
LogRobin++:  
Optimizing Proofs of Disjunctive 
Statements in VOLE-Based ZK

Carmit Hazay, Bar-Ilan University and Ligero Inc. 
David Heath, UIUC 
Vladimir Kolesnikov, Georgia Tech 
Muthuramakrishnan Venkitasubramaniam, Ligero Inc. 
Yibin Yang, Georgia Tech



Verifier Prover
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Zero-Knowledge Proof [GMR85] 

Completeness: An honest P always succeeds 

Soundness: A malicious P always fails 

Zero Knowledge: A malicious V learns nothing more
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𝒪(C) 𝒪(C)

𝒪(C)

Instantiated over Vector Oblivious Linear Evaluation (VOLE) [DIO21, YSWW21]
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The naïve solution: construct a multiplexed 
circuit of size 𝒪(C0 + C1)
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This file is licensed under 
the Creative Commons 

Attribution-Share Alike 4.0 
International license.

ADD or MULT or MOD or …

A crucial component to 
emulate the CPU execution 

(aka a RAM program) inside ZK
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𝒞0 𝒞1⋁ ⋁ ⋁⋯ 𝒞B−2 𝒞B−1⋁

Defined over some field , each with  inputs and  multiplications.𝔽 nin n×

Communication in the VOLE-hybrid model:

 field elements 𝒪(nin + Bn×)  field elements nin + 3n× + 𝒪(B)improve to

this work further improve

For simplicity, we assume a large enough field.



6

Our Results



6

Our Results
LogRobin++



6

Our Results
LogRobin++

 
field elements 

nin + 3n× + 𝒪(B)
Robin



6

Our Results
LogRobin++

 
field elements 

nin + 3n× + 𝒪(B)
Robin

 
field elements 

nin + 3n× + 𝒪(log B)
LogRobin



6

Our Results
LogRobin++

 
field elements 

nin + 3n× + 𝒪(B)
Robin

 
field elements 

nin + 3n× + 𝒪(log B)
LogRobin

 field 
elements 

nin + n× + 𝒪(B)
Robin++



6

Our Results
LogRobin++

 
field elements 

nin + 3n× + 𝒪(B)
Robin

 
field elements 

nin + 3n× + 𝒪(log B)
LogRobin

 field 
elements 

nin + n× + 𝒪(B)
Robin++  

field elements 
nin + n× + 𝒪(log B)
LogRobin++



6

Our Results
LogRobin++

 
field elements 

nin + 3n× + 𝒪(B)
Robin

 
field elements 

nin + 3n× + 𝒪(log B)
LogRobin

 field 
elements 

nin + n× + 𝒪(B)
Robin++  

field elements 
nin + n× + 𝒪(log B)
LogRobin++

Our focus today



7

Preliminaries: Vector OLE Correlations



7

Preliminaries: Vector OLE Correlations

V P

F𝖵𝖮𝖫𝖤

Δ $← 𝔽

k $← 𝔽n

s $← 𝔽n

m := k − Δs



7

Preliminaries: Vector OLE Correlations

V P

F𝖵𝖮𝖫𝖤

Δ $← 𝔽

k $← 𝔽n

s $← 𝔽n

m := k − Δs

ks0
, Δ s0, ms0

= ks0
− s0Δ[s0]



7

Preliminaries: Vector OLE Correlations

V P

F𝖵𝖮𝖫𝖤

Δ $← 𝔽

k $← 𝔽n

s $← 𝔽n

m := k − Δs

[s0]

Linear Homomorphic
[s1]

a, b, c ∈ 𝔽 a, b, c ∈ 𝔽

[as0 + bs1 + c]



7

Preliminaries: Vector OLE Correlations

V P

F𝖵𝖮𝖫𝖤

Δ $← 𝔽

k $← 𝔽n

s $← 𝔽n

m := k − Δs

[s0]

Linear Homomorphic
[s1]

a, b, c ∈ 𝔽 a, b, c ∈ 𝔽

[as0 + bs1 + c]

x − s0

[x] = [s0] + (x − s0)

x ∈ 𝔽
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Summary of Our Results

 
field elements 

nin + 3n× + 𝒪(B)
Robin

 
field elements 

nin + 3n× + 𝒪(log B)
LogRobin

 field 
elements 

nin + n× + 𝒪(B)
Robin++  

field elements 
nin + n× + 𝒪(log B)
LogRobin++
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