
LogRobin++:
Optimizing Proofs of Disjunctive
Statements in VOLE-Based ZK

Carmit Hazay, Bar-Ilan University and Ligero Inc.
David Heath, UIUC
Vladimir Kolesnikov, Georgia Tech
Muthuramakrishnan Venkitasubramaniam, Ligero Inc.
Yibin Yang, Georgia Tech

Verifier Prover

1

Zero-Knowledge Proof [GMR85]

Completeness: An honest P always succeeds

Soundness: A malicious P always fails

Zero Knowledge: A malicious V learns nothing more

ZKP for a Circuit

V P

! There is an
input x s.t.

C(x) = 0

×

× +

+
General-purpose ZK systems
almost exclusively work with
circuits or constraint systems

2

ZKP for a Circuit

V P

! There is an
input x s.t.

C(x) = 0

×

× +

+
General-purpose ZK systems
almost exclusively work with
circuits or constraint systems

2

𝒪(C) 𝒪(C)

𝒪(C)

Instantiated over Vector Oblivious Linear Evaluation (VOLE) [DIO21, YSWW21]

Disjunctive Statements as Circuits

V P

! There is an
input x, id s.t.

C_id(x) = 0

3

+

+ ×
×

×

× +
+ ⋁

10

Disjunctive Statements as Circuits

V P

! There is an
input x, id s.t.

C_id(x) = 0

3

+

+ ×
×

×

× +
+ ⋁

10

The naïve solution: construct a multiplexed
circuit of size 𝒪(C0 + C1)

Why Disjunctive Statements?

4

Why Disjunctive Statements?

4

This file is licensed under
the Creative Commons

Attribution-Share Alike 4.0
International license.

ADD or MULT or MOD or …

A crucial component to
emulate the CPU execution

(aka a RAM program) inside ZK

5

Prior Work: Robin [YHH+23]
Refined Oblivious Branching for INteractive zk

5

Prior Work: Robin [YHH+23]
Refined Oblivious Branching for INteractive zk

In VOLE-based ZK, we only need to pay for the largest clause in communication.

5

Prior Work: Robin [YHH+23]
Refined Oblivious Branching for INteractive zk

In VOLE-based ZK, we only need to pay for the largest clause in communication.

𝒞0 𝒞1⋁ ⋁ ⋁⋯ 𝒞B−2 𝒞B−1⋁

Defined over some field , each with inputs and multiplications.𝔽 nin n×
For simplicity, we assume a large enough field.

5

Prior Work: Robin [YHH+23]
Refined Oblivious Branching for INteractive zk

In VOLE-based ZK, we only need to pay for the largest clause in communication.

𝒞0 𝒞1⋁ ⋁ ⋁⋯ 𝒞B−2 𝒞B−1⋁

Defined over some field , each with inputs and multiplications.𝔽 nin n×

 field elements 𝒪(nin + Bn×) field elements nin + 3n× + 𝒪(B)improve to

Communication in the VOLE-hybrid model:
For simplicity, we assume a large enough field.

5

Prior Work: Robin [YHH+23]
Refined Oblivious Branching for INteractive zk

In VOLE-based ZK, we only need to pay for the largest clause in communication.

𝒞0 𝒞1⋁ ⋁ ⋁⋯ 𝒞B−2 𝒞B−1⋁

Defined over some field , each with inputs and multiplications.𝔽 nin n×

Communication in the VOLE-hybrid model:

 field elements 𝒪(nin + Bn×) field elements nin + 3n× + 𝒪(B)improve to

this work further improve

For simplicity, we assume a large enough field.

6

Our Results

6

Our Results
LogRobin++

6

Our Results
LogRobin++

field elements

nin + 3n× + 𝒪(B)
Robin

6

Our Results
LogRobin++

field elements

nin + 3n× + 𝒪(B)
Robin

field elements

nin + 3n× + 𝒪(log B)
LogRobin

6

Our Results
LogRobin++

field elements

nin + 3n× + 𝒪(B)
Robin

field elements

nin + 3n× + 𝒪(log B)
LogRobin

 field
elements

nin + n× + 𝒪(B)
Robin++

6

Our Results
LogRobin++

field elements

nin + 3n× + 𝒪(B)
Robin

field elements

nin + 3n× + 𝒪(log B)
LogRobin

 field
elements

nin + n× + 𝒪(B)
Robin++

field elements
nin + n× + 𝒪(log B)
LogRobin++

6

Our Results
LogRobin++

field elements

nin + 3n× + 𝒪(B)
Robin

field elements

nin + 3n× + 𝒪(log B)
LogRobin

 field
elements

nin + n× + 𝒪(B)
Robin++

field elements
nin + n× + 𝒪(log B)
LogRobin++

Our focus today

7

Preliminaries: Vector OLE Correlations

7

Preliminaries: Vector OLE Correlations

V P

F𝖵𝖮𝖫𝖤

Δ $← 𝔽

k $← 𝔽n

s $← 𝔽n

m := k − Δs

7

Preliminaries: Vector OLE Correlations

V P

F𝖵𝖮𝖫𝖤

Δ $← 𝔽

k $← 𝔽n

s $← 𝔽n

m := k − Δs

ks0
, Δ s0, ms0

= ks0
− s0Δ[s0]

