An Algorithmic Approach to (2, 2)-isogenies in the Theta Model and Applications to Isogeny-based Cryptography

Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert

Asiacrypt 2024

12th December, 2024

SIDH attacks relied on the computation of chains of 2-isogenies between elliptic products.

 \rightarrow In dimension two: Richelot formulae and specific algorithms for gluing and splitting.

- SIDH attacks have introduced a new representation for isogenies between elliptic curves.
	- \hookrightarrow KEMs: FESTA and QFESTA.
	- \leftrightarrow SQIsign variants.
- SIDH attacks relied on the computation of chains of 2-isogenies between elliptic products.
	- \rightarrow In dimension two: Richelot formulae and specific algorithms for gluing and splitting.
- SIDH attacks have introduced a new representation for isogenies between elliptic curves.
	- \hookrightarrow KEMs: FESTA and QFESTA.
	- \hookrightarrow SQIsign variants.

Problem

We needed a faster way to compute $(2, 2)$ -isogenies between elliptic products.

The correct higher-dimensional generalisation of elliptic curves is principally polarised abelian varieties.

- The correct higher-dimensional generalisation of elliptic curves is principally polarised abelian varieties.
- In dimension two, we have *principally polarised abelian* surfaces (PPASes).
	- Products of elliptic curves,

- The correct higher-dimensional generalisation of elliptic curves is principally polarised abelian varieties.
- In dimension two, we have *principally polarised abelian* surfaces (PPASes).
	- Products of elliptic curves,
	- Jacobians of genus-2 curves.

- The correct higher-dimensional generalisation of elliptic curves is principally polarised abelian varieties.
- In dimension two, we have *principally polarised abelian* surfaces (PPASes).
	- Products of elliptic curves,
	- Jacobians of genus-2 curves.
- Isogenies between PPASes have kernels of rank two.
- \bullet An (N, N) -isogeny is an isogeny between PPASes whose kernel $\simeq \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$.

Chains of (2, 2)-isogenies between elliptic products

Goal: Compute the $(2^n, 2^n)$ -isogeny $\Phi : E_1 \times E_2 \to E'_1 \times E'_2$

Chains of (2, 2)-isogenies between elliptic products

Goal: Compute the $(2^n, 2^n)$ -isogeny $\Phi : E_1 \times E_2 \to E'_1 \times E'_2$ We compute Φ as a chain of $(2, 2)$ -isogenies:

 $\Phi = \Phi_n \circ \ldots \circ \Phi_1$

Chains of (2, 2)-isogenies between elliptic products

Goal: Compute the $(2^n, 2^n)$ -isogeny $\Phi : E_1 \times E_2 \to E'_1 \times E'_2$ We compute Φ as a chain of $(2, 2)$ -isogenies:

$$
\Phi = \Phi_n \circ \ldots \circ \Phi_1
$$

- Gluing isogeny $\Phi_1 : E_1 \times E_2 \to \text{Jac}(\mathcal{C})$ (Howe, Leprévost, and Poonen, 2000).
- Splitting Isogeny Φ_n : Jac $(\mathcal{C}) \to E'_1 \times E'_2$ (Smith, 2005).

• Richelot Isogenies
$$
\Phi_i : \text{Jac}(\mathcal{C}_i) \to \text{Jac}(\mathcal{C}_{i+1}),
$$
 for $i = 2, ..., n-1$ (Smith, 2005).

- Represent PPASes via the *theta model*.
- Very efficient formulae to perform arithmetic.
- We adapt these formulae to our use case.
- Compared to the state of the art:
	- Codomain computation is **ten** times faster.
	- Isogeny evaluation is **twenty** times faster.
- We can now compute "cryptographic-size" isogenies in matter of ms.

Let A be a principally polarised abelian surface.

Let A be a principally polarised abelian surface. Let $\mathcal{A}[4] = \langle S_1', S_2' \rangle \oplus \langle T_1', T_2' \rangle$ be a symplectic 4-torsion basis

•
$$
e(S'_1, T'_1) = e(S'_2, T'_2) = \mu
$$
,

•
$$
e(S'_1, S'_2) = e(T'_1, T'_2) = e(S'_1, T'_2) = e(S'_2, T'_1) = 1.
$$

Let A be a principally polarised abelian surface. Let $\mathcal{A}[4] = \langle S_1', S_2' \rangle \oplus \langle T_1', T_2' \rangle$ be a symplectic 4-torsion basis

