An Algorithmic Approach to (2, 2)-isogenies in the Theta Model and Applications to Isogeny-based Cryptography

Pierrick Dartois, <u>Luciano Maino</u>, Giacomo Pope and Damien Robert

Asiacrypt 2024

 12^{th} December, 2024

• SIDH attacks relied on the computation of chains of 2-isogenies between elliptic products.

 $\,\hookrightarrow\,$ In dimension two: Richelot formulae and specific algorithms for gluing and splitting.

- SIDH attacks have introduced a new representation for isogenies between elliptic curves.
 - $\hookrightarrow\,$ KEMs: FESTA and QFESTA.
 - $\,\hookrightarrow\,$ SQI sign variants.

• SIDH attacks relied on the computation of chains of 2-isogenies between elliptic products.

 $\,\hookrightarrow\,$ In dimension two: Richelot formulae and specific algorithms for gluing and splitting.

- SIDH attacks have introduced a new representation for isogenies between elliptic curves.
 - $\hookrightarrow\,$ KEMs: FESTA and QFESTA.
 - $\hookrightarrow\,$ SQI sign variants.

Problem

We needed a faster way to compute (2, 2)-isogenies between elliptic products.

• The correct higher-dimensional generalisation of elliptic curves is *principally polarised abelian varieties*.

- The correct higher-dimensional generalisation of elliptic curves is *principally polarised abelian varieties*.
- In dimension two, we have *principally polarised abelian* surfaces (PPASes).
 - Products of elliptic curves,

- The correct higher-dimensional generalisation of elliptic curves is *principally polarised abelian varieties*.
- In dimension two, we have *principally polarised abelian* surfaces (PPASes).
 - Products of elliptic curves,
 - Jacobians of genus-2 curves.

- The correct higher-dimensional generalisation of elliptic curves is *principally polarised abelian varieties*.
- In dimension two, we have *principally polarised abelian* surfaces (PPASes).
 - Products of elliptic curves,
 - Jacobians of genus-2 curves.
- Isogenies between PPASes have kernels of rank two.
- An (N, N)-isogeny is an isogeny between PPASes whose kernel ≃ Z/NZ × Z/NZ.

Chains of (2, 2)-isogenies between elliptic products

Goal: Compute the $(2^n, 2^n)$ -isogeny $\Phi: E_1 \times E_2 \to E'_1 \times E'_2$

Chains of (2, 2)-isogenies between elliptic products

Goal: Compute the $(2^n, 2^n)$ -isogeny $\Phi : E_1 \times E_2 \to E'_1 \times E'_2$ We compute Φ as a chain of (2, 2)-isogenies:

$$\Phi = \Phi_n \circ \ldots \circ \Phi_1$$

Chains of (2, 2)-isogenies between elliptic products

Goal: Compute the $(2^n, 2^n)$ -isogeny $\Phi : E_1 \times E_2 \to E'_1 \times E'_2$ We compute Φ as a chain of (2, 2)-isogenies:

$$\Phi = \Phi_n \circ \ldots \circ \Phi_1$$

- Gluing isogeny $\Phi_1 : E_1 \times E_2 \to \mathsf{Jac}(\mathcal{C})$ (Howe, Leprévost, and Poonen, 2000).
- Splitting Isogeny $\Phi_n : \operatorname{Jac}(\mathcal{C}) \to E'_1 \times E'_2$ (Smith, 2005).
- Richelot Isogenies $\Phi_i : \operatorname{Jac}(\mathcal{C}_i) \to \operatorname{Jac}(\mathcal{C}_{i+1})$, for $i = 2, \ldots, n-1$ (Smith, 2005).

- Represent PPASes via the *theta model*.
- Very efficient formulae to perform arithmetic.
- We adapt these formulae to our use case.
- Compared to the state of the art:
 - Codomain computation is **ten** times faster.
 - Isogeny evaluation is **twenty** times faster.
- We can now compute "cryptographic-size" isogenies in matter of ms.

Let ${\mathcal A}$ be a principally polarised abelian surface.

