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Zero-Knowledge Proof [GMRS&5]

Completeness: An honest P always succeeds

Soundness: A malicious P always fails

Zero Knowledge: A malicious V learns nothing more
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ZKP for a Circuit

Instantiated over Vector Oblivious Linear Evaluation (VOLE) [DIO21, YSWW21]

o * . General-purpose ZK systems

- 0 almost exclusively work with

. X O circuits or constraint systems
® _I_ ®
@

There is an

inputxsi.

O(C)




Disjunctive Statements as Circuits




Disjunctive Statements as Circuits

\ The naive solution: construct a multiplexea
circuit of size O(Cy + C)
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A crucial component to
emulate the CPU execution
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