

RoK, Paper, SISsors Toolkit for Lattice-based Succinct Arguments

Michael Klooß^{1,2}, Russell W. F. Lai¹, Ngoc Khanh Nguyen², and Michael Osadnik¹

- ¹ Aalto University, Espoo, Finland
- ² ETH Zurich, Switzerland
- ³ King's College London, United Kingdom

3.12.2024

Lattice-Based Argument Systems

Goal: prove knowledge of vector u such that

$$\mathbf{A} \cdot \mathbf{u} = \mathbf{v} \mod q \qquad 0 \le ||\mathbf{u}|| \le \beta$$

Various objectives:

Witness privacy

Communication succintness

Verifier runtime succintness

Lattice-Based Argument Systems (and polynomial commitments)

Folding-based protocols

High level idea:

Turn "big" relation into a "smaller" one, verifiable succinctly in plain.

Problem:

The relation proved is "degraded", i.e. too weak in many applications.

To be more precise, we need some background knowledge...

A!

Reduction of Knowledge – definition

Reduction of Knowledge (RoK) is a pair of algorithms P and V turning a relation from Ξ_0 to Ξ_1 :

- RoK is <u>correct</u> from \mathcal{E}_0 to \mathcal{E}_1 if reduces the correct input statement $\operatorname{stmt}_0 \in \mathcal{E}_0$ to $\operatorname{stmt}_1 \in \mathcal{E}_1$.
- RoK is <u>relaxed knowledge sound</u> from \mathcal{E}_0^{KS} to \mathcal{E}_1^{KS} if there exists an efficient extractor. (extractor is an algorithm to "recover" the witness to \mathcal{E}_0^{KS} from \mathcal{E}_1^{KS} by "interacting" with the prover.)

Traditionally, the properties correspond to correctness and extractability of an argument system.

Folding-based protocol are viewed as a series of RoKs.

A!

Issues: knowledge and soudness gaps

Example: proving SIS relation with [CLM23]

Issues: knowledge and soudness gaps

norm of the witness

Consequence:

Instead of proving \mathcal{E}_0 , we prove only a relaxed variant \mathcal{E}_0^{KS} with weaker norm guarantee.

Hence, \mathcal{E}_0^{KS} needs to be also "meaningful", e.g. hard, which impacts drastically the parameters selection.

Can we design a series of RoKs eliminating <u>correctness</u> and <u>knowledge</u> gaps?

Contributions.

Topic of this presentation

We present:

- Lattice-based series of RoKs with no correctness and soundness gap.
- New tools and techniques for lattice RoKs:
 - new subtractive sets
 - new inner-product embedding techniques
 - succinct consistency proof of CRT transform.

Principal relation Ξ

Principal relation Ξ

Furthermore,

$$\mathbf{A} \in \mathcal{R}_q^{m \times n}$$

$$= \begin{pmatrix} \left(a_0^{(0)} & a_1^{(0)}\right) \otimes \widetilde{\mathbf{A}}^{(0)} \\ \left(a_0^{(1)} & a_1^{(1)}\right) \otimes \widetilde{\mathbf{A}}^{(1)} \\ \dots \end{pmatrix} \text{ is "structured", i.e. is row-tensor.}$$

Four RoKs "Almost" folklore construction for reducing the witness size for structured relation. Fold Split Norm-check Decomp

Standard decomposition with a radix, i.e. shink of the witness norm in the "correctness" direction.

Intermediate opening to the norm of the witness acting as an "upgrade" of the norm in the "knowledge soundness" direction

Combining RoKs

Norm-check

Decomp

Split

Fold

t times

Combining RoKs

Norm of the witness

Split

RoK reduces \mathcal{E}_0 to \mathcal{E}_1 , rearranging the witness into smaller in height, but wider.

Split

RoK reduces Ξ_0 to Ξ_1 , rearranging the witness into smaller in height, but wider.

Correctness and knowledge soundness immediate – rearranging of the witness.

Fold

RoK reduces \mathcal{E}_0 to \mathcal{E}_1 , combing the $r_{\rm in}$ columns of the witness into $r_{\rm out}$ columns.