7

Preliminaries: Vector OLE Correlations

V P

F𝖵𝖮𝖫𝖤

Δ $← 𝔽

k $← 𝔽n

s $← 𝔽n

m := k − Δs

[s0]

Linear Homomorphic
[s1]

a, b, c ∈ 𝔽 a, b, c ∈ 𝔽

[as0 + bs1 + c]

7

Preliminaries: Vector OLE Correlations

V P

F𝖵𝖮𝖫𝖤

Δ $← 𝔽

k $← 𝔽n

s $← 𝔽n

m := k − Δs

[s0]

Linear Homomorphic
[s1]

a, b, c ∈ 𝔽 a, b, c ∈ 𝔽

[as0 + bs1 + c]

x − s0

[x] = [s0] + (x − s0)

x ∈ 𝔽

8

Preliminaries: Multiplication ZK Check
Known as line-point zero-knowledge (LPZK) [DIO21, YSWW21]

8

Preliminaries: Multiplication ZK Check
Known as line-point zero-knowledge (LPZK) [DIO21, YSWW21]

V P

[x] [y] [z]

w.t.s. z = xy

8

Preliminaries: Multiplication ZK Check
Known as line-point zero-knowledge (LPZK) [DIO21, YSWW21]

V P

[x] [y] [z]

w.t.s. z = xy

 field elements2

8

Preliminaries: Multiplication ZK Check
Known as line-point zero-knowledge (LPZK) [DIO21, YSWW21]

V P

 field elements2n

[x] [y] [z]

w.t.s. z = x ⊙ y

8

Preliminaries: Multiplication ZK Check
Known as line-point zero-knowledge (LPZK) [DIO21, YSWW21]

V P

 field elements2

[x] [y] [z]

w.t.s. z = x ⊙ y

 field element1

field elements

nin + 3n× + 𝒪(B)
Robin

field elements

nin + 3n× + 𝒪(log B)
LogRobin

 field
elements

nin + n× + 𝒪(B)
Robin++

field elements
nin + n× + 𝒪(log B)
LogRobin++

9

10

Technical Overview: LogRobin
For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

×

× +
+

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

×

× +
+

[in1]
[in2]
[in3]
[in4]

[ℓ1]

[r1]

[o1]

[ℓ2]

[r2]
[o2]

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

×

× +
+

[in1]
[in2]
[in3]
[in4]

[ℓ1]

[r1]

[o1]

[ℓ2]

[r2]
[o2]

[v0] =

in1 − ℓ1
in2 − r1

in2 − ℓ2
in3 − r2

o1 + o2 + in4

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

×

× +
+

[in1]
[in2]
[in3]
[in4]

[ℓ1]

[r1]

[o1]

[ℓ2]

[r2]
[o2]

[v0] =

in1 − ℓ1
in2 − r1

in2 − ℓ2
in3 − r2

o1 + o2 + in4

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

×

× +
+

[in1]
[in2]
[in3]
[in4]

[ℓ1]

[r1]

[o1]

[ℓ2]

[r2]
[o2]

 is the “active” one
i.f.f.

𝒞0

v0 = 0
[v0] =

in1 − ℓ1
in2 − r1

in2 − ℓ2
in3 − r2

o1 + o2 + in4

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

[v0] [v1] [v2] [v3]

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

There exists a
zero vector.

[v0] [v1] [v2] [v3]

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

A random
challenge β

[v0] [v1] [v2] [v3]

(1,β, β2, …)
×

(1,β, β2, …)
×

(1,β, β2, …)
×

(1,β, β2, …)
×

[e0] [e1] [e2] [e3]

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

A random
challenge β

[v0] [v1] [v2] [v3]

(1,β, β2, …)
×

(1,β, β2, …)
×

(1,β, β2, …)
×

(1,β, β2, …)
×

[e0] [e1] [e2] [e3]

There exists a
zero element.

10

Technical Overview: LogRobin

𝒞0 𝒞1⋁ ⋁ 𝒞2 𝒞3⋁

For example, consider the following 4-clause disjunctive statement,
defined over some field , each with inputs and multiplications.𝔽 4 2

For simplicity, we assume a large enough field.

[in1] [in2] [in3] [in4] [ℓ1] [r1] [o1] [ℓ2] [r2] [o2] of the “active” clause

mult. mult.

