Reducing the Number of Qubits in Quantum Information Set Decoding

Clémence Chevignard Pierre-Alain Fouque André Schrottenloher

Univ Rennes, Inria, CNRS, IRISA Team CAPSULE

The random decoding problem

 (n, k) -linear code over \mathbb{F}_2 : dimension- k subspace of \mathbb{F}_2^n specified as the kernel of a **parity-check matrix** $\boldsymbol{H} \in \mathbb{F}_2^{(n-k)\times n}$.

Random (syndrome) decoding problem Given H sampled u.a.r., and $s = He$ where e is sampled u.a.r. and has weight w , find e .

The level of security offered by code-based cryptosystems depends on the SDP generic complexity.

000000000

Prange's ISD algorithm

Let
$$
S_{n,k} = \text{all subsets of } \{0, ..., n-1\}
$$
 with $n - k$ elements. Write:
\n
$$
s = He = (H_0 \cdots H_{n-1}) \begin{pmatrix} e_0 \\ \vdots \\ e_{n-1} \end{pmatrix} = e_0 H_0 \oplus e_1 H_1 \oplus ... \oplus e_{n-1} H_{n-1} .
$$

Select a subset $I \in S_{n,k}$. Assume that all the ones in **e** fall in *I*. Then one has:

$$
\mathbf{s} = \mathbf{H}\mathbf{e} = \bigoplus_{i \in I} e_i \mathbf{H}_i := \underbrace{\mathbf{H}_1}_{n-k \times n-k} \mathbf{e}_I
$$

\n
$$
\implies \mathbf{e}_I = \mathbf{H}_1^{-1} \mathbf{s} .
$$

- Pick a random $I \in S_{n,k}$
- Compute H_{l}^{-1} s
- Until it has weight $w \implies$ get e_1

Extend e_1 by zeroes \implies get e

000000000

Prange's ISD (ctd.)

Probability to succeed on a random *I*:

$$
p := \mathcal{O}\left(\frac{\binom{n-k}{w}}{\binom{n}{w}}\right)
$$

Time complexity: $\mathcal{O}\Big(\frac{1}{p}(n-k)^{\omega}\Big)$.

Improved algorithms (Stern, Dumer, Lee-Brickell, MMT, BJMM . . .)

- Less constraints on $I \implies$ less loop iterates
- More computations in the loop
- Non-negligible memory

Quantum ISD

[Ber10] use Grover's algorithm to search for /

- $\mathcal{O}\big(1/\sqrt{\rho}\big)$ iterations of:
	- Sampling *I u.a.r.*
	- Testing *I* (compute $H_1^{-1}s$, check weight) \implies takes $\mathcal{O}(n^3)$ "bit operations"

Improved algorithms [KT17], [Kir18]

- Same principles as classical algorithms
- Increase the space exponentially

Bernstein. "Grover vs. McEliece", PQCrypto 2010

Focusing on the test

- Test is a sequence of quantum operations described as a "circuit"
- Here it can actually be a classical reversible circuit

- Needs $\mathcal{O}(n^3)$ for Gaussian elimination
- Needs $\mathcal{O}(n^2)$ space to write H_1

Initial: $\mathcal{O}(n^2)$ qubits and $\mathcal{O}(n^3)$ gates.

- Trade-off 1: $\mathcal{O}(n)$ qubits + $\mathcal{O}(n^3)$ gates
- Trade-off 2: $\mathcal{O}(n \log^2 n)$ qubits $+ \mathcal{O}(n^3)$ gates incl. $\mathcal{O}(n^2 \log^2 n)$ nonlinear (Toffoli) gates

Quantum Prange with Wiedemann

Wiedemann's algorithm

Computing $H_1^{-1}s$ only via matrix-vector products.

Assume H_1 invertible. Let $x = H_1^{-1}s$. Consider the space:

 $\{H_1^i s, i \in \mathbb{N}\}\$

There is a minimal monic P such that: $P(H_1)s = 0$.