Let \mathcal{A} be a principally polarised abelian surface. Let $\mathcal{A}[4] = \langle S'_1, S'_2 \rangle \oplus \langle T'_1, T'_2 \rangle$ be a symplectic 4-torsion basis

•
$$e(S'_1,T'_1)=e(S'_2,T'_2)=\mu,$$

$$\bullet \ e(S_1',S_2')=e(T_1',T_2')=e(S_1',T_2')=e(S_2',T_1')=1.$$

Let \mathcal{A} be a principally polarised abelian surface. Let $\mathcal{A}[4] = \langle S'_1, S'_2 \rangle \oplus \langle T'_1, T'_2 \rangle$ be a symplectic 4-torsion basis

•
$$e(S'_1, T'_1) = e(S'_2, T'_2) = \mu$$
,

•
$$e(S'_1, S'_2) = e(T'_1, T'_2) = e(S'_1, T'_2) = e(S'_2, T'_1) = 1.$$

 $\langle S'_1, S'_2 \rangle \oplus \langle T'_1, T'_2 \rangle \rightsquigarrow \theta_{00}, \theta_{10}, \theta_{01}, \theta_{11}$

$$P \in \mathcal{A} \to (\theta_{00}(P) : \theta_{10}(P) : \theta_{01}(P) : \theta_{11}(P)) \in \mathbb{P}^3$$

Taken from nLab.

Let \mathcal{A} be a principally polarised abelian surface. Let $\mathcal{A}[4] = \langle S'_1, S'_2 \rangle \oplus \langle T'_1, T'_2 \rangle$ be a symplectic 4-torsion basis • $e(S'_1, T'_1) = e(S'_2, T'_2) = \mu$, • $e(S'_1, S'_2) = e(T'_1, T'_2) = e(S'_1, T'_2) = e(S'_2, T'_1) = 1$.

 $\langle S_1', S_2' \rangle \oplus \langle T_1', T_2' \rangle \rightsquigarrow \theta_{00}, \theta_{10}, \theta_{01}, \theta_{11}$

$$P \in \mathcal{A} \to (\theta_{00}(P) : \theta_{10}(P) : \theta_{01}(P) : \theta_{11}(P)) \in \mathbb{P}^3$$

The projective point $(\theta_{00}(0) : \theta_{10}(0) : \theta_{01}(0) : \theta_{11}(0))$ is enough to describe \mathcal{A} .

Taken from nLab.

Some operators

The Hadamard transform

We define $(\tilde{\theta}_{00}(P) : \tilde{\theta}_{10}(P) : \tilde{\theta}_{01}(P) : \tilde{\theta}_{11}(P)) = \mathcal{H}(\theta_{00}(P), \theta_{10}(P), \theta_{01}(P), \theta_{11}(P))$ to be the dual coordinates of P. Also $\mathcal{H} \circ \mathcal{H}(x, y, z, w) = (x, y, z, w)$.

Some operators

The Hadamard transform

We define $(\tilde{\theta}_{00}(P) : \tilde{\theta}_{10}(P) : \tilde{\theta}_{01}(P) : \tilde{\theta}_{11}(P)) = \mathcal{H}(\theta_{00}(P), \theta_{10}(P), \theta_{01}(P), \theta_{11}(P))$ to be the dual coordinates of P. Also $\mathcal{H} \circ \mathcal{H}(x, y, z, w) = (x, y, z, w)$. The squaring operator:

$$S(x, y, z, w) := (x^2, y^2, z^2, w^2).$$

Some operators

The Hadamard transform

We define $(\tilde{\theta}_{00}(P) : \tilde{\theta}_{10}(P) : \tilde{\theta}_{01}(P) : \tilde{\theta}_{11}(P)) = \mathcal{H}(\theta_{00}(P), \theta_{10}(P), \theta_{01}(P), \theta_{11}(P))$ to be the dual coordinates of P. Also $\mathcal{H} \circ \mathcal{H}(x, y, z, w) = (x, y, z, w)$. The squaring operator:

$$S(x, y, z, w) := (x^2, y^2, z^2, w^2).$$

The \star operator:

$$(x, y, z, w) \star (x', y', z', w') = (xx', yy', zz', ww').$$

Let $\mathcal{A}[4] = \langle S'_1, S'_2 \rangle \oplus \langle T'_1, T'_2 \rangle$ be a symplectic 4-torsion basis.