Fold

RoK reduces Ξ_0 to Ξ_1 , combing the $r_{\rm in}$ columns of the witness into $r_{\rm out}$ columns.

A!

Fold

RoK reduces Ξ_0 to Ξ_1 , combing the $r_{\rm in}$ columns of the witness into $r_{\rm out}$ columns.

Correctness and knowledge soundness due to folklore results – similar to [CLM23]

Decomp

RoK reduces Ξ_0 to Ξ_1 , decomposing the witness, reducing its norm, but increasing its width.

Example: radix b = 2,
$$\mathcal{R}_q = \mathbb{Z}_q$$

$$\begin{pmatrix} 7 & 6 \\ 5 & 1 \end{pmatrix} \rightarrow 4 \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Decomp

RoK reduces Ξ_0 to Ξ_1 , decomposing the witness, reducing its norm, but increasing its width.

$${\it \Xi}_0 \ {f A} \cdot {f W} = {f Y}$$

Decomp is correct and knowledge sound and reduces the norm of the witness.

RoK reduces Ξ_0 to Ξ_1 such that Ξ_0^{KS} has a better norm guarantee than Ξ_1^{KS}

Fact: $\langle \mathbf{w}, \mathbf{w} \rangle \approx ||\mathbf{w}||_2^2$

Idea: give the opening to the inner product.

inner-product 2-norm squared

(assume the witness to \mathcal{E}_0 is a vector, i.e. single column matrix)

Step 1: compute "convoluted" witness and append horizontally

RoK reduces Ξ_0 to Ξ_1 such that Ξ_0^{KS} has a better norm guarantee than Ξ_1^{KS}

Step 1: compute "convoluted" witness and append horizontally

$$\mathsf{L}_{\mathbf{w}}(X) = \sum_{i \in [m]} w_i \cdot X^{i-1}$$

$$\mathsf{L}_{\mathbf{w}}(X) \cdot \mathsf{L}_{\mathbf{w}}(X^{-1}) = \sum_{i \in [1,m]} w_i X^i \cdot \sum_{i \in [1,m]} w_i X^{-i} = \sum_{i,j \in [1,m]} w_i w_j X^{i-j} = \begin{cases} \sum_{i,j \in [1,m]} w_i w_j X^{i-j} + \langle \mathbf{w}, \mathbf{w} \rangle \\ \sum_{i \neq j} \sum_{i \in [-m+1,m-1]} v^i X^i \end{cases}$$

$$\mathbf{v}^{(R)} = \mathbf{v}^{(L)}$$

$$\mathcal{P}$$
 $\widetilde{\mathbf{Y}} := \mathbf{A} \cdot (\mathbf{w} \ \mathbf{v}^{(R)})$

RoK reduces Ξ_0 to Ξ_1 such that Ξ_0^{KS} has a better norm guarantee than Ξ_1^{KS}

Step 2: The verifier chooses a challenge ξ and sends to the prover.

RoK reduces \mathcal{E}_0 to \mathcal{E}_1 such that \mathcal{E}_0^{KS} has a better norm guarantee than \mathcal{E}_1^{KS}

Step 3: Verifier checks statements about the right-hand side

$$\begin{vmatrix}
\begin{pmatrix} \mathbf{Y} \\ c_{\mathbf{w}} & c_{\mathbf{v}}^{(R)} \\ c_{\mathbf{v}}^{\vee} & c_{\mathbf{v}}^{(L)} \\ - & v_0
\end{pmatrix} := \begin{pmatrix}
\xi & \xi^2 & \xi^3 & \dots & \xi^m \\ \xi^{-1} & \xi^{-2} & \xi^{-3} & \dots & \xi^{-m} \\ 1 & 0 & 0 & \dots & 0
\end{pmatrix} \cdot (\mathbf{w} \quad \mathbf{v}^{(R)})$$

$$\widehat{\mathbf{Y}} \qquad \widehat{\mathbf{A}}$$

$$c_{\mathbf{w}} \cdot c_{\mathbf{w}}^{\vee} \stackrel{?}{=} c_{\mathbf{v}}^{(R)} + c_{\mathbf{v}}^{(L)} - v_0$$
$$v_0 \le \mu^2 \quad \mu - \text{norm claim}$$

