LogRobin++: Optimizing Proofs of Disjunctive Statements in VOLE-Based ZK

Carmit Hazay, Bar-Ilan University and Ligero Inc. David Heath, UIUC Vladimir Kolesnikov, Georgia Tech Muthuramakrishnan Venkitasubramaniam, Ligero Inc. Yibin Yang, Georgia Tech

Zero-Knowledge Proof [GMR85]

Completeness: An honest P always succeeds

Soundness: A malicious P always fails

-
-
- Zero Knowledge: A malicious V learns nothing more

ZKP for a Circuit

 $+$

 $\mathbf O$

!

General-purpose ZK systems almost exclusively work with circuits or constraint systems

ZKP for a Circuit

General-purpose ZK systems almost exclusively work with circuits or constraint systems

Instantiated over Vector Oblivious Linear Evaluation (VOLE) [DIO21, YSWW21]

Disjunctive Statements as Circuits

Disjunctive Statements as Circuits

The naïve solution: construct a multiplexed
circuit of size $O(C_0 + C_1)$ (and the nature of the construct of size $O(C_0 + C_1)$ The naïve solution: construct a multiplexed circuit of size $\mathcal{O}(C_0 + C_1)$

Why Disjunctive Statements?

Why Disjunctive Statements?

This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

ADD or MULT or MOD or …

A crucial component to emulate the CPU execution (aka a RAM program) inside ZK

Prior Work: Robin [YHH+23]

Refined Oblivious Branching for INteractive zk

Prior Work: Robin [YHH+23]

In VOLE-based ZK, we only need to pay for the largest clause in communication.

Refined Oblivious Branching for INteractive zk

Prior Work: Robin [YHH+23] Refined Oblivious Branching for INteractive zk

In VOLE-based ZK, we only need to pay for the largest clause in communication.

Defined over some field F, each with n_{in} inputs and n_{\times} multiplications.

For simplicity, we assume a large enough field.

Prior Work: Robin [YHH+23] Refined Oblivious Branching for INteractive zk

In VOLE-based ZK, we only need to pay for the largest clause in communication.

Defined over some field \mathbb{F} , each with n_{in} inputs and n_{\times} multiplications.

For simplicity, we assume a large enough field.

- -
- $\mathcal{O}(n_{in} + Bn_{\times})$ field elements $\longrightarrow n_{in} + 3n_{\times} + \mathcal{O}(B)$ field elements

Communication in the VOLE-hybrid model:

Prior Work: Robin [YHH+23]

In VOLE-based ZK, we only need to pay for the largest clause in communication.

Defined over some field \mathbb{F} , each with n_{in} inputs and n_{\times} multiplications. For simplicity, we assume a large enough field.

- -
- $\mathcal{O}(n_{in} + Bn_{\times})$ field elements $\longrightarrow n_{in} + 3n_{\times} + \mathcal{O}(B)$ field elements

Refined Oblivious Branching for INteractive zk

Communication in the VOLE-hybrid model:

this work $|$ further improve

Our Results

Our Results LogRobin++

Our Results LogRobin++

Robin $n_{in} + 3n_{\times} + O(B)$ field elements

field elements $n_{in} + 3n_{x} + O(B)$

Our Results LogRobin++ Robin field elements $n_{in} + 3n_{\times} + \mathcal{O}(\log B)$ LogRobin

Our Results LogRobin++ n_{in} + 3 n_{\times} + $\mathcal{O}(\log B)$ LogRobin

$n_{in} + n_{\times} + \mathcal{O}(B)$ field elements Robin++

Our Results LogRobin++ $n_{in} + 3n_{\times} + \mathcal{O}(\log B)$ LogRobin $n_{in} + n_{\times} + \mathcal{O}(B)$ field

elements

LogRobin++

 $Robin++$ J $\frac{n_{in} + n_{x} + O(10 \xi)}{$ field elements $n_{in} + n_{\times} + \mathcal{O}(\log B)$

 $n_{in} + n_{\times} + \mathcal{O}(\log B)$

$$
[s_0] \qquad \qquad s_0, m_{s_0} = k_{s_0} - s_0 \Delta
$$

 $[s_0]$ $[s_1]$ $a, b, c \in \mathbb{F}$ Linear Homomorphic $a, b, c \in \mathbb{F}$ $[as_0 + bs_1 + c]$

 $[s_0]$ $[s_1]$

$a, b, c \in \mathbb{F}$ Linear Homomorphic $a, b, c \in \mathbb{F}$

- $[as_0 + bs_1 + c]$
	- $x s_0$

 $x \in \mathbb{F}$

Known as line-point zero-knowledge (LPZK) [DIO21, YSWW21]

