HELIOPOLIS: Verifiable Computation
over Homomorphically Encrypted
Data from Interactive Oracle Proofs
is Practical

Diego F. Aranha, Anamaria Costache, Antonio Guimaraes, Eduardo Soria-Vazquez

/\I aarius @ NTNU ﬁvﬁtﬂea TDESBCS@%%V

orwegian University of Institute
UNIVERSITY SNciencegandUTechnotl)égy SOftwa re

Context

Cloud Computing

Input Data
Code

Output Data

Cloud Computing

Input Data

Code &

e o Sensitive information?

v

- Output Data

Clou
Can we encrypt

everything?

Sensitive information?

e

Output Data

Homomorphic Encryption (HE)

Input Data a

Encrypt
Code

)

Decrypt

S tpUt Data

e Secure e Functionally Complete e (reasonably) practical

Homomorphic Encryption (HE)

Input Data _ a

=ncrypt

N~
=)

Decrypt

Code

Output Data

e Secure e Functionally Complete e (reasonably) practical

Hidden Hidden

Output Output

Hidden Hidden

Output Output

Fiom Can we verify

the
computation?

_practical

Verifiable computation (VC)

Input Data
Code

tput Data

Proof _

e Sound e Functionally Complete e (reasonably) practical
D

Can we have
both
HE and VC?

Can we have
both
HE and VC,

efficiently? How?

Main VC-HE approach so far

Main VC-HE approach so far

Hidden

L]
N

Prove (HI

I\ Problem: VC and HE are not friendly

Verifiable Computation

Efficient if working with:

e Fields
e Algebraic operations

Homomorphic Encryption

Efficient if working with*:

e Huge rings with composite
moduli
Rounding and modular
reductions

* considering ciphertext operations

Cleartext operation
A=35 B =62
A*B = 2170

Linear, algebraic operation
Easy to embed in a Field
Takes 2 bytes of memory
Takes picoseconds

P WN

Homomorphic Operation

A = Encrypt(35) B = Encrypt(62)
A*B = Mod-Switching(
Key-Switching(
Tensor_Multiplication(A,B)))

Not algebraic

Efficiency requires
amortization

Takes kilobytes of memory
Takes microseconds

VC-HE so far

Prove (HE (

I\ Problem: VC and HE are not friendly

The first intuition:

Instead of proving HE,
can we HE the proof?

Verifiable Computation

Proof systems typically require:

e Hash functions
e Large fields

Homomorphic Encryption

Most efficient if working with:

e Rings or small fields
e Algebraic operations

* considering plaintext operations

Our approach (HE-IOPs)

The first intuition:

Instead of proving HE,
can we HE the proof?

The first intuition:
Instead of proving HE,
can we HE the proof?

Our method: HE the information
theoretic component of the proof
system

Interactive Oracle Proof (IOP)

R

Prover

Interactive Oracle Proof (IOP)

R

Challenge

Prover

Interactive Oracle Proof (IOP)

R

Challenge

-

—> | | [111]7]]

Oracle

Prover

Interactive Oracle Proof (IOP)

R

Challenge
¢
— [T 111G
Oracle Check

Prover

Interactive Oracle Proof (IOP)

R

< Challenge
— [T 111G
¢

Brovet [T TI 111111
¢
— [T 111G

HE Interactive Oracle Proof (HE-IOP)

The result of HE.f(Encrypt(X))
is some encryption of Y

Challenge

Prover

The result of HE.f(Encrypt(X))
is some encryption of Y

The proof is about the
underlying plaintext!!

HE Interactive Oracle Proof (HE-IOP)

The result of HE.f(Encrypt(X))
is some encryption of Y

Challenge

Prover

HE Interactive Oracle Proof (HE-IOP)

The result of HE.f(Encrypt(X))
is some encryption of Y

Challenge
¢

—> | 1 [111]1]]

Encrypted Oracle

Prover

HE Interactive Oracle Proof (HE-IOP)

[The result of HE.f(Encrypt(X)) }

is some encryption of Y

Challenge
-
— [T 111G
Encrypted Oracle Decrypt
Prover &
Check

HE Interactive Oracle Proof (HE-IOP)

Prover

The result of HE.f(Encrypt(X))
is some encryption of Y

Challenge

HE Interactive Oracle Proof (HE-IOP)

Prover

The result of HE.f(Encrypt(X))
is some encryption of Y

Challenge
¢
— 11111111
¢

:

I G

Concurrent work: GGW24 -

HE-IOPs

e We present a generic reduction from HE-IOP to the underlying IOP
e An adversary against the HE-IOP can be used against the underlying IOP
e Most parameters of the IOP are preserved

e We provide zero-knowledge (*requires circuit privacy)

Why is this better than

“HE the proof”?