A random
challenge β

[v0] [v1] [v2] [v3]

(1,β, β2, …)
×

(1,β, β2, …)
×

(1,β, β2, …)
×

(1,β, β2, …)
×

[e0] [e1] [e2] [e3]

There exists a
zero element.

In Robin, this is done by showing , which needs a cost.e0e1e2e3 = 0 𝒪(B)

 field elementsnin + 3n×

10

11

Technique: Zero Membership Proof𝒪(log B)
Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Technique: Zero Membership Proof𝒪(log B)

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

[e0] [e1] [e2] [e3]

11

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

11

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

11

 id =
log B−1

∑
i=0

idi ⋅ 2i

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

[δ0] [δ1]

11

 id =
log B−1

∑
i=0

idi ⋅ 2i

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

[Λ ⋅ (1 − id0) + δ0] [Λ ⋅ (1 − id1) + δ1]

[δ0] [δ1]

[Λ ⋅ id0 − δ0] [Λ ⋅ id1 − δ1]

A random
challenge Λ

11

 id =
log B−1

∑
i=0

idi ⋅ 2i

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

Λ ⋅ (1 − id0) + δ0 Λ ⋅ (1 − id1) + δ1

[δ0] [δ1]

Λ ⋅ id0 − δ0 Λ ⋅ id1 − δ1

A random
challenge Λ

11

M
 id =

log B−1

∑
i=0

idi ⋅ 2i

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

Λ ⋅ (1 − id0) + δ0 Λ ⋅ (1 − id1) + δ1

[δ0] [δ1]

Λ ⋅ id0 − δ0 Λ ⋅ id1 − δ1

η0

A random
challenge Λ

11

M
 id =

log B−1

∑
i=0

idi ⋅ 2i

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

Λ ⋅ (1 − id0) + δ0 Λ ⋅ (1 − id1) + δ1

[δ0] [δ1]

Λ ⋅ id0 − δ0 Λ ⋅ id1 − δ1

A random
challenge Λ

η0 η1

11

M
 id =

log B−1

∑
i=0

idi ⋅ 2i

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

Λ ⋅ (1 − id0) + δ0 Λ ⋅ (1 − id1) + δ1

[δ0] [δ1]

Λ ⋅ id0 − δ0 Λ ⋅ id1 − δ1

A random
challenge Λ

η0 η1 η2

11

M
 id =

log B−1

∑
i=0

idi ⋅ 2i

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

Λ ⋅ (1 − id0) + δ0 Λ ⋅ (1 − id1) + δ1

[δ0] [δ1]

Λ ⋅ id0 − δ0 Λ ⋅ id1 − δ1

A random
challenge Λ

η0 η1 η2 η3

11

M
 id =

log B−1

∑
i=0

idi ⋅ 2i

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

Λ ⋅ (1 − id0) + δ0 Λ ⋅ (1 − id1) + δ1

[δ0] [δ1]

Λ ⋅ id0 − δ0 Λ ⋅ id1 − δ1

A random
challenge Λ

η0 η1 η2 η3

e0η0 + e1η1 + e2η2 + e3η3 = f(Λ)

11

M
 id =

log B−1

∑
i=0

idi ⋅ 2i

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

Λ ⋅ (1 − id0) + δ0 Λ ⋅ (1 − id1) + δ1

[δ0] [δ1]

Λ ⋅ id0 − δ0 Λ ⋅ id1 − δ1

A random
challenge Λ

η0 η1 η2 η3

e0η0 + e1η1 + e2η2 + e3η3 = f(Λ) Key Observation: If P is
honest, this must be a

degree-1 polynomial in .
Moreover, P knows all

 coefficients
before is sampled.

Λ

𝒪(log B)
Λ

11

M
 id =

log B−1

∑
i=0

idi ⋅ 2i

Technique: Zero Membership Proof𝒪(log B)

[e0] [e1] [e2] [e3]

There exists a
zero element.

Inspired by [Groth and Kohlweiss, Eurocrypt’15]

Intuition: P not only knows that a zero
exists but also its exact location.

“active” clause index id

[id0] [id1] Prove in ZK each is a bit

Λ ⋅ (1 − id0) + δ0 Λ ⋅ (1 − id1) + δ1

[δ0] [δ1]

Λ ⋅ id0 − δ0 Λ ⋅ id1 − δ1

A random
challenge Λ

η0 η1 η2 η3

e0η0 + e1η1 + e2η2 + e3η3 = f(Λ) Key Observation: If P is
honest, this must be a

degree-1 polynomial in .
Moreover, P knows all

 coefficients
before is sampled.

