Compute, but Verify: Efficient Multiparty
Computation over Authenticated Inputs

Moumita Dutta Chaya Ganesh Sikhar Patranabis Nitin Singh
[ISc Bangalore [ISc Bangalore IBM Research, India IBM Research, India

Full version: https://ia.cr/2022/1648

Asiacrypt 2024 | December 11, 2024

Multi-Party Computation

[0 0 -
~— >

o0
Py ixg Py 1 x;

Aim :f(xl, xz,xg,x4)

P3:X3 - Xy
o0

© — ©

Goals:
* Privacy of Input
* Correctness of Output

Multi-Party Computation

00 - '
~— >

o0
Py ixg Py 1 x;

Aim :f(xl, xz,X3,x4)

P; : x5 Py:xy

© — U

Goals:
* Privacy of Input
* Correctness of Output

Corruption:
* Semi-Honest
* Malicious

Multi-Party Computation Guarantees

y \) \
o0 <
~— >

o0
Py ixg Py 1 x;

Aim :f(xl, xZ,X3,x4)

00 < 00
N—" > N—"

P; : x5 Py:xy

r 3

Not traditional MPC guarantee

What if inputs are corrupted?

Data-poisoning attack

e Eg.2PCAND
computation

e Application: Secure
aggregation in ML

Multi-Party Computation Guarantees

Not traditional MPC guarantee

00 P
~— >

o0
P xq Py:x, What if inputs are corrupted?

Aim :f(xl, xz,X3,x4)

| /' '\ " Solution

P; : x5 Py:xy

<') > . - Inputs are authenticated

SN—"

Problem Statement

P, P, P,
e

Ensure “authenticated inputs” J 1 J
are used inside MPC

Performance Requirement

MPC

Negligible comr.nu.nlcatlon overhead \Ensure inputs are “authentic,,/
on existing MPC
(supports existing infrastructure) l

f (X1, 2x)

How to achieve authentication?

What are authentic inputs?

How to ensure the input provided is
authentic?

Inputs signed by certifying authority

Verify: signature corresponds to
the private input

Step1

Authentic inputs signed
by certifying authority

Step2

Determine if the input used inside MPC
is authentic (consistent with signature)

Attempt: Authenticate inside MPC

P, P; b,
(T) (x[) (xl") Signature verification done inside MPC

Expensive

Authenticate Requires circuit representation of

algebraic signature verification
* Authenticate outside MPC

* Challenge: linking of sighed message
EXPENSIVE! and MPC input

Our Contributions

» Efficient compiler that transforms secret-sharing based honest majority MPC
into one with authenticated inputs.

* Building block: Robust Distributed Proof of Knowledge (DPoK) for
algebraically structured signature schemes.
DPoKs are of independent interest as a primitive.

« Communication overhead of 0(n? log £) to authenticate £-sized input of n
parties in secret-sharing based honest majority MPC.

Our Contributions: DPoK

Distributed Proof of Knowledge

/Wl Wz\

- . -
Prover Prove the validity of the claim wrt w . N

@ ©
\m w

Verifer

- J

w = Reconstruct(wy, ..., w,) The secret w satisfies P = g"
for publicly known P and g.

Our Contributions: DPoK

* Robust DPoK

Distributed Proof of Knowledge (security in presence of dishonest usage of shares)

/ W1

£

N

KW3

W, \
-

Prover

* Construction of DPoK for Discrete Logarithm.
* DPoKs for algebraic signatures - BBS+ & PS.
* Round efficient DPoKs in the Random Oracle Model.

4)

Prove the validity of the claim wrt w

00
~

w = Reconstruct(wy, ...

, Wy)

>
>

Verifer

- J

The secret w satisfies P = g%
for publicly known P and g.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. CRYPTO 2004.

[ASMO6] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. CT-RSA 2016.

Our Contributions: Our Compiler

Distributed Proof of Knowledge

4)

Less computational
and communication
overhead on MPC

. V_J

Building
block

MPC with
authenticated inputs

MPC Our Compiler

Related Work: Input authentication

* [Bau16,KMW16,ZBB17]: Input validation for 2PC using Garbled Circuits.
* [BJ18]: Constructs MPC with certified input for MPC [DKL+13,DNO7].

* [ADEO21]: Signature verification inside MPC for PS signature scheme, using
bilinear pairing over secret-shared data.

Authenticated | Generation of authenticated shares
secret-sharing [BJ18, ADEO21]

Requires additional check to ensure

k [G] j same shares are used in MPC

Distributed Proofs of Knowledge: Motivation

Classical Proofs

* Completeness [Honest Prover should succeed]
* Soundness [Malicious Prover should fail]
* Zero-Knowledge [Malicious Verifier learns nothing extra]
(Statement)
Prover Verifier

(witness) Output = 0/1

Distributed Proofs of Knowledge: Motivation

Classical Proofs How to deploy in MPC?