Verifiable Computation

Proof systems typically require:

e Hash functions
e Large fields

Homomorphic Encryption

Most efficient if working with:

e Rings or small fields
e Algebraic operations

* considering plaintext operations

Verifiable Computation Homomorphic Encryption

Proof systems typically require: Most efficient if working with:
o—Hash-furetons e Rings or small fields $3
o Largefields $¢ e Algebraic operations ¢/

* considering plaintext operations

In practice

We implement HE-batched-FRI: an HE-IOP version of

(batched) FRI (Fast Reed-Solomon IOP of proximity)

HE-FRI is not only an instance
of an HE-IOP!

FRI is often used to compile
other IOPs!

Practical challenge 1. The field

HE-FRI

Extension field:
F 4| ~ 2%
Il

Efficiently implement it with a
tower of extensions:

F oo | n 220
p

Tensoring:
Each IF 2 component in a

p

different ciphertext

Table 3: Practical parameters for FRI based on the maximum size of the input
polynomial d.

Maximum input size log,(d) | D p log,(p) log,(|F,pl)
15 16 65537 16.0 256.0
20 11 23068673 24.5 269.1
25 9 469762049 28.8 259.3
30 7 75161927681 36.1 252.9
39 T 206158430209 37.6 263.1
40 6 6597069766657 42.6 255.9
45 5 1337006139375617 50.2 251:2

HE schemes:

BGV/BFV VvV FHEW/TFHE V' i CKKS xx

Verifiable Computation Homomorphic Encryption

Proof systems typically require: Most efficient if working with:
eo—Hashfunetions '~ e Rings or small fields ¢/
e Large fields / e Algebraic operations ¢/

* considering plaintext operations

All problems solved?

FRI Homomorphic Encryption

Most efficient if working with:

o—Hash-funetions '/ Rings or small fields ¢/
e Large fields /4 Algebraic operations ¢/
e Deep Small depth

e Requirements for ZK Batched computation

* considering plaintext operations

Practical challenge 2: The depth

Shallow RS Encoding Shallow Folding

e Low-depths NTTs are broadly e Does not change overall
used in HE complexity!

e Depth: from O(log(n)) to 2 e Depth: from O(log(n)) to 1

e Cost: from O(n log n) to O(n+n) e Cost: from O(n) to O(n log n)

Everything is configurable! Cost and depth are trade-offs.

» 108

T
—_
S

\]

1
—_
[a=)

(o2}

1
—_
S

S}

—— Number of Operations
- Expected cost
108 -
]‘07 - 1 I 1 I 1 I 1 1 1 1
2 4 6 8 10 12 14 16 18 20
Depth Polynomial size (log,)
(a) NTT for an input of size 2'® (b) Optimal expected cost

Expected cost

FRI Homomorphic Encryption

Most efficient if working with:

o—Hash-funetions '/ Rings or small fields ¢/
e Large fields /4 Algebraic operations ¢/
e Deep o/ Small depth 4
e Requirements for ZK Batched computation

* considering plaintext operations

Practical challenge 3: ZK and HE overhead

HE Packing

Plaintext space: R, — F), x F, x --- x T,

Problem - On each check:

e The verifier wants to learn just 2 points (performance)
e The prover doesn’t want the verifier to learn more than 2 points (ZK)

e HE packing provides at least N = 212 points

Repack and (optionally) decompose

Parameter Set | kN log,(q) Size (bytes) Decryption Cost
Vo 1, 2l 12 8192 5120
By 2 912 95 12288 5632
Vo 1 1024 16384 11264
T 1 512 20430 6656
LBa 2 1024 D2 24576 12288
Bs 1 2048 32768 24576

Solves HE overhead: The verifier can have HE parameters independent of the
circuit (in practice)

