Count Corruptions, Not Users:
Improved Tightness for Signatures, Encryption and Authenticated Key Exchange

Mihir Bellare, Doreen Riepel, Stefano Tessaro, Yizhao Zhang

ASIACRYPT 2024

UC San Diego - " CISPA

v, N\ HELMHOLTZ-ZENTRUM FUR
INFORMATIONSSICHERHEIT

W UNIVERSITY of WASHINGTON

Motivation

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

e Key exchange (TLS), messaging (Signal, MLS), etc.

2/20

Motivation

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

e Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

® 71 USers U

O
(D
e n— 1 corruptions Q U
(D

®
— g
UQ
AR

2/20

Motivation

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

e Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

® 71 USers tj

O
(D

e n— 1 corruptions Q U Q
(D

e
Corruptions happen, but the number is likely small: Q

e Key-owners have high incentive to prevent exposure and take significant steps
e Internet services are increasingly storing their TLS signing keys in hardware security modules
e Use of threshold cryptography

2/20

Motivation

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

e Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

® 7 users U

O
(D

e n— 1 corruptions Q U Q
(D

e
Corruptions happen, but the number is likely small: Q

e Key-owners have high incentive to prevent exposure and take significant steps
e Internet services are increasingly storing their TLS signing keys in hardware security modules
e Use of threshold cryptography

Microsoft Storm-0885 attack (2023)!

e Attackers acquired a Microsoft account (MSA) consumer signing key used to authenticate tokens
o Affected were email accounts of 22 organizations and 500 individuals globally (e.g. top-tier US government officials)

L https://www.microsoft.com/en-us/security /blog /2023 /07 /14 /analysis-of-storm-0558-techniques-for-unauthorized-email-access/ 2/20

Motivation

Our model: cp-muc security (“corruption-parametrized”)

® 71 USErS

a
O

e C corruptions for c K n

O

3/21

Motivation

Our model: cp-muc security (“corruption-parametrized”)

® 71 USErS

a
O

e C corruptions for c K n

Applications

O

e Signing, public-key and secret-key encryption, key exchange, ...
e Similar to a "threshold” in secret sharing of MPC

3/21

Motivation

Our model: cp-muc security (“corruption-parametrized”)

® 71 USErS 8
O

e C corruptions for c K n

Applications Q Q
e Signing, public-key and secret-key encryption, key exchange, ...
e Similar to a "threshold” in secret sharing of MPC

Goal

e Better concrete security guarantees for protocols deployed in practice, where otherwise tight(er) bounds are

unknown or impossible

3/21

Motivation

muc security cp-muc security
O O O O
e (O O ® ® (O O O
() oo () () o O ()
(D OO (D O

4/21

Motivation

muc security Cp-muc security

O O O O
g O O N O O 4
Oy g O O 5 g O

O O O O

Standard hybrid argument:
e Reduces to single-user (su) security

e Security loss linear in the number of users

4/21

Motivation

muc security Cp-muc security

O O O O
g O O N O O 4
Oy g O O 5 g O

O O O O

Standard hybrid argument: Our hope:
e Reduces to single-user (su) security e Security loss linear in the number of corruptions

e Security loss linear in the number of users

4/21

Motivation

muc security Cp-muc security

O O O O
g O O N O O 4
Oy g O O 5 g O

O O O O

Standard hybrid argument: Our hope:
e Reduces to single-user (su) security e Security loss linear in the number of corruptions

e Security loss linear in the number of users

Main question:

Can we give a general theorem? Under which conditions?

4/21

Overview of our Results

Formal security specifications

e Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

5/21

Overview of our Results

Formal security specifications

e Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

e Technical tool that we introduce

e Essentially it determines how a (suitable) subset of users is picked

5/21

Overview of our Results

Formal security specifications

e Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

e Technical tool that we introduce

e Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

e Basically all one-way (OW) games

e Indistinguishability (IND) games with independent challenge bits

5/21

Overview of our Results

Formal security specifications

e Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

e Technical tool that we introduce

e Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

e Basically all one-way (OW) games

e Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games)

e IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
e AKE protocols
e Selective opening security

5/21

Overview of our Results

Formal security specifications

e Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

e Technical tool that we introduce

e Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

e Basically all one-way (OW) games

e Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games)

e IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
e AKE protocols
e Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.
5/21

Overview of our Results

Formal security specifications

e Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

e Technical tool that we introduce

e Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property) < Main focus of this talk (using the

» Basically all one-way (OW) games example of UF-CMA secure signatures)

e Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games)

e IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
e AKE protocols
e Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.
5/21

Digital Signatures

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

6/21

Digital Signatures

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

H (vk, sk) «* Gen

vk

6/21

Digital Signatures

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

H (vk, sk) «* Gen

vk

6/21

Digital Signatures

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

(vk, sk) «<* Gen
H vk R p

g 0/1 < Vrfy(vk, M,)

6/21

Unforgeability (Single-User)

Game Gg‘;s“ Adversary ‘A

3 &

7/21

Unforgeability (Single-User)

Game Gg‘;s“ Adversary ‘A

‘ (v, sk) <3 Gen vk i '

7/21

Unforgeability (Single-User)

Game Gg‘;s“ Adversary ‘A

‘ (vk, sk) <°* Gen vk
SioN: M
Q q qUErIes

S «— S UM} >

7/21

Unforgeability (Single-User)

Game Gg‘;s“ Adversary ‘A

‘ (vk, sk) <°* Gen vk
SioN: M
Q q qUErIes

S «— S UM} >

If Vrfy(vk, M* 6*) = 1

and M* & §:
Return 