Known as line-point zero-knowledge (LPZK) [DIO21, YSWW21]

 $[x]$ $[y]$ $[z]$

w.t.s. $z = xy$

Known as line-point zero-knowledge (LPZK) [DIO21, YSWW21]

 $[x]$ $[y]$ $[z]$

w.t.s. $z = xy$

2 field elements

Known as line-point zero-knowledge (LPZK) [DIO21, YSWW21]

 $[x]$ $[y]$ $[z]$

 $w.t.s. z = x O y$

2*n* field elements

Known as line-point zero-knowledge (LPZK) [DIO21, YSWW21]

 $[x]$ $[y]$ $[z]$

 $w.t.s. z = x O y$

2 field elements

1 field element

field elements $n_{in} + 3n_{x} + O(B)$ Robin field elements $n_{in} + 3n_{\times} + \mathcal{O}(\log B)$ LogRobin $n_{in} + n_{\times} + \mathcal{O}(B)$ field elements

$Robin++$ J $\frac{n_{in} + n_{x} + O(10 \xi)}{$ field elements $n_{in} + n_{\times} + \mathcal{O}(\log B)$ LogRobin++

Technical Overview: LogRobin For example, consider the following 4-clause disjunctive statement, defined over some field F, each with 4 inputs and 2 multiplications. For simplicity, we assume a large enough field.

Technical Overview: LogRobin For example, consider the following 4-clause disjunctive statement, defined over some field $\mathbb F$, each with 4 inputs and 2 multiplications. For simplicity, we assume a large enough field.

 $[$ *in*₁ $]$ $[$ *in*₂ $]$ $[$ *in*₃ $]$ $[$ *in*₄ $]$ $[$ *l*₁ $]$ $[$ *l*₁ $]$ $[$ *l*₂ $]$ $[$ *l*₂ $]$ $[$ *v*₂ $]$ of the "active" clause

Technical Overview: LogRobin For example, consider the following 4-clause disjunctive statement, defined over some field F , each with 4 inputs and 2 multiplications. For simplicity, we assume a large enough field.

Technical Overview: LogRobin For example, consider the following 4-clause disjunctive statement, defined over some field F , each with 4 inputs and 2 multiplications. For simplicity, we assume a large enough field.

Technical Overview: LogRobin For example, consider the following 4-clause disjunctive statement, defined over some field F , each with 4 inputs and 2 multiplications. For simplicity, we assume a large enough field.

There exists a

zero vector.

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

Technique: $\mathcal{O}(\log B)$ Zero Membership Proof Inspired by [Groth and Kohlweiss, Eurocrypt'15]

$[e_0]$ $[e_1]$ $[e_2]$ $[e_3]$

$[e_0]$ $[e_1]$ $[e_2]$ $[e_3]$

Intuition: P not only knows that a zero exists but also its exact location.

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

$[e_0]$ $[e_1]$ $[e_2]$ $[e_3]$

 $(id_0]$ $(id_1]$ Prove in ZK each is a bit

There exists a zero element.

Intuition: P not only knows that a zero exists but also its exact location.

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

$[e_0]$ $[e_1]$ $[e_2]$ $[e_3]$

$(id_0]$ $(id_1]$ Prove in ZK each is a bit $[\delta_0]$ $[\delta_1]$

There exists a zero element.

Intuition: P not only knows that a zero exists but also its exact location.

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

Technique: $O(\log B)$ Zero Membership Proof $[e_0]$ $[e_1]$ $[e_2]$ $[e_3]$ There exists a zero element. Intuition: P not only knows that a zero "active" clause index *id* $(id_0]$ $(id_1]$ Prove in ZK each is a bit $[\Lambda \cdot (1 - id_0) + \delta_0]$ $[\Lambda \cdot (1 - id_1) + \delta_1]$ $[\delta_0]$ $[\delta_1]$ $[\Lambda \cdot id_0 - \delta_0]$ $[\Lambda \cdot id_1 - \delta_1]$ A random challenge Λ $id =$ log *B*−1 ∑ *i*=0 $id_i \cdot 2^i$

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

exists but also its exact location.

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

Intuition: P not only knows that a zero exists but also its exact location.

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

Technique: $\mathcal{O}(\log B)$ Zero Membership Proof

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

Intuition: P not only knows that a zero exists but also its exact location.

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

Technique: $\mathcal{O}(\log B)$ Zero Membership Proof

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

Intuition: P not only knows that a zero exists but also its exact location.

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

Technique: $\mathcal{O}(\log B)$ Zero Membership Proof

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

Intuition: P not only knows that a zero exists but also its exact location.