Let $\mathcal{A}[4] = \langle S'_1, S'_2 \rangle \oplus \langle T'_1, T'_2 \rangle$ be a symplectic 4-torsion basis. Let $\Phi : \mathcal{A} \to \mathcal{B}$, ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$. For all $P, Q \in \mathcal{A}$

$$\left(\theta_i^{\mathcal{A}}(P+Q)\right)_i \star \left(\theta_i^{\mathcal{A}}(P-Q)\right)_i = \mathcal{H}\left(\left(\tilde{\theta}_i^{\mathcal{B}}(\Phi(P))\right)_i \star \left(\tilde{\theta}_i^{\mathcal{B}}(\Phi(Q))\right)_i\right).$$

Let
$$\mathcal{A}[4] = \langle S'_1, S'_2 \rangle \oplus \langle T'_1, T'_2 \rangle$$
 be a symplectic 4-torsion basis.
Let $\Phi : \mathcal{A} \to \mathcal{B}$, ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$.
For all $P, Q \in \mathcal{A}$

$$\left(\theta_i^{\mathcal{A}}(P+Q)\right)_i \star \left(\theta_i^{\mathcal{A}}(P-Q)\right)_i = \mathcal{H}\left(\left(\tilde{\theta}_i^{\mathcal{B}}(\Phi(P))\right)_i \star \left(\tilde{\theta}_i^{\mathcal{B}}(\Phi(Q))\right)_i\right).$$

We can obtain addition formulae:

- Differential addition: 8S + 17M,
- Doubling: $8\mathbf{S} + 6\mathbf{M}$.

The same formulae as in (Gaudry, 2005).

Goal: To compute the isogeny $\Phi : \mathcal{A} \to \mathcal{B}$ with ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$.

Goal: To compute the isogeny $\Phi : \mathcal{A} \to \mathcal{B}$ with ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$. Assume that we have an isotropic group $\langle T''_1, T''_2 \rangle$ such that $T'_i = [2]T''_i$. **Goal:** To compute the isogeny $\Phi : \mathcal{A} \to \mathcal{B}$ with ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$. Assume that we have an isotropic group $\langle T''_1, T''_2 \rangle$ such that $T'_i = [2]T''_i$. Define $(\alpha : \beta : \gamma : \delta) = (\tilde{\theta}^{\mathcal{B}}_{00}(0) : \tilde{\theta}^{\mathcal{B}}_{10}(0) : \tilde{\theta}^{\mathcal{B}}_{11}(0))$. **Goal:** To compute the isogeny $\Phi : \mathcal{A} \to \mathcal{B}$ with ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$. Assume that we have an isotropic group $\langle T''_1, T''_2 \rangle$ such that $T'_i = [2]T''_i$. Define $(\alpha : \beta : \gamma : \delta) = (\tilde{\theta}^{\mathcal{B}}_{00}(0) : \tilde{\theta}^{\mathcal{B}}_{10}(0) : \tilde{\theta}^{\mathcal{B}}_{01}(0) : \tilde{\theta}^{\mathcal{B}}_{11}(0))$. One can prove:

$$\begin{aligned} \mathcal{H} \circ \mathcal{S}(\theta_{00}^{\mathcal{A}}(T_1''), \theta_{10}^{\mathcal{A}}(T_1''), \theta_{01}^{\mathcal{A}}(T_1''), \theta_{11}^{\mathcal{A}}(T_1'')) &= (x\alpha, x\beta, y\gamma, y\delta), \\ \mathcal{H} \circ \mathcal{S}(\theta_{00}^{\mathcal{A}}(T_2''), \theta_{10}^{\mathcal{A}}(T_2''), \theta_{01}^{\mathcal{A}}(T_2''), \theta_{11}^{\mathcal{A}}(T_2'')) &= (z\alpha, w\beta, z\gamma, w\delta), \end{aligned}$$

for some unknown x, y, z, w.

