Y = f(X)

Challenge

Oracle

Interactive Oracle Proof (IOP)

Prover Verifier

Y = f(X)

Challenge

Oracle Check

Interactive Oracle Proof (IOP)

Prover Verifier

Y = f(X)

Challenge

Y = f(X)

HE Interactive Oracle Proof (HE-IOP)

Prover Verifier

Challenge

The result of HE.f(Encrypt(X))
is some encryption of Y

HE Interactive Oracle Proof (HE-IOP)

Prover Verifier

Challenge

The result of HE.f(Encrypt(X))
is some encryption of Y

The proof is about the
underlying plaintext!!

HE Interactive Oracle Proof (HE-IOP)

Prover Verifier

Challenge

The result of HE.f(Encrypt(X))
is some encryption of Y

HE Interactive Oracle Proof (HE-IOP)

Prover Verifier

Challenge

The result of HE.f(Encrypt(X))
is some encryption of Y

Encrypted Oracle

HE Interactive Oracle Proof (HE-IOP)

Prover Verifier

Challenge

The result of HE.f(Encrypt(X))
is some encryption of Y

Encrypted Oracle Decrypt
&

Check

HE Interactive Oracle Proof (HE-IOP)

Prover Verifier

Challenge

The result of HE.f(Encrypt(X))
is some encryption of Y

The result of HE.f(Encrypt(X))
is some encryption of Y

HE Interactive Oracle Proof (HE-IOP)

Prover Verifier

Challenge

The result of HE.f(Encrypt(X))
is some encryption of Y

The result of HE.f(Encrypt(X))
is some encryption of Y

Concurrent work: GGW24

HE-IOPs

● We present a generic reduction from HE-IOP to the underlying IOP

● An adversary against the HE-IOP can be used against the underlying IOP

● Most parameters of the IOP are preserved

● We provide zero-knowledge (*requires circuit privacy)

HE-IOPs

● We present a generic reduction from HE-IOP to the underlying IOP

● An adversary against the HE-IOP can be used against the underlying IOP

● Most parameters of the IOP are preserved

● We provide zero-knowledge (*requires circuit privacy)

Why is this better than
“HE the proof”?

Verifiable Computation

Proof systems typically require:

● Hash functions
● Large fields

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations

* considering plaintext operations

Verifiable Computation

Proof systems typically require:

● Hash functions
● Large fields

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations

* considering plaintext operations

✔
✔

In practice

We implement HE-batched-FRI: an HE-IOP version of

(batched) FRI (Fast Reed-Solomon IOP of proximity)

We implement HE-batched-FRI: an HE-IOP version of

(batched) FRI (Fast Reed-Solomon IOP of proximity)

HE-FRI is not only an instance
of an HE-IOP!

FRI is often used to compile
other IOPs!

Practical challenge 1: The field

FRI HE-FRI

● Typically works with: 1. Extension field:

2. Efficiently implement it with a
tower of extensions:

3. Tensoring:
- Each component in a

different ciphertext

HE schemes:

BGV/BFV ✓ ✓ FHEW/TFHE ✓ ⚠ CKKS ❌❌

Verifiable Computation

Proof systems typically require:

● Hash functions
● Large fields

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations

* considering plaintext operations

✔
✔✔
✔

Verifiable Computation

Proof systems typically require:

● Hash functions
● Large fields

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations

* considering plaintext operations

✔
✔✔
✔

All problems solved?

FRI

● Hash functions
● Large fields
● Deep
● Requirements for ZK

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations
● Small depth
● Batched computation

* considering plaintext operations

✔
✔✔
✔

Practical challenge 2: The depth

Shallow RS Encoding Shallow Folding

● Low-depths NTTs are broadly

used in HE

● Depth: from O(log(n)) to 2

● Cost: from O(n log n) to O(n√n)

● Does not change overall

complexity!