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

Technique: $\mathcal{O}(\log B)$ Zero Membership Proof

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

 $[e_0]$ $[e_1]$ $[e_2]$ $[e_3]$ η_0 η_1 η_2 η_3

> There exists a zero element.

Prove in ZK each is a bit

Intuition: P not only knows that a zero exists but also its exact location.

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

$$
M \underbrace{\begin{pmatrix} \Lambda \cdot (1 - id_0) + \delta_0 \\ \hline \Lambda \cdot id_0 - \delta_0 \end{pmatrix}}_{\text{Anadom}} \underbrace{\begin{pmatrix} \Lambda \cdot (1 - id_1) + \delta_1 \\ \hline \Lambda \cdot id_1 - \delta_1 \end{pmatrix}}_{[\delta_0]}
$$
\n
$$
[\delta_0]
$$
\n
$$
[\delta_1]
$$
\n
$$
[\delta_1]
$$
\nPro

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

Technique: $O(\log B)$ Zero Membership Proof $[e_0]$ $[e_1]$ $[e_2]$ $[e_3]$ There exists a zero element. Intuition: P not only knows that a zero "active" clause index *id* $\Lambda \cdot (1 - id_0) + \delta_0 \qquad \Lambda \cdot (1 - id_1) + \delta_1$ $[\delta_0]$ $[\delta_1]$ $\Lambda \cdot id_0 - \delta_0$ $\Lambda \cdot id_1 - \delta_1$ A random challenge Λ η_0 η_1 η_2 η_3 $e_0\eta_0 + e_1\eta_1 + e_2\eta_2 + e_3\eta_3 = f(\Lambda)$ *M* $id =$ log *B*−1 ∑ *i*=0 $id_i \cdot 2^i$

Inspired by [Groth and Kohlweiss, Eurocrypt'15]

exists but also its exact location.

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

 $(id_0]$ $(id_1]$ Prove in ZK each is a bit

Technique: $O(\log B)$ Zero Membership Proof $[e_0]$ $[e_1]$ $[e_2]$ $[e_3]$ There exists a zero element. Inspired by [Groth and Kohlweiss, Eurocrypt'15] Intuition: P not only knows that a zero exists but also its exact location. "active" clause index *id* $\Lambda \cdot (1 - id_0) + \delta_0 \qquad \Lambda \cdot (1 - id_1) + \delta_1$ $[\delta_0]$ $[\delta_1]$ $\Lambda \cdot id_0 - \delta_0$ $\Lambda \cdot id_1 - \delta_1$ A random challenge Λ η_0 η_1 η_2 η_3 $e_0\eta_0 + e_1\eta_1 + e_2\eta_2 + e_3\eta_3 = f(\Lambda)$ Key Observation: If P is honest, this must be a degree-1 polynomial in Λ . Moreover, P knows all $(\log B)$ coefficients before Λ is sampled. *M* $id =$ log *B*−1 ∑ *i*=0 $id_i \cdot 2^i$

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

$(id_0]$ $(id_1]$ Prove in ZK each is a bit

Technique: $\mathcal{O}(\log B)$ Zero Membership Proof $[e_0]$ $[e_1]$ $[e_2]$ $[e_3]$ There exists a zero element. Inspired by [Groth and Kohlweiss, Eurocrypt'15] "active" clause index *id* $\Lambda \cdot (1 - id_0) + \delta_0 \qquad \Lambda \cdot (1 - id_1) + \delta_1$ $[\delta_0]$ $[\delta_1]$ $\Lambda \cdot id_0 - \delta_0$ $\Lambda \cdot id_1 - \delta_1$ A random challenge Λ η_0 η_1 η_2 η_3 $e_0\eta_0 + e_1\eta_1 + e_2\eta_2 + e_3\eta_3 = f(\Lambda)$ Key Observation: If P is honest, this must be a degree-1 polynomial in Λ . Moreover, P knows all $(\log B)$ coefficients before Λ is sampled. P can commit to the coefficients initially and show two different ways to evaluate the same $f(\Lambda)$! *M* $id =$ log *B*−1 ∑ *i*=0 $id_i \cdot 2^i$

Intuition: P not only knows that a zero exists but also its exact location.

