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The random decoding problem

(n, k)-linear code over IF»: dimension-k subspace of F5 specified as the

kernel of a parity-check matrix H € Fg"fk)xn.

Random (syndrome) decoding problem
Given H sampled u.a.r., and s = He where e is sampled u.a.r. and has
weight w, find e.

The level of security offered by code-based cryptosystems depends on the
SDP generic complexity.
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Prange’s ISD algorithm
Let S, x = all subsets of {0,...,n — 1} with n — k elements. Write:
€o
s=He=(Hy---H,_1)| : =eHoy®etH1@...®e_1H_1 .
€n—1

Select a subset | € S, . Assume that all the ones in e fall in /. Then

one has:
s:He:@e,-H,- = H| e
) ~~~
iel n—kxn—k

— e = H|7ls .

@ Pick a random [ € S, «

o Compute H, s

@ Until it has weight w = get ¢
Extend e; by zeroes = get e

3/19



Introduction Quantum Prange with Wiedemann Circuit Details
00@000 e]e]e)] 000000000

Prange’s ISD (ctd.)

Probability to succeed on a random /:

()

Time complexity: O(f(n - k)‘“).

1
P

Improved algorithms (Stern, Dumer, Lee-Brickell, MMT, BJMM .. .)

@ Less constraints on | — less loop iterates
@ More computations in the loop
@ Non-negligible memory
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Quantum ISD

[Berl0] use Grover's algorithm to search for /

O(1/,/p) iterations of:
@ Sampling / u.a.r.

o Testing / (compute H,~'s, check weight) == takes O(n®) “bit
operations”

Improved algorithms [KT17], [Kirl8]

@ Same principles as classical algorithms
@ Increase the space exponentially

D Bernstein, “Grover vs. McEliece”, PQCrypto 2010
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Focusing on the test

@ Test is a sequence of quantum operations described as a “circuit”

@ Here it can actually be a classical reversible circuit

| — — /

0 — Test — | good?

0 — — 0

@ Needs O(n?) for Gaussian elimination

@ Needs O(n?) space to write H|
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In this work

Initial: O(n2) qubits and O(n3) gates.
e Trade-off 1: O(n) qubits + O(n?) gates

o Trade-off 2: O(nlog®n) qubits + O(n?) gates incl. O(n2log®n)
nonlinear (Toffoli) gates
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Wiedemann’s algorithm

Computing H,~!s only via matrix-vector products. J

Assume H, invertible. Let x = H,~'s. Consider the space:
{H/'s,i € N}
There is a minimal monic P such that: P(H,)s =0 .

Let Q(X) = (1® P(X))/X. Then x = Q(H,)s. Verify that:

Hix=(HQ(H\))s=P(H)s®s=s .

To reduce to a linear recurrence in F,, take a random u and project:
{u"H\'s,0 <i<2(n—k)} J

D Wiedemann, “Solving sparse linear equations over finite fields". IEEE Trans. Inf.
Theory 1986
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Simplified algorithm*

Input: choice | € S, «
Output: is / good?
Choose u = (1,0,...,0)
1. Compute the sequence (uTH|is)0§;§2(n_k)
2. Compute the minimal polynomial C(X) of the sequence
Let C'(X) = (C(X)®1)/X
3. Lety = C'(H))s
If Hiy = s, then set Success to True (False otherwise)
Return (Success, y)

Next: implement 1., 2. and 3. reversibly with O(n) space.

Circuit Details
000000000

* Actually two iterates are required for constant probability of success.
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Step 0: the matrix-vector product

| — —
x—MultH,—H|x
0 — — 0
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Step 0: the matrix-vector product
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Step 0: the matrix-vector product

| — —/
*AMuley [ F

u
y — H'—yEBH|x
0 — — 0
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General strategy

We want to compute:

X0
X0

X1
Hx=H | ~ |=H| O

Xn—k

1. construct x’

2. compute y < y @ Hx' = fixed linear circuit, H is built-in

3. erase x’

@ Our different trade-offs happen here. J

@ The cost depends on the representation of /.
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Step 1: Evaluate the sequence

Circuit Details
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Compute the sequence (u” H,'s);

)s
xHi — D
s His Pi(Hi)s Pii1(Hi)s
S5 x H,
s® H%s His Py o(Hi)s Pir1(Hy)s

@ We can only evaluate the P;(H))s, not directly the powers.
@ However, the P;(H)) are a polynomial basis, so for each of the O(n)
sequence bits:

u” H\'s = linear combination of u’ P;(H,)s
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Step 2: Compute the minimal polynomial

With a reversible implementation of the Berlekamp-Massey algorithm,
in O((n — k)?) operations and O(n — k) space.

= non-dominating.
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Step 3: Evaluate a polynomial

Given C'(X), compute C'(H)s.

Circuit Details
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This is very similar to step 1:

C'(H))s = linear combination of P;(H,)s

Cost of Steps 1 & 3 dominated by matrix-vector multiplications.
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Results

Example: Classic McEliece L1: n = 3488, k = 2720
e [PBP23] 222 qubits (4 millions), 23° gates (2192 for Grover)

@ Space-optimized: 18 098 qubits, 23%-3 gates (~ 316n(n — k)?)
(2112 for Grover)

e Toffoli-optimized: 258 769 qubits, 235° gates (~ 24n(n — k)?),
232 Toffoli (21%* for Grover)

Bonus: if the matrix H is structured (e.g., block-circulant), we can
exploit that.

@ Reduces the gate count for BIKE & HQC

D Perriello, Barenghi, Pelosi, “Improving the efficiency of quantum circuits for
information set decoding”. ACM Transactions on Quantum Computing 2023
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Conclusion

Before: qubit count in millions and gate count infeasible.

After: gate count infeasible (as expected!), but qubit count becomes
closer to Shor's.

— This circuit may be useful in other quantum cryptanalysis
algorithms.

Paper: eprint.iacr.org/2024/907
Code: gitlab.inria.fr/capsule/quantum-isd-less-qubits

Thank you!
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