Each party in MPC has to act as prover to prove its input’s authenticity to every other party.

(Statement)

Prover Verifier
(witness) Output = 0/1

Distributed Proofs of Knowledge

* Proof generated by workers Share (w) — (s1, 52, 53, 54)
* Distribute witness amongst workers Reconstruct (s1, 5,53,54) = w

4 7N I
Lt @ |
@)

Prover

\(Witness w) \@

/ Verifier
W, :

+ 54 Output = 0 /y

Workers

Distributed Proofs of Knowledge: Guarantees

Soundness

[Malicious Prover should fail] Share (w) = (51,52, 53, 54)

Reconstruct (sq, Sy, S3,54) = W

/\

Prover
(witness w)

/ Verifier
W, s,

/

Workers

Distributed Proofs of Knowledge: Guarantees

Robust Completeness Share () - (:
_)
[Honest Prover always succeeds] are (W) = (51,52, 53, 54
Reconstruct (sq, Sy, S3,54) = W

4 N

' @
S1
S2 ‘oo>
S3

Prover

\(Witness w) \QD/

Workers

/ Verifier
W, : s,

/

Our Compiler using DPoK

MPC

Our Compiler

Secret-sharing phase

—

Online phase

MPC with
authenticated inputs

\/

Secret-sharing phase

=

Input authentication phase
using DPoK for [BBS+,PS]

=

Online phase

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. CRYPTO 2004.
David Pointcheval and Olivier Sanders. Short randomizable signatures. CT-RSA 2016.

[PS16]

Input authentication via signatures

Proof of Knowledge of

PS Signature
Proof of Knowledge for

Discrete Logarithm Relation

Proof of Knowledge of

BBS+ Signature _
For publicly known P and g, prove

knowledge of x such that P = g*

Outline

* Robust DPoK for discrete log relation

* Robust DPoK for PS Signatures
(Robust DPoK for BBS+ Signatures)

* Overview of our compiler

Outline

* Robust DPoK for discrete log relation
PoK for discrete log relation
DPoK for discrete log relation

Robust DPoK for discrete log relation

2.-Protocol (PoK) for discrete log relation

* Proof of Knowledge (PoK) of x € F’ suchthatP = g* = g;* -+ g,*
* Sigma Protocol (3 move protocol): PoK for discrete logarithm relation

r < F? A=g"

a
a
T
=

Z=71T+cx VA , gZ — APC
Prover Verifier
(P,g;x) P, 9)

Check:gz — gr+cx — gr(gx)c = APC

2.-Protocol (PoK) for discrete log relation

* Proof/
: Next:
e Sigme
Distributed 2-Protocol for discrete log relation
Pr—— Prover secret-shares its witness amongst P
workers.
P * Forsimplicity of presentation, we consider 174
additive-secret sharing.
G N 4
Prover Verifier
(P,g;x) (P,9)

Check : gz — gr+Cx — gr(gx)c — APC

DPoK for discrete log relation

 Proof of Knowledge (PoK) of x such that P = g*
* P:computes (xq, ..., x,) suchthatx; + -+ x, = x
* P:sends x; & W, (over private channel) suchthat P = g* = g*17+*n

Broadcast Model

r-
rl'(—ﬂ'-“{) i_gl

zZ; =1; + cx; Zj

Verifier
(P,g9)

Worker
(P, g; x:) grttm = Ay A PC
)) 1
Check:gzl+"'+zn — gr1+cx1+--- — gr1 ,,,grn(gx1+~--+xn)c — Al "'AnPC

DPoK for discrete log relation

* Proof of K

* Prcompul check fails even if one worker is corrupt!
* P:sends

X1+ +xp

Broadcast Model

— Tri
rl'(—ﬂ'-“{) i_gl

Z;, =T+ cx; Zi R

Verifier
(P,g9)

Worker
(P, g:x) g = A
)) 1
Check:gzl+"'+zn — gr1+cx1+--- — gr1 ,_,grn(gx1+---+xn)c — Al "'AnPC

Robust DPoK

Honest input is authenticated
even if some workers are corrupt

* (t,n) - linear secret sharing to enable error-correction

* Properties of linear codes :
1. Linear combination of codewords is also a codeword

2. “Error-preserving”:
linear combination retains the position of error in a codeword

3. “Error-preserving” property is provable for corruption < distance/3

Error-correcting Linear Codes

Codeword P; P, P,_4 P,
a a4 a, Ap_1 an
b by b, b,_1 b,
c €1 C2 Cn-1 Cn
erroris
preserved }
L(a,b,c) L(ay, by, cq) L(ay, by, ;) L(an-1,bn-1,cn-1) L(ay, by, cn)

Property: Error preserved while taking linear combination

Robust DPoK for discrete log relation

* P:computes (x4, ..., x,) < Share(x) and then sharesx; > W;

* P:samplesr « FF, computes (7, ...