 $(id_0]$ $(id_1]$ Prove in ZK each is a bit

$$
id = \sum_{i=0}^{\log B - 1} id_i \cdot 2^i
$$

 $[$ *in*] $[$ *i* $[$ *f* $]$ $[$ *f* $]$ $[$ *o* $]$ $n_{in} + 3n_{\times}$ field elements

 $[n]$ $[\ell]$ $[r]$ $[0]$ $n_{in} + 3n_x$ field elements

 $\mathscr{C} \odot r = 0$ (1) field elements

LogRobin: Full Diagram

 $\begin{bmatrix} in \end{bmatrix}$ $\begin{bmatrix} r \end{bmatrix}$ $\begin{bmatrix} o \end{bmatrix}$ $n_{in} + 3n_x$ field elements

 $\mathscr{C} \odot \mathscr{r} = \mathscr{o}$ (1) field elements

LogRobin: Full Diagram $\begin{bmatrix} in \end{bmatrix}$ $\begin{bmatrix} r \end{bmatrix}$ $\begin{bmatrix} o \end{bmatrix}$ $n_{in} + 3n_{x}$ field elements $\mathscr{C} \odot \mathscr{r} = \mathscr{o}$ (1) field elements

$[\mathbf{v}_0], [\mathbf{v}_1], \ldots, [\mathbf{v}_{B-1}]$ $[\mathbf{v}_1], \ldots, [\mathbf{v}_{B-1}]$

β 1 field element

LogRobin: Full Diagram $\begin{bmatrix} in \end{bmatrix}$ $\begin{bmatrix} r \end{bmatrix}$ $\begin{bmatrix} o \end{bmatrix}$ $n_{in} + 3n_{x}$ field elements

 $[e_0], [e_1], \ldots, [e_{B-1}]$ $[e_1], \ldots, [e_{B-1}]$

 $\mathscr{C} \odot r = 0$ $\mathscr{O}(1)$ field elements

β

1 field element

 $\begin{bmatrix} in \end{bmatrix}$ $\begin{bmatrix} r \end{bmatrix}$ $\begin{bmatrix} o \end{bmatrix}$ $n_{in} + 3n_x$ field elements

 $\mathscr{C} \odot \mathscr{r} = \mathscr{o}$ (1) field elements

β

$[\mathbf{v}_0], [\mathbf{v}_1], ..., [\mathbf{v}_{R-1}]$ $[\mathbf{v}_0], [\mathbf{v}_1], ..., [\mathbf{v}_{R-1}]$

 $[e_0], [e_1], \ldots, [e_{B-1}]$ $[e_0], [e_1], \ldots, [e_{B-1}]$ $[\delta_0], [\delta_1], \ldots, [\delta_{\log B-1}]$

1 field element

 $[\delta_0], [\delta_1], \ldots, [\delta_{\log B-1}]$

 $[e_0], [e_1], \ldots, [e_{B-1}]$ $[e_0], [e_1], \ldots, [e_{B-1}]$ $[\delta_0], [\delta_1], ..., [\delta_{\log B-1}]$ $[i d_0], [id_1], ..., [id_{\log B-1}]$ $[\delta_0], [\delta_1], ..., [\delta_{\log B-1}]$

 $[id_0], [id_1], ..., [id_{\log B-1}]$

LogRobin: Full Diagram

 $\begin{bmatrix} in \end{bmatrix}$ $\begin{bmatrix} r \end{bmatrix}$ $\begin{bmatrix} o \end{bmatrix}$ $n_{in} + 3n_{x}$ field elements

 $\mathscr{C} \odot \mathscr{r} = \mathscr{o}$ (1) field elements

β

1 field element

 $[c_0], [c_1], ..., [c_{\log B-1}]$ ($\mathcal{O}(\log B)$ field elements

 $[e_0], [e_1], ..., [e_{B-1}]$ $id \odot (id-1) = 1$ $\odot(1)$ field elements $[e_0], [e_1], ..., [e_{B-1}]$ $[id_0], [id_1], ..., [id_{\log B-1}]$ $[\delta_0], [\delta_1], ..., [\delta_{\log B-1}]$ $[i d_0], [id_1], ..., [id_{\log B-1}]$ $[\delta_0], [\delta_1], ..., [\delta_{\log B-1}]$

LogRobin: Full Diagram

 $\begin{bmatrix} in \end{bmatrix}$ $\begin{bmatrix} r \end{bmatrix}$ $\begin{bmatrix} o \end{bmatrix}$ $n_{in} + 3n_{x}$ field elements

 $\mathscr{C} \odot \mathscr{r} = \mathscr{o}$ (1) field elements

β

1 field element

 $O(1)$ field elements

 $[c_0], [c_1], ..., [c_{\log B-1}]$ ($\mathcal{O}(\log B)$ field elements

 $[e_0], [e_1], ..., [e_{B-1}]$ $id \odot (id-1) = 1$ $\odot(1)$ field elements $[e_0], [e_1], ..., [e_{B-1}]$ $[id_0], [id_1], ..., [id_{\log B-1}]$ Λ $[\delta_0], [\delta_1], ..., [\delta_{\log B-1}]$ $[id_0], [id_1], ..., [id_{\log B-1}]$ $[\delta_0], [\delta_1], ..., [\delta_{\log B-1}]$