Goal: To compute the isogeny $\Phi : \mathcal{A} \to \mathcal{B}$ with ker $\Phi = \langle T_1, T_2 \rangle$, where $T_i = [2]T'_i$. Assume that we have an isotropic group $\langle T''_1, T''_2 \rangle$ such that $T'_i = [2]T''_i$. Define $(\alpha : \beta : \gamma : \delta) = (\tilde{\theta}^{\mathcal{B}}_{00}(0) : \tilde{\theta}^{\mathcal{B}}_{10}(0) : \tilde{\theta}^{\mathcal{B}}_{01}(0) : \tilde{\theta}^{\mathcal{B}}_{11}(0))$. One can prove:

$$\begin{aligned} \mathcal{H} \circ \mathcal{S}(\theta_{00}^{\mathcal{A}}(T_1''), \theta_{10}^{\mathcal{A}}(T_1''), \theta_{01}^{\mathcal{A}}(T_1''), \theta_{11}^{\mathcal{A}}(T_1'')) &= (x\alpha, x\beta, y\gamma, y\delta), \\ \mathcal{H} \circ \mathcal{S}(\theta_{00}^{\mathcal{A}}(T_2''), \theta_{10}^{\mathcal{A}}(T_2''), \theta_{01}^{\mathcal{A}}(T_2''), \theta_{11}^{\mathcal{A}}(T_2'')) &= (z\alpha, w\beta, z\gamma, w\delta), \end{aligned}$$

for some unknown x, y, z, w.

Hence, we can recover the dual theta-null point $(\alpha : \beta : \gamma : \delta)$ for \mathcal{B} , and in turn the theta-null point $\mathcal{H}(\alpha : \beta : \gamma : \delta)$ on \mathcal{B} .

Isogeny Type	Doubling	Codor	Evaluation	
		Precomputations	Codomain	
Normalised	$8\mathbf{S} + 6\mathbf{M}$	$4\mathbf{S} + 24\mathbf{M} + 1\mathbf{I}$	$8\mathbf{S} + 10\mathbf{M} + 1\mathbf{I}$	$4\mathbf{S} + 3\mathbf{M}$
Projective	$8{\bf S}+8{\bf M}$	$5\mathbf{S} + 14\mathbf{M}$	$8\mathbf{S} + 7\mathbf{M}$	$4\mathbf{S} + 4\mathbf{M}$
Gluing	$12\mathbf{S} + 12\mathbf{M}$		$8\mathbf{S} + 13\mathbf{M} + 1\mathbf{I}$	$8\mathbf{S} + 10\mathbf{M} + 1\mathbf{I}$

- The formulae I showed assume we have T_1'' and T_2'' such that $\ker(\Phi) = [4]\langle T_1'', T_2'' \rangle$.
- The correction formula requires $100\mathbf{M} + 8\mathbf{S} + 4\mathbf{I}$
- At the end of the chain, we are left with an elliptic product in theta coordinates.
- Switching to the Montgomery model for the two curves is not expensive.

Table 1: Running times of computing the codomain and evaluating a $(2^n, 2^n)$ -isogeny between elliptic products over the base field \mathbb{F}_{p^2} . Times were recorded on a Intel Core i7-9750H CPU with a clock-speed of 2.6 GHz with turbo-boost disabled.

			Codomain			Evaluation		
1		Theta	Theta	Richelot	Theta	Theta	Richelot	
$\log p$	n	Rust	SageMath	SageMath	Rust	SageMath	SageMath	
254	126	$2.13 \mathrm{\ ms}$	$108 \mathrm{\ ms}$	$1028~{\rm ms}$	$161~\mu{ m s}$	$5.43 \mathrm{\ ms}$	$114~\mathrm{ms}$	
381	208	$9.05 \mathrm{\ ms}$	$201 \mathrm{\ ms}$	$1998~\mathrm{ms}$	$411~\mu{ m s}$	$8.68 \mathrm{\ ms}$	$208 \mathrm{\ ms}$	
1293	632	$463 \mathrm{\ ms}$	$1225~\mathrm{ms}$	$12840~\mathrm{ms}$	$17.8 \mathrm{\ ms}$	$40.8~\mathrm{ms}$	$1203~\mathrm{ms}$	

- We have shown formulae to compute $(2^n, 2^n)$ -isogenies between elliptic products.
- Significant improvements in isogeny-based cryptography.
- Generalisation to four-dimensional elliptic products (Dartois, 2024).