HE Packing

Plaintext space: R, — F), x F, x --- x T,

Problem - On each check:

e The verifier wants to learn just 2 points (performance)

e The prover doesn’t want the verifier to learn more than 2 points (ZK)
HE " i] | PI — 24—2 At
e (repacked) HE packing provides 2 points

FRI Homomorphic Encryption

Most efficient if working with:

o—Hash-funetions '/ Rings or small fields ¢/
e Large fields /4 Algebraic operations ¢/
e Deep o/ Small depth 4
e Requirements for ZK .. Batched computation v

* considering plaintext operations

Results

Results for 4096 batched polynomials

== FRI3 (Prover) == FRI3 (Verifier) FRIO (Prover) == FRIO (Verifier)
1000
20
100

10 10

Prover Time (seconds)

1 6

/ |
0.1

6 8 10 12 14

Polynomial Size (Log2)

Prover: up to 32 threads - Verifier: single-threaded

Verifier (milliseconds)

For up to 2™":
FRIO (optimized for prover):

e Ptime: 0.2 -5.45s
e V\Vtime: 708 —12.29 ms
e Memory: 0.5-3.7GB

FRI3 (optimized for verifier):

e Ptime:2.74-7898s
e \Vtime:410 —5.61ms
e Memory: 2.0 — 23.7 GB

Implementation

e Batched for 4096 or 8192 polynomials
e Non-interactive (Fiat-Shamir using BLAKE3)
e Python with optimizations in C/CPP

e Publicly available: https://github.com/antoniocgj/HELIOPOLIS

e Artifact accepted: IACR Results Reproduced

https://github.com/antoniocgj/HELIOPOLIS

ga https://eprint.iacr.org/2023/1949

Q https://aithub.com/antoniocqi/HELIOPOLIS

Thank you!

-|nst|tut
/ arrus BNTNU miidea T) beves
e U EC I e tware

We would like to thank Zvika Brakerski for comments about our repacking optimization for the HE-Batched-FRI protocol. We also want to thank Alexander R. Block, Albert
Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan Tiwari and Michat Zajac for a useful conversation about their work [BGK+23] and confirming that their analysis does not
require finite fields to be prime. This work was partly done while A. Guimardes was a Ph.D. student at University of Campinas, Brazil. He was supported by the Sdo Paulo
Research Foundation under grants 2013/082937, 2019/12783-6, and 2021/09849-5. This work is partially funded by the European Union (GA 101096435). Views and opinions

expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor
the European Commission can be held responsible for them.

http://github.com/antoniocgj/HELIOPOLIS
https://eprint.iacr.org/2023/1949

Images used in this presentation

e User faces: “Plump Interface Duotone Icons” by Streamline, Creative Commons
Attribution 4.0 International, available at
https://iconduck.com/sets/plump-interface-duotone-icons

e Neural network: Creative Commons Attribution-Share Alike 3.0 Unported, by

Cburnett, available at
https://commons.wikimedia.org/wiki/File:Artificial neural network.svg

e FFT illustration: Creative Commons Attribution-ShareAlike 4.0, by Tikz -
Alexandros Tsagkaropoulos, available at https://tikz.net/fft-algorithm-analysis/

https://iconduck.com/sets/plump-interface-duotone-icons
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://tikz.net/fft-algorithm-analysis/

Depth

FRI Folding

0
f() = [Uoﬂ)hU27U37U47057716,U7,Us,Ug,’1110,’1)11,?112,?)13,?)14,?)15]

1 1 1 1 1 1 .1 1
f() [UOaU1>”2»U3>U4>U57U67U7]

f(2) [’UO,UD’U%,’U%]
I
f(g) [UOa U1]

Reed-Solomon encoding

Depth

apg a1 a2 as3 a4 a5 ag ary

N

ap a2 a4 G

ZN

ap Qa4

a

/)

4

ap az as ar

az GQag ap as

ZN

az ar

a

ANAY

6 a

5

a

/)

7

Image from: https://tikz.net/fft-algorithm-analysis/, by Tikz - Alexandros Tsagkaropoulos, Creative Commons Attribution-ShareAlike 4.0

https://tikz.net/fft-algorithm-analysis/

FRI

Arithmetization
: 2 Polynomials FRI
-
Trace