•
$$
e(S'_1, T'_1) = e(S'_2, T'_2) = \mu
$$
,

•
$$
e(S'_1, S'_2) = e(T'_1, T'_2) = e(S'_1, T'_2) = e(S'_2, T'_1) = 1.
$$

 $\langle S_1', S_2' \rangle \oplus \langle T_1', T_2' \rangle \rightsquigarrow \theta_{00}, \theta_{10}, \theta_{01}, \theta_{11}$

$$
P \in \mathcal{A} \to (\theta_{00}(P) : \theta_{10}(P) : \theta_{01}(P) : \theta_{11}(P)) \in \mathbb{P}^3
$$

Taken from [nLab.](https://ncatlab.org/nlab/show/Riemannian+orbifold)

Let A be a principally polarised abelian surface. Let $\mathcal{A}[4] = \langle S_1', S_2' \rangle \oplus \langle T_1', T_2' \rangle$ be a symplectic 4-torsion basis • $e(S'_1, T'_1) = e(S'_2, T'_2) = \mu$, • $e(S'_1, S'_2) = e(T'_1, T'_2) = e(S'_1, T'_2) = e(S'_2, T'_1) = 1.$ $\langle S_1', S_2' \rangle \oplus \langle T_1', T_2' \rangle \rightsquigarrow \theta_{00}, \theta_{10}, \theta_{01}, \theta_{11}$

 $P \in \mathcal{A} \to (\theta_{00}(P) : \theta_{10}(P) : \theta_{01}(P) : \theta_{11}(P)) \in \mathbb{P}^3$

The projective point $(\theta_{00}(0):\theta_{10}(0):\theta_{01}(0):\theta_{11}(0))$ is enough to describe A . Taken from [nLab.](https://ncatlab.org/nlab/show/Riemannian+orbifold)

Some operators

The Hadamard transform

$$
\mathcal{H}(x, y, z, w) := \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}
$$

We define $(\tilde{\theta}_{00}(P) : \tilde{\theta}_{10}(P) : \tilde{\theta}_{01}(P) : \tilde{\theta}_{11}(P)) = \mathcal{H}(\theta_{00}(P), \theta_{10}(P), \theta_{01}(P), \theta_{11}(P))$ to be the dual coordinates of P. Also $\mathcal{H} \circ \mathcal{H}(x, y, z, w) = (x, y, z, w).$

Some operators

The Hadamard transform

$$
\mathcal{H}(x, y, z, w) := \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}
$$

We define $(\tilde{\theta}_{00}(P) : \tilde{\theta}_{10}(P) : \tilde{\theta}_{01}(P) : \tilde{\theta}_{11}(P)) = \mathcal{H}(\theta_{00}(P), \theta_{10}(P), \theta_{01}(P), \theta_{11}(P))$ to be the dual coordinates of P. Also $\mathcal{H} \circ \mathcal{H}(x, y, z, w) = (x, y, z, w).$ The squaring operator:

$$
\mathcal{S}(x, y, z, w) := (x^2, y^2, z^2, w^2).
$$

Some operators

The Hadamard transform

$$
\mathcal{H}(x, y, z, w) := \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}
$$

We define $(\tilde{\theta}_{00}(P) : \tilde{\theta}_{10}(P) : \tilde{\theta}_{01}(P) : \tilde{\theta}_{11}(P)) = \mathcal{H}(\theta_{00}(P), \theta_{10}(P), \theta_{01}(P), \theta_{11}(P))$ to be the dual coordinates of P. Also $\mathcal{H} \circ \mathcal{H}(x, y, z, w) = (x, y, z, w).$ The squaring operator:

$$
\mathcal{S}(x, y, z, w) := (x^2, y^2, z^2, w^2).
$$

The \star operator:

$$
(x, y, z, w) \star (x', y', z', w') = (xx', yy', zz', ww').
$$

Let $\mathcal{A}[4] = \langle S_1', S_2' \rangle \oplus \langle T_1', T_2' \rangle$ be a symplectic 4-torsion basis.

Let $\mathcal{A}[4] = \langle S_1', S_2' \rangle \oplus \langle T_1', T_2' \rangle$ be a symplectic 4-torsion basis. Let $\Phi : \mathcal{A} \to \mathcal{B}$, ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$. For all $P, Q \in \mathcal{A}$

$$
\left(\theta_i^{\mathcal{A}}(P+Q)\right)_i\star\left(\theta_i^{\mathcal{A}}(P-Q)\right)_i=\mathcal{H}\left(\left(\tilde{\theta}_i^{\mathcal{B}}(\Phi(P))\right)_i\star\left(\tilde{\theta}_i^{\mathcal{B}}(\Phi(Q))\right)_i\right).
$$