● Depth: from O(log(n)) to 1

● Cost: from O(n) to O(n log n)

Everything is configurable! Cost and depth are trade-offs.

FRI

● Hash functions
● Large fields
● Deep
● Requirements for ZK

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations
● Small depth
● Batched computation

* considering plaintext operations

✔
✔✔
✔

✔ ✔

Practical challenge 3: ZK and HE overhead

HE Packing

Plaintext space:

Problem - On each check:

● The verifier wants to learn just 2 points (performance)

● The prover doesn’t want the verifier to learn more than 2 points (ZK)

● HE packing provides at least N = 212 points

Repack and (optionally) decompose

Solves HE overhead: The verifier can have HE parameters independent of the
circuit (in practice)

HE Packing

Plaintext space:

Problem - On each check:

● The verifier wants to learn just 2 points (performance)

● The prover doesn’t want the verifier to learn more than 2 points (ZK)

● HE packing provides at least N = 212 points

● (repacked) HE packing provides 2 points

FRI

● Hash functions
● Large fields
● Deep
● Requirements for ZK

Homomorphic Encryption

Most efficient if working with:

● Rings or small fields
● Algebraic operations
● Small depth
● Batched computation

* considering plaintext operations

✔
✔✔
✔

✔ ✔

✔ ✔

Results

Results for 4096 batched polynomials
For up to 211:

FRI0 (optimized for prover):

● P time: 0.2 – 5.45s
● V time: 7.08 – 12.29 ms
● Memory: 0.5 – 3.7 GB

FRI3 (optimized for verifier):

● P time: 2.74 – 78.98 s
● V time: 4.10 – 5.61 ms
● Memory: 2.0 – 23.7 GBProver: up to 32 threads - Verifier: single-threaded

Implementation

● Batched for 4096 or 8192 polynomials

● Non-interactive (Fiat-Shamir using BLAKE3)

● Python with optimizations in C/CPP

● Publicly available: https://github.com/antoniocgj/HELIOPOLIS

● Artifact accepted: IACR Results Reproduced

https://github.com/antoniocgj/HELIOPOLIS

Thank you!

We would like to thank Zvika Brakerski for comments about our repacking optimization for the HE-Batched-FRI protocol. We also want to thank Alexander R. Block, Albert
Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan Tiwari and Michał Zajac for a useful conversation about their work [BGK+23] and confirming that their analysis does not
require finite fields to be prime. This work was partly done while A. Guimarães was a Ph.D. student at University of Campinas, Brazil. He was supported by the São Paulo
Research Foundation under grants 2013/082937, 2019/12783-6, and 2021/09849-5. This work is partially funded by the European Union (GA 101096435). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor
the European Commission can be held responsible for them.

https://github.com/antoniocgj/HELIOPOLIS

https://eprint.iacr.org/2023/1949

http://github.com/antoniocgj/HELIOPOLIS
https://eprint.iacr.org/2023/1949

Images used in this presentation

● User faces: “Plump Interface Duotone Icons” by Streamline, Creative Commons
Attribution 4.0 International, available at
https://iconduck.com/sets/plump-interface-duotone-icons

● Neural network: Creative Commons Attribution-Share Alike 3.0 Unported, by
Cburnett, available at
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg

● FFT illustration: Creative Commons Attribution-ShareAlike 4.0, by Tikz -
Alexandros Tsagkaropoulos, available at https://tikz.net/fft-algorithm-analysis/

https://iconduck.com/sets/plump-interface-duotone-icons
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://tikz.net/fft-algorithm-analysis/

FRI Folding

…

D
ep

th

Reed-Solomon encoding

Image from: https://tikz.net/fft-algorithm-analysis/, by Tikz - Alexandros Tsagkaropoulos, Creative Commons Attribution-ShareAlike 4.0

D
ep

th

https://tikz.net/fft-algorithm-analysis/

FRI

Proof System

Execution
Trace

Arithmetization
FRIPolynomials

Circuit
+

Input
Proof

