
Reducing the Number of Qubits in
Quantum Information Set Decoding

Clémence Chevignard
Pierre-Alain Fouque

André Schrottenloher

Univ Rennes, Inria, CNRS, IRISA
Team CAPSULE



Introduction Quantum Prange with Wiedemann Circuit Details

The random decoding problem

(n, k)-linear code over F2: dimension-k subspace of Fn
2 specified as the

kernel of a parity-check matrix H ∈ F(n−k)×n
2 .

Random (syndrome) decoding problem
Given H sampled u.a.r., and s = He where e is sampled u.a.r. and has
weight w , find e.

The level of security offered by code-based cryptosystems depends on the
SDP generic complexity.
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Prange’s ISD algorithm
Let Sn,k = all subsets of {0, . . . , n− 1} with n− k elements. Write:

s = He = (H0 · · ·Hn−1)


e0
...

en−1

 = e0H0 ⊕ e1H1 ⊕ . . .⊕ en−1Hn−1 .

Select a subset I ∈ Sn,k . Assume that all the ones in e fall in I . Then
one has:

s = He =
⊕
i∈I

eiH i := H I︸︷︷︸
n−k×n−k

e I

=⇒ e I = H I
−1s .

Pick a random I ∈ Sn,k

Compute H I
−1s

Until it has weight w =⇒ get e I

Extend e I by zeroes =⇒ get e
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Prange’s ISD (ctd.)

Probability to succeed on a random I :

p := O
((n−k

w

)(n
w

) )

Time complexity: O
(

1
p (n− k)ω

)
.

Improved algorithms (Stern, Dumer, Lee-Brickell, MMT, BJMM . . . )

Less constraints on I =⇒ less loop iterates
More computations in the loop
Non-negligible memory
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Quantum ISD

[Ber10] use Grover’s algorithm to search for I

O
(
1/
√
p
)
iterations of:

Sampling I u.a.r.
Testing I (compute H I

−1s, check weight) =⇒ takes O
(
n3
)
“bit

operations”

Improved algorithms [KT17], [Kir18]

Same principles as classical algorithms
Increase the space exponentially

Bernstein, “Grover vs. McEliece”, PQCrypto 2010
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Focusing on the test

Test is a sequence of quantum operations described as a “circuit”
Here it can actually be a classical reversible circuit

I

Test

I

0 I good?

0 0

Needs O
(
n3
)
for Gaussian elimination

Needs O
(
n2
)
space to write H I
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In this work

Initial: O
(
n2
)
qubits and O

(
n3
)
gates.

Trade-off 1: O(n) qubits + O
(
n3
)
gates

Trade-off 2: O
(
n log2 n

)
qubits + O

(
n3
)
gates incl. O

(
n2 log2 n

)
nonlinear (Toffoli) gates

n2

n

n

n2
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Quantum Prange with Wiedemann
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Wiedemann’s algorithm

Computing H I
−1s only via matrix-vector products.

Assume H I invertible. Let x = H I
−1s. Consider the space:

{H I
is, i ∈ N}

There is a minimal monic P such that: P(H I)s = 0 .

Let Q(X ) = (1⊕ P(X ))/X . Then x = Q(H I)s. Verify that:

H Ix = (H IQ(H I))s = P(H I)s ⊕ s = s .

To reduce to a linear recurrence in F2, take a random u and project:

{uTH I
is, 0 ≤ i ≤ 2(n− k)}

Wiedemann, “Solving sparse linear equations over finite fields”. IEEE Trans. Inf.
Theory 1986
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Simplified algorithm*

Input: choice I ∈ Sn,k
Output: is I good?

Choose u = (1, 0, . . . , 0)
1. Compute the sequence (uTH I

is)0≤i≤2(n−k)
2. Compute the minimal polynomial C (X ) of the sequence

Let C ′(X ) = (C (X )⊕ 1)/X
3. Let y = C ′(H I)s

If H Iy = s, then set Success to True (False otherwise)
Return (Success, y)

Next: implement 1., 2. and 3. reversibly with O(n) space.

* Actually two iterates are required for constant probability of success.
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Circuit Details
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Step 0: the matrix-vector product

I

MultHI

I

x H Ix

0 0

I

MultHI

I

x x
y y ⊕H Ix

0 0
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General strategy
We want to compute:

H Ix = H I


x0

x1
...

xn−k

 = H



0
x0

0
0
...

xn−k
0


︸ ︷︷ ︸

:=x′

1. construct x ′
2. compute y ← y ⊕Hx ′ =⇒ fixed linear circuit, H is built-in
3. erase x ′

Our different trade-offs happen here.
The cost depends on the representation of I .
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Step 1: Evaluate the sequence

Compute the sequence (uTH I
is)i

s 0

×HI

s HIs

×HI

s⊕HI
2s HIs

Pi(HI)s Pi−1(HI)s

×HI

Pi(HI)s Pi+1(HI)s

×HI

Pi+2(HI)s Pi+1(HI)s

We can only evaluate the Pi (H I)s, not directly the powers.
However, the Pi (H I) are a polynomial basis, so for each of the O(n)
sequence bits:

uTH I
is = linear combination of uTPj(H I)s
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Step 2: Compute the minimal polynomial

With a reversible implementation of the Berlekamp-Massey algorithm,
in O

(
(n− k)2

)
operations and O(n− k) space.

=⇒ non-dominating.
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Step 3: Evaluate a polynomial

Given C ′(X ), compute C ′(H I)s.

This is very similar to step 1:

C ′(H I)s = linear combination of Pi (H I)s

Cost of Steps 1 & 3 dominated by matrix-vector multiplications.
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Conclusion
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Results

Example: Classic McEliece L1: n = 3488, k = 2720

[PBP23] 222 qubits (4 millions), 230 gates (2102 for Grover)

Space-optimized: 18 098 qubits, 239.3 gates (' 316n(n− k)2)
(2111.9 for Grover)

Toffoli-optimized: 258 769 qubits, 235.9 gates (' 24n(n− k)2),
232 Toffoli (2104 for Grover)

Bonus: if the matrix H is structured (e.g., block-circulant), we can
exploit that.

Reduces the gate count for BIKE & HQC

Perriello, Barenghi, Pelosi, “Improving the efficiency of quantum circuits for
information set decoding”. ACM Transactions on Quantum Computing 2023
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Conclusion

Before: qubit count in millions and gate count infeasible.

After: gate count infeasible (as expected!), but qubit count becomes
closer to Shor’s.

=⇒ This circuit may be useful in other quantum cryptanalysis
algorithms.

Paper: eprint.iacr.org/2024/907
Code: gitlab.inria.fr/capsule/quantum-isd-less-qubits

Thank you!
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