Let
$$
\mathcal{A}[4] = \langle S_1', S_2' \rangle \oplus \langle T_1', T_2' \rangle
$$
 be a symplectic 4-torsion basis.
Let $\Phi : \mathcal{A} \to \mathcal{B}$, ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T_i'$.
For all $P, Q \in \mathcal{A}$

$$
\left(\theta_i^{\mathcal{A}}(P+Q)\right)_i\star \left(\theta_i^{\mathcal{A}}(P-Q)\right)_i=\mathcal{H}\left(\left(\tilde{\theta}_i^{\mathcal{B}}(\Phi(P))\right)_i\star \left(\tilde{\theta}_i^{\mathcal{B}}(\Phi(Q))\right)_i\right).
$$

We can obtain addition formulae:

- Differential addition: $8S + 17M$,
- Doubling: $8S + 6M$.

The same formulae as in (Gaudry, 2005).

Goal: To compute the isogeny $\Phi : \mathcal{A} \to \mathcal{B}$ with ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$.

Goal: To compute the isogeny $\Phi : \mathcal{A} \to \mathcal{B}$ with ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$. Assume that we have an isotropic group $\langle T''_1, T''_2 \rangle$ such that $T'_i = [2]T''_i$.

Goal: To compute the isogeny $\Phi : \mathcal{A} \to \mathcal{B}$ with ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$. Assume that we have an isotropic group $\langle T''_1, T''_2 \rangle$ such that $T'_i = [2]T''_i$. Define $(\alpha : \beta : \gamma : \delta) = (\tilde{\theta}_{00}^{\mathcal{B}}(0) : \tilde{\theta}_{10}^{\mathcal{B}}(0) : \tilde{\theta}_{01}^{\mathcal{B}}(\tilde{0}) : \tilde{\theta}_{11}^{\mathcal{B}}(0)).$

Goal: To compute the isogeny $\Phi : \mathcal{A} \to \mathcal{B}$ with ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$. Assume that we have an isotropic group $\langle T''_1, T''_2 \rangle$ such that $T'_i = [2]T''_i$. Define $(\alpha : \beta : \gamma : \delta) = (\tilde{\theta}_{00}^{\mathcal{B}}(0) : \tilde{\theta}_{10}^{\mathcal{B}}(0) : \tilde{\theta}_{01}^{\mathcal{B}}(\tilde{0}) : \tilde{\theta}_{11}^{\mathcal{B}}(0)).$ One can prove:

$$
\mathcal{H} \circ \mathcal{S}(\theta_{00}^A(T_1''), \theta_{10}^A(T_1''), \theta_{01}^A(T_1''), \theta_{11}^A(T_1'')) = (x\alpha, x\beta, y\gamma, y\delta), \mathcal{H} \circ \mathcal{S}(\theta_{00}^A(T_2''), \theta_{10}^A(T_2''), \theta_{01}^A(T_2''), \theta_{11}^A(T_2'')) = (z\alpha, w\beta, z\gamma, w\delta),
$$

for some unknown x, y, z, w .

Goal: To compute the isogeny $\Phi : \mathcal{A} \to \mathcal{B}$ with ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$. Assume that we have an isotropic group $\langle T''_1, T''_2 \rangle$ such that $T'_i = [2]T''_i$. Define $(\alpha : \beta : \gamma : \delta) = (\tilde{\theta}_{00}^{\mathcal{B}}(0) : \tilde{\theta}_{10}^{\mathcal{B}}(0) : \tilde{\theta}_{01}^{\mathcal{B}}(\tilde{0}) : \tilde{\theta}_{11}^{\mathcal{B}}(0)).$ One can prove:

$$
\mathcal{H} \circ \mathcal{S}(\theta_{00}^A(T_1''), \theta_{10}^A(T_1''), \theta_{01}^A(T_1''), \theta_{11}^A(T_1'')) = (x\alpha, x\beta, y\gamma, y\delta), \mathcal{H} \circ \mathcal{S}(\theta_{00}^A(T_2''), \theta_{10}^A(T_2''), \theta_{01}^A(T_2''), \theta_{11}^A(T_2'')) = (z\alpha, w\beta, z\gamma, w\delta),
$$

for some unknown x, y, z, w .

Hence, we can recover the dual theta-null point $(\alpha : \beta : \gamma : \delta)$ for \mathcal{B} , and in turn the theta-null point $\mathcal{H}(\alpha : \beta : \gamma : \delta)$ on \mathcal{B} .

- The formulae I showed assume we have T''_1 and T''_2 such that $\text{ker}(\Phi) = [4]\langle T''_1, T''_2 \rangle$.
- The correction formula requires $100M + 8S + 4I$
- At the end of the chain, we are left with an elliptic product in theta coordinates.
- Switching to the Montgomery model for the two curves is not expensive.