Broadcast Model

Worker
(P' g, Xi, ri)

%]

A; = g*,B; = hi'hy"

w; <« F s
. Y y « F¢
=V, x;) +1; v; ‘
1. PoK for opening of A;, B;
L

2. PoK for opening w; of A;B;
such that v; = (w;, (¥, 1,0))

1. Error-correct the codes
2. Check: [Tiex A" = P

,T,) < Share(r), and then sharesr; - W,

Verifier
(P,g9)

Outline

* Robust DPoK for PS Signatures
PS Signatures
PoK for PS Signatures
Robust DPoK for PS Signatures

(Similarly: Robust DPoK for BBS+ Signatures)

Bilinear Group
(Q; Gl» GZ' GT} €9, h)

* G1,G,,and G are groups of order g (prime).
* g, h are generators of G, G, respectively.
*e: Gy XG, — Grisabilinear map.
*Forallg € G;,h € Gy ;x,y € F (F,)

e(g*, h) = e(g,h)* =e(g”?, h*)

PS Signatures

Sign
* Input:sk,m = (mq, ..., myp)
* Output: 0 = (g4,0,), where
Keygen .« g, <G
« Setup: (q,Gq,G,,Gr,e,g9,h) s 0, = alx+m1y1+'"+m*’y"
« Sample (x,yq, ..., y,) « F**1
. Set(X,Y,..,Y,) = (h%, k1, .., h¥0) .
* Output (sk, pk), where vertty

o sk = (6Vy, ., Vp) Input: pk,m = (my, ..., my), 0 = (01,0,)

« pk =(h XYy,Y)

Output: 1 iff

o, #e; A e(oy, XY™ Y, ") = e(oy,h)

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. CT-RSA 2016.

PS Signatures

Keygen

» Setup: (q,G1,G5,Gr,e,9,h)

« Sample (x,yq, ..., y,) « F**1

« Set(X,Y;,..,Y,) = (h* hY1, ..., hY?)
* Output (sk, pk), where

e sk = (%, Y1, -, Vp)
« pk =(h XY,Yp)

Sign
* Input:sk,m = (mq, ..., myp)
* Output: 0 = (g4,0,), where
* 0 <Gy
el o, = 0.195+m1Y1+"'+m£W
X
\ Verify

Input: pk,m = (mq, \.,m,), o = (0q,0,)

Output: 1 iff

0'1¢61/\

e(ay, XY, - Y,") = e(0y, h)

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. CT-RSA 2016.

PoK for PS Signatures

Rerandomization of signature
* 1t L

* o' =(0],(02- 1))

' = (01,0,)

PoK for opening of:

e(0,X) TTi=1 (e(01.Y;)) - eCof, h)E = e(a3, h)

V accepts if
Prover / P Verifier

PoK'is valid K= RXY v
(pk.m, 0 = (01,02)) [Reduces to PoK for discrete login Gy (pk = h, X, Yy, ... Y,)

mj

Robust DPoK for PS Signatures

Rerandomization of signature

* 1,t « Zq

* o' =(0],(02-01)")

(my, ...,m,) < Share(m) form € F*

Sharesm; - W;

Worker
(pk; mi)

Prover broadcasts: (¢’ = (04, 07)) >

e(ai,X)- H§=1 (e(al’,

Robust DPoK for opening of:

-e(of, W)t =e(o3,h)

|

Similar to PS, PoK for BBS+ also

V accepts if Verifier

reduces to PoK for discrete log

PoK is valid (pk =nhXY, ..

,Yp)

Outline

* Overview of our compiler

Input Authentication using our DPoK

Compiler

4

(

Sharing Phase

Original Sharing Phase to obtain shares of input

Online Phase

Input authentication phase

Original Online Phase using shares of input

Input Authentication using our DPoK

(

Sharing Phase Original Sharing Phase to obtain shares of input

Compiler [<

Online Phase

_ Input authentication phase

« Goal: Prove x; (P; s input) is valid wrt signature
o; corresponding to public key pk.

* Each P, acts as a worker to generate the proof.

* Each P, (k # i) acts as a verifier.