LogRobin: Full Diagram

 $\begin{bmatrix} in \end{bmatrix}$ $\begin{bmatrix} r \end{bmatrix}$ $\begin{bmatrix} o \end{bmatrix}$ $n_{in} + 3n_{x}$ field elements

 $\mathscr{C} \odot \mathscr{r} = \mathscr{o}$ (1) field elements

β

1 field element

 $O(1)$ field elements

 $[c_0], [c_1], ..., [c_{\log B-1}]$ ($\mathcal{O}(\log B)$ field elements

1 field element

 M (log *B*) field elements

LogRobin: Full Diagram

 $[n]$ $[\ell]$ $[r]$ $[0]$ $n_{in} + 3n_x$ field elements

 $\mathscr{C} \odot r = 0$ (1) field elements

β

B−1 ∑ *i*=0 $\eta_i[e_i]$

1 field element

 $\mathcal{O}(1)$ field elements

 $[c_0], [c_1], ..., [c_{\log B-1}]$ ($\mathcal{O}(\log B)$ field elements

1 field element

 M (log *B*) field elements

 $\begin{bmatrix} in \end{bmatrix}$ $\begin{bmatrix} r \end{bmatrix}$ $\begin{bmatrix} o \end{bmatrix}$ $n_{in} + 3n_x$ field elements

 $\mathscr{C} \odot \mathscr{r} = \mathscr{o}$ (1) field elements

β

B−1 ∑ *i*=0 $\eta_i[e_i]$ *B*−1 ∑ *i*=0 Λ^i

$$
\sum_{i=0}^{B-1} \eta_i [e_i]
$$

\n
$$
\sum_{i=0}^{B-1} \Lambda^i [c_i]
$$

 $[e_0], [e_1], ..., [e_{B-1}]$ $id \odot (id-1) = 1$ $\odot(1)$ field elements $[e_0], [e_1], ..., [e_{B-1}]$ $[id_0], [id_1], ..., [id_{\log B-1}]$ Λ $[\delta_0], [\delta_1], ..., [\delta_{\log B-1}]$ $[id_0], [id_1], ..., [id_{\log B-1}]$ $[\delta_0], [\delta_1], ..., [\delta_{\log B-1}]$

1 field element

 $O(1)$ field elements

 $[c_0], [c_1], ..., [c_{\log B-1}]$ ($\mathcal{O}(\log B)$ field elements

1 field element

 M (log *B*) field elements

LogRobin: Full Diagram

 $\begin{bmatrix} in \end{bmatrix}$ $\begin{bmatrix} r \end{bmatrix}$ $\begin{bmatrix} o \end{bmatrix}$ $n_{in} + 3n_x$ field elements

 $\mathscr{C} \odot \mathscr{r} = \mathscr{o}$ (1) field elements

β 1 field element

 $O(1)$ field elements

 $[c_0], [c_1], ..., [c_{\log B-1}]$ ($\mathcal{O}(\log B)$ field elements

B−1 ∑ *i*=0 *B*−1 ∑ *i*=0 Λ^i

Λ 1 field element

 M (log *B*) field elements

$$
\sum_{i=0}^{B-1} \eta_i [e_i] =
$$

$$
\sum_{i=0}^{B-1} \Lambda^i [c_i]
$$

 $[e_0], [e_1], ..., [e_{B-1}]$ $id \odot (id-1) = 1$ $\odot(1)$ field elements $[e_0], [e_1], ..., [e_{B-1}]$ $[id_0], [id_1], ..., [id_{\log B-1}]$ \wedge \qquad \qquad $[\delta_0], [\delta_1], ..., [\delta_{\log B-1}]$ $[i d_0], [id_1], ..., [id_{\log B-1}]$ $[\delta_0], [\delta_1], ..., [\delta_{\log B-1}]$

Summary of Our Results field elements $n_{in} + 3n_{x} + O(B)$ Robin field elements $n_{in} + 3n_{\times} + \mathcal{O}(\log B)$ LogRobin $n_{in} + n_{\times} + \mathcal{O}(B)$ field elements $Robin++$ $\int_{\text{field elements}}^{\text{v}_{in}+\text{v}_{\times}+\text{C}(10.5)}$ $n_{in} + n_{\times} + \mathcal{O}(\log B)$ LogRobin++

ePrint GitHub

Email: yyang811@gatech.edu