Table 1: Running times of computing the codomain and evaluating a $(2^n, 2^n)$ -isogeny between elliptic products over the base field \mathbb{F}_{p^2} . Times were recorded on a Intel Core i7-9750H CPU with a clock-speed of 2.6 GHz with turbo-boost disabled.

- We have shown formulae to compute $(2^n, 2^n)$ -isogenies between elliptic products.
- Significant improvements in isogeny-based cryptography.
- Generalisation to four-dimensional elliptic products (Dartois, 2024).

Thanks for your attention!

Questions?

Elliptic curves

In the case of an elliptic curve E :

 $P \in E \to (\theta_0(P) : \theta_1(P)) \in \mathbb{P}^1.$

Elliptic curves

In the case of an elliptic curve E :

$$
P \in E \to (\theta_0(P) : \theta_1(P)) \in \mathbb{P}^1.
$$

Consider $E: y^2 = x^3 + Ax^2 + x$ and let α be a solution of $\alpha + 1/\alpha = A$.

Elliptic curves

In the case of an elliptic curve E :

$$
P \in E \to (\theta_0(P) : \theta_1(P)) \in \mathbb{P}^1.
$$

Consider $E: y^2 = x^3 + Ax^2 + x$ and let α be a solution of $\alpha + 1/\alpha = A$. Define $a = \sqrt{1 + \alpha}$ and $b = \sqrt{\alpha - 1}$.

 $E \rightsquigarrow (a:b) \in \mathbb{P}^1$

Elliptic curves

In the case of an elliptic curve E :

$$
P \in E \to (\theta_0(P) : \theta_1(P)) \in \mathbb{P}^1.
$$

Consider $E: y^2 = x^3 + Ax^2 + x$ and let α be a solution of $\alpha + 1/\alpha = A$. Define $a = \sqrt{1 + \alpha}$ and $b = \sqrt{\alpha - 1}$.

$$
E \leadsto (a:b) \in \mathbb{P}^1
$$

$$
P = (X : Z) \mapsto (\theta_0(P) : \theta_1(P)) = (a(X - Z) : b(X + Z))
$$

Elliptic curves

In the case of an elliptic curve E:

$$
P \in E \to (\theta_0(P) : \theta_1(P)) \in \mathbb{P}^1.
$$

Consider $E: y^2 = x^3 + Ax^2 + x$ and let α be a solution of $\alpha + 1/\alpha = A$. Define $a = \sqrt{1 + \alpha}$ and $b = \sqrt{\alpha - 1}$.

$$
E \leadsto (a:b) \in \mathbb{P}^1
$$

$$
P = (X : Z) \mapsto (\theta_0(P) : \theta_1(P)) = (a(X - Z) : b(X + Z))
$$

Product theta structure on $E_1 \times E_2$

 $(P_1, P_2) \in E_1 \times E_2 \mapsto$ $(\theta_0^{E_1}(P_1)\theta_0^{E_2}(P_2):\theta_1^{E_1}(P_1)\theta_0^{E_2}(P_2):\theta_0^{E_1}(P_1)\theta_1^{E_2}(P_2):\theta_1^{E_1}(P_1)\theta_1^{E_2}(P_2))$ We can also evaluate the isogeny Φ at any point P:

$$
(\tilde{\theta}_{00}^{\mathcal{B}}(\Phi(P)), \tilde{\theta}_{10}^{\mathcal{B}}(\Phi(P)), \tilde{\theta}_{01}^{\mathcal{B}}(\Phi(P)), \tilde{\theta}_{11}^{\mathcal{B}}(\Phi(P))) =
$$

$$
(\alpha^{-1}, \beta^{-1}, \gamma^{-1}, \delta^{-1}) \star \mathcal{H} \circ \mathcal{S} ((\theta_i^{\mathcal{A}}(P))_i),
$$

from which we can compute

$$
\begin{aligned} (\theta^{\mathcal{B}}_{00}(\Phi(P)),\theta^{\mathcal{B}}_{10}(\Phi(P)),\theta^{\mathcal{B}}_{01}(\Phi(P)),\theta^{\mathcal{B}}_{11}(\Phi(P)))= \\ \mathcal{H}(\tilde{\theta}^{\mathcal{B}}_{00}(\Phi(P)),\tilde{\theta}^{\mathcal{B}}_{10}(\Phi(P)),\tilde{\theta}^{\mathcal{B}}_{01}(\Phi(P)),\tilde{\theta}^{\mathcal{B}}_{11}(\Phi(P))). \end{aligned}
$$