Let $Q(X) = (1 \oplus P(X))/X$. Then $x = Q(H_1)s$. Verify that:

$$
H_1x=(H_1Q(H_1))s=P(H_1)s\oplus s=s.
$$

To reduce to a linear recurrence in \mathbb{F}_2 , take a random \boldsymbol{u} and project:

$$
\{\boldsymbol{u}^T\boldsymbol{H}_1^i\boldsymbol{s},0\leq i\leq 2(n-k)\}
$$

Wiedemann, "Solving sparse linear equations over finite fields". IEEE Trans. Inf. Theory 1986

000000000

Simplified algorithm*

000000

Input: choice $I \in S_{n,k}$ **Output:** is *l* good?

Choose $u = (1, 0, ..., 0)$

- **1.** Compute the sequence $(\boldsymbol{u}^T \boldsymbol{H}_1 \boldsymbol{\cdot} \boldsymbol{s})_{0 \le i \le 2(n-k)}$
- **2.** Compute the minimal polynomial $C(X)$ of the sequence Let $C'(X) = (C(X) \oplus 1)/X$
- **3.** Let $y = C'(H_1)s$

If $H_{1}y = s$, then set Success to True (False otherwise) Return (Success, y)

Next: implement 1., 2. and 3. reversibly with $\mathcal{O}(n)$ space.

^{*} Actually two iterates are required for constant probability of success.

Circuit Details

Step 0: the matrix-vector product

Step 0: the matrix-vector product

Step 0: the matrix-vector product

000000

[Introduction](#page-1-0) [Quantum Prange with Wiedemann](#page-7-0) [Circuit Details](#page-10-0)

 000000000

General strategy

We want to compute:

- 1. construct x'
- 2. compute $y \leftarrow y \oplus Hx' \implies$ fixed linear circuit, H is built-in
- 3. erase x'
- **•** Our different trade-offs happen here.
- The cost depends on the representation of I.

 0000000000

Step 1: Evaluate the sequence

- We can only evaluate the $P_i(H_1)s$, not directly the powers.
- However, the $P_i(H_1)$ are a polynomial basis, so for each of the $\mathcal{O}(n)$ sequence bits:

 $\boldsymbol{u}^{\mathcal{T}}\boldsymbol{H}_{\mathsf{I}}^{\mathsf{T}}\boldsymbol{s}=\text{linear combination of}\;\boldsymbol{u}^{\mathcal{T}}\boldsymbol{P}_{\mathsf{j}}(\boldsymbol{H}_{\mathsf{I}})\boldsymbol{s}$

Step 2: Compute the minimal polynomial

With a reversible implementation of the Berlekamp-Massey algorithm, in $\mathcal{O}((n-k)^2)$ operations and $\mathcal{O}(n-k)$ space. \implies non-dominating.

[Introduction](#page-1-0) and Circuit Details and [Quantum Prange with Wiedemann](#page-7-0) and [Circuit Details](#page-10-0) **Circuit Details**

2000 0000 **COO**

Step 3: Evaluate a polynomial

Given $C'(X)$, compute $C'(\mathcal{H}_1)$ s.

This is very similar to step 1:

 $C'(\mathbf{H}_1)\mathbf{s} = \text{ linear combination of } P_i(\mathbf{H}_1)\mathbf{s}$

Cost of Steps 1 & 3 dominated by matrix-vector multiplications.

Conclusion

Results

000000

Example: Classic McEliece L1: $n = 3488, k = 2720$

- [PBP23] 2^{22} qubits (4 millions), 2^{30} gates (2^{102} for Grover)
- **Space-optimized:** 18 098 qubits, $2^{39.3}$ gates ($\simeq 316n(n-k)^2$) $(2^{111.9}$ for Grover)
- **Toffoli-optimized:** 258 769 qubits, $2^{35.9}$ gates ($\simeq 24n(n-k)^2$), 2^{32} Toffoli $(2^{104}$ for Grover)

Bonus: if the matrix H is structured (e.g., block-circulant), we can exploit that.

• Reduces the gate count for BIKE & HQC

Perriello, Barenghi, Pelosi, "Improving the efficiency of quantum circuits for information set decoding". ACM Transactions on Quantum Computing 2023

Conclusion

Before: qubit count in millions and gate count infeasible.

After: gate count infeasible (as expected!), but qubit count becomes closer to Shor's.

 \implies This circuit may be useful in other quantum cryptanalysis algorithms.

Paper: <eprint.iacr.org/2024/907> Code: <gitlab.inria.fr/capsule/quantum-isd-less-qubits>

Thank you!