Thanks for your attention!

Questions?

Elliptic curves

In the case of an elliptic curve E:

 $P \in E \to (\theta_0(P) : \theta_1(P)) \in \mathbb{P}^1.$

Elliptic curves

In the case of an elliptic curve E:

$$P \in E \to (\theta_0(P) : \theta_1(P)) \in \mathbb{P}^1.$$

Consider $E: y^2 = x^3 + Ax^2 + x$ and let α be a solution of $\alpha + 1/\alpha = A$.

Elliptic curves

In the case of an elliptic curve E:

$$P \in E \to (\theta_0(P) : \theta_1(P)) \in \mathbb{P}^1.$$

Consider $E: y^2 = x^3 + Ax^2 + x$ and let α be a solution of $\alpha + 1/\alpha = A$. Define $a = \sqrt{1 + \alpha}$ and $b = \sqrt{\alpha - 1}$.

 $E \rightsquigarrow (a:b) \in \mathbb{P}^1$

Elliptic curves

In the case of an elliptic curve E:

$$P \in E \to (\theta_0(P) : \theta_1(P)) \in \mathbb{P}^1.$$

Consider $E: y^2 = x^3 + Ax^2 + x$ and let α be a solution of $\alpha + 1/\alpha = A$. Define $a = \sqrt{1 + \alpha}$ and $b = \sqrt{\alpha - 1}$.

$$E \rightsquigarrow (a:b) \in \mathbb{P}^1$$

$$P = (X:Z) \mapsto (\theta_0(P):\theta_1(P)) = (a(X-Z):b(X+Z))$$

Elliptic curves

In the case of an elliptic curve E:

$$P \in E \to (\theta_0(P) : \theta_1(P)) \in \mathbb{P}^1.$$

Consider $E: y^2 = x^3 + Ax^2 + x$ and let α be a solution of $\alpha + 1/\alpha = A$. Define $a = \sqrt{1 + \alpha}$ and $b = \sqrt{\alpha - 1}$.

$$E \rightsquigarrow (a:b) \in \mathbb{P}^1$$

$$P = (X:Z) \mapsto (\theta_0(P):\theta_1(P)) = (a(X-Z):b(X+Z))$$

Product theta structure on $E_1 \times E_2$

 $(P_1, P_2) \in E_1 \times E_2 \mapsto (\theta_0^{E_1}(P_1)\theta_0^{E_2}(P_2) : \theta_1^{E_1}(P_1)\theta_0^{E_2}(P_2) : \theta_0^{E_1}(P_1)\theta_1^{E_2}(P_2) : \theta_1^{E_1}(P_1)\theta_1^{E_2}(P_2))$

We can also evaluate the isogeny Φ at any point P:

$$\begin{split} (\tilde{\theta}_{00}^{\mathcal{B}}(\Phi(P)), \tilde{\theta}_{10}^{\mathcal{B}}(\Phi(P)), \tilde{\theta}_{01}^{\mathcal{B}}(\Phi(P)), \tilde{\theta}_{11}^{\mathcal{B}}(\Phi(P))) &= \\ (\alpha^{-1}, \beta^{-1}, \gamma^{-1}, \delta^{-1}) \star \mathcal{H} \circ \mathcal{S}\left((\theta_{i}^{\mathcal{A}}(P))_{i}\right), \end{split}$$

from which we can compute

$$\begin{aligned} (\theta_{00}^{\mathcal{B}}(\Phi(P)), \theta_{10}^{\mathcal{B}}(\Phi(P)), \theta_{01}^{\mathcal{B}}(\Phi(P)), \theta_{11}^{\mathcal{B}}(\Phi(P))) &= \\ \mathcal{H}(\tilde{\theta}_{00}^{\mathcal{B}}(\Phi(P)), \tilde{\theta}_{10}^{\mathcal{B}}(\Phi(P)), \tilde{\theta}_{01}^{\mathcal{B}}(\Phi(P)), \tilde{\theta}_{11}^{\mathcal{B}}(\Phi(P))). \end{aligned}$$