Step 4: Final relation

$$\widehat{\mathbf{A}} \cdot (\mathbf{x} \quad \mathbf{v}^{(R)}) = \widehat{\mathbf{Y}}$$

RoK reduces \mathcal{E}_0 to \mathcal{E}_1 such that \mathcal{E}_0^{KS} has a better norm guarantee than \mathcal{E}_1^{KS}

$$c_{\mathbf{w}} \cdot c_{\mathbf{w}}^{\vee} \stackrel{?}{=} c_{\mathbf{v}}^{(R)} + c_{\mathbf{v}}^{(L)} - v_0$$
$$v_0 \le \mu^2 \quad \mu - \text{norm claim}$$

$$\begin{pmatrix} \widetilde{\mathbf{Y}} \\ c_{\mathbf{w}} & c_{\mathbf{v}}^{(R)} \\ c_{\mathbf{w}}^{\vee} & c_{\mathbf{v}}^{(L)} \\ - & v_0 \end{pmatrix} := \begin{pmatrix} \xi & \xi^2 & \xi^3 & \dots & \xi^m \\ \xi^{-1} & \xi^{-2} & \xi^{-3} & \dots & \xi^{-m} \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{w} & \mathbf{v}^{(R)} \end{pmatrix}$$

Correctness

Honest verifier correctly computes new RHS.

Therefore, remains to prove that verifier's checks pass

$$v_{0} = \langle \mathbf{w}, \mathbf{w} \rangle$$

$$c_{\mathbf{w}} \cdot c_{\mathbf{w}}^{\vee} = \sum_{i \in [1, m]} w_{i} \xi^{i} \cdot \sum_{i \in [1, m]} w_{i} \xi^{-i} = \sum_{i, j \in [-m+1, m-1]} w_{i} w_{j} \xi^{i-j}$$

$$c_{\mathbf{v}}^{(R)} + c_{\mathbf{v}}^{(L)} - v_{0} = \sum_{i \in [0, m-1]} v_{i} \xi^{i} + \sum_{i \in [m+1, m]} v_{i} \xi^{i} - v_{0} = \sum_{i \in [m+1, m-1]} v_{i} \xi^{i} + v_{0} - v_{0} = \sum_{i \in [m+1$$

$$v_0 = ||\mathbf{w}||_2^2 \le \mu^2$$

RoK reduces Ξ_0 to Ξ_1 such that Ξ_0^{KS} has a better norm guarantee than Ξ_1^{KS}

Knowledge soundness

We argue that we extract:

- vSIS break, or
- \blacksquare witness with a stronger (μ) norm guarantee.

or ξ is a non-trivial root of a polynomial defined by the witness \rightarrow unlikely under the Schwartz-Zippel lemma.

Combining RoKs

- The suggested way produces a small proof size, while maintaining the modulus under 2^{64} . Concretely, we obtain the following numbers.

	1	II	III
Witness size [MB]	128	1280	5120
Proof size [MB]	5.3	5.7	7.1

- However, many ways of combining RoKs might be subject of interest, while focusing on different factors, i.e.:
 - verifier runtime,
 - prover runtime,
 - maintaining very low modulus, e.g. 2⁴⁰,
 - selection of application-specific rings.
- We provide a script for estimation of the concrete parameters.

Remarks

The protocol is "public coin", i.e. the verifier sends only random challenges. Therefore, Fiat-Shamir transform applies turning the protocol into SNARK.

The protocol requires subtractive set, i.e. set with differences invertible over \mathcal{R} . We identify subtractive set over composite cyclotomics with low expansion factor.

In the protocol, we usually operate over "canonical 2-norm". We also provide results for coefficient ∞-norm — practical in some applications.

A!

RoK, Paper, SISsors

a versatile framework for combining reductions of knowledge without knowledge and correctness gaps.

Thanks

Michał Osadnik Michal.osadnik@aalto.fi

ia.cr/2024/1972

Witness-managing RoKs:

Split

Fold

Norm-control RoKs:

Norm-check

Decomp