Original Online Phase using shares of input

Input Authentication using our DPoK

Compiler

4

(

Sharing Phase

Original Sharing Phase to obtain shares of input

Online Phase

Example: Input authentication phase for P;’s input x3

Py (x31) All act as workers to Pz (*32)
Proof generation prove authenticity
of input x3
P3 (x33) Py (x34)

Original Online Phase using shares of input

Input Authentication using our DPoK

Compiler

4

(

Sharing Phase

Original Sharing Phase to obtain shares of input

Online Phase

Verification

Example: Input authentication phase for P;’s input x3

Py (x31) All act as verifiers to Pz (*32)
verify authenticity
of input x3
P3 (x33) Py (x34)

Original Online Phase using shares of input

Input Authentication using our DPoK

(
Sharing Phase Original Sharing Phase to obtain shares of input
Compiler [<
Online Phase
_ ./ Input authentication phase
« Goal: Prove x; (P; s input) is valid wrt signature
/ _ o; corresponding to public key pk.
Less computational
and communication * Each P, acts as a worker to generate the proof.
overhead on * Each P, (k # i) acts as a verifier.
underlying
unauthenticated
\ MPC execution J Original Online Phase using shares of input

Our Performance

Vanilla MPC Auth MPC with MiMC Hash DPoK Overhead
Number
of Parties . . . - . .
Time Communication Time Communication Time Communication
(sec) (MB) (sec) (MB) (sec) (kB)
3 33s 8437 MB 273s 13979 MB 5.7s 14.4 kB
5 125s 43823 MB 1369s 14498 MB 6.2s 30 kB
7 386.2s 127057 MB 3645.33s 207427 MB 8.2s 52 kB

Figure. Comparison of our DPoK-based approach for MPC input authentication with the naive

approach of validating BBS+ signatures inside MPC (which involves computing MiMC hashes
inside MPC) for datasets of size 500x10.

Our Performance

Vanilla MPC Auth MPC with MiMC Hash DPoK Overhead
Number
of Parties . . . - . .
Time Communication Time Communication Time Communication
(sec) (MB) (sec) (MB) (sec) (kB)
3 33s 8437 MB 273s 13979 MB 5.7s 14.4 kB
5 125s 43823 MB 1369s 14498 MB 6.2s 30 kB
7 386.2s 127057 MB 3645.33s 207427 MB 8.2s 52 kB

Figure. Comparison of our DPoK-based approach for MPC input authentication with the naive

approach of validating BBS+ signatures inside MPC (which involves computing MiMC hashes
inside MPC) for datasets of size 500x10.

Summary

* Robust Distributed Proof of Knowledge (multi-prover)
e Construction of Robust DPoK for BBS+ and PS.

* Our compiler: preserves the security guarantees of underlying MPC (eg. Id-
abort, GOD)

MPC with
authenticated inputs

MPC Our Compiler

Thank you!

https://ia.cr/2022/1648

https://ia.cr/2022/1648

References

[ADEO21]

[Bau16]
[BBS04]
[ASMO06]
[BJ18]

[DKL+13]

[DNO7]

[KMW16]

[PS16]
[ZBB17]

Diego F. Aranha, Anders P. K. Dalskov, Daniel Escudero, and Claudio Orlandi. Improved threshold
signatures, proactive secret sharing, and input certification from LSS isomorphisms. LATINCRYPT 2021.

Carsten Baum. On garbling schemes with and without privacy.
Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. CRYPTO 2004.
(BBS+) Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA.

Marina Blanton and Myoungin Jeong. Improved signature schemes for secure multi-party computation with
certified inputs. ESORICS 2018.

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. ESORICS 2013.

lvan Damgard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation.
CRYPTO 2007.

Jonathan Katz, Alex J. Malozemoff, and Xiao Wang. Efficiently enforcing input validity in secure two-party
computation.

David Pointcheval and Olivier Sanders. Short randomizable signatures. CT-RSA 2016.

Yihua Zhang, Marina Blanton, and Fattaneh Bayatbabolghani. Enforcing input correctness via certification
in garbled circuit evaluation. ESORICS 2017.

Our Performance

Number Number Vanilla MPC DPoK Overhead
of Parties | of Rows | Tjme (sec) | Communication (MB) Time (sec) Communication (kB)
100 6.67 1733 0.519 13
1000 64 16754 18 15
° 2000 129 33398 65 15.3
4000 260 66502 246 15.8
100 26 8838 0.643 28
1000 265 87747 20 31
° 2000 521 175671 76 32
4000 958 350658 312 33

Figure. Comparison of our DPoK-based approach for MPC input authentication (using BBS+
signatures) with 3 and 5 parties on datasets with 10 columns. For example, datasets containing

statistics of shipments are used as inputs to compute the industry-wide average of those statistics.