Λ

𝒪(log B)
Λ

⇒ P can commit to the coefficients
initially and show two different

ways to evaluate the same !f(Λ)

11

M
 id =

log B−1

∑
i=0

idi ⋅ 2i

12

LogRobin: Full Diagram

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

[v0], [v1], …, [vB−1] [v0], [v1], …, [vB−1]

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

[v0], [v1], …, [vB−1] [v0], [v1], …, [vB−1]
β field element1

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

[v0], [v1], …, [vB−1] [v0], [v1], …, [vB−1]
β

[e0], [e1], …, [eB−1] [e0], [e1], …, [eB−1]

 field element1

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

[v0], [v1], …, [vB−1] [v0], [v1], …, [vB−1]
β

[e0], [e1], …, [eB−1] [e0], [e1], …, [eB−1]
[δ0], [δ1], …, [δlog B−1]

 field element1

[δ0], [δ1], …, [δlog B−1]

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

[v0], [v1], …, [vB−1] [v0], [v1], …, [vB−1]
β

[e0], [e1], …, [eB−1] [e0], [e1], …, [eB−1]
[id0], [id1], …, [idlog B−1]

 field elements𝒪(log B)[c0], [c1], …, [clog B−1]

 field element1

[δ0], [δ1], …, [δlog B−1] [δ0], [δ1], …, [δlog B−1]

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

[v0], [v1], …, [vB−1] [v0], [v1], …, [vB−1]
β

[e0], [e1], …, [eB−1] [e0], [e1], …, [eB−1]
[id0], [id1], …, [idlog B−1]

 field elements𝒪(log B)[c0], [c1], …, [clog B−1]

id ⊙ (id − 1) = 1 field elements𝒪(1)

 field element1

[δ0], [δ1], …, [δlog B−1] [δ0], [δ1], …, [δlog B−1]

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

[v0], [v1], …, [vB−1] [v0], [v1], …, [vB−1]
β

[e0], [e1], …, [eB−1] [e0], [e1], …, [eB−1]
[id0], [id1], …, [idlog B−1]

 field elements𝒪(log B)[c0], [c1], …, [clog B−1]

id ⊙ (id − 1) = 1 field elements𝒪(1)

Λ

M field elements𝒪(log B)

 field element1

 field element1

[δ0], [δ1], …, [δlog B−1] [δ0], [δ1], …, [δlog B−1]

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

[v0], [v1], …, [vB−1] [v0], [v1], …, [vB−1]
β

[e0], [e1], …, [eB−1] [e0], [e1], …, [eB−1]
[id0], [id1], …, [idlog B−1]

 field elements𝒪(log B)[c0], [c1], …, [clog B−1]

id ⊙ (id − 1) = 1 field elements𝒪(1)

Λ

M field elements𝒪(log B)

B−1

∑
i=0

ηi[ei]
B−1

∑
i=0

ηi[ei]

 field element1

 field element1

[δ0], [δ1], …, [δlog B−1] [δ0], [δ1], …, [δlog B−1]

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

[v0], [v1], …, [vB−1] [v0], [v1], …, [vB−1]
β

[e0], [e1], …, [eB−1] [e0], [e1], …, [eB−1]
[id0], [id1], …, [idlog B−1]

 field elements𝒪(log B)[c0], [c1], …, [clog B−1]

id ⊙ (id − 1) = 1 field elements𝒪(1)

Λ

M field elements𝒪(log B)

B−1

∑
i=0

ηi[ei]
B−1

∑
i=0

ηi[ei]
B−1

∑
i=0

Λi[ci]
B−1

∑
i=0

Λi[ci]

 field element1

 field element1

[δ0], [δ1], …, [δlog B−1] [δ0], [δ1], …, [δlog B−1]

12

LogRobin: Full Diagram
[in] [ℓ] [r] [o] field elementsnin + 3n×

ℓ ⊙ r = o field elements𝒪(1)

[v0], [v1], …, [vB−1] [v0], [v1], …, [vB−1]
β field element1

[e0], [e1], …, [eB−1] [e0], [e1], …, [eB−1]
[id0], [id1], …, [idlog B−1]

 field elements𝒪(log B)[c0], [c1], …, [clog B−1]

id ⊙ (id − 1) = 1 field elements𝒪(1)

Λ field element1

M field elements𝒪(log B)

B−1

∑
i=0

ηi[ei]
B−1

∑
i=0

ηi[ei]
B−1

∑
i=0

Λi[ci]
B−1

∑
i=0

Λi[ci]

= =

[δ0], [δ1], …, [δlog B−1] [δ0], [δ1], …, [δlog B−1]

Summary of Our Results

field elements

nin + 3n× + 𝒪(B)
Robin

field elements

nin + 3n× + 𝒪(log B)
LogRobin

 field
elements

nin + n× + 𝒪(B)
Robin++

field elements
nin + n× + 𝒪(log B)
LogRobin++

13

Q/A

ePrint GitHub

Email: yyang811@gatech.edu

mailto:yyang811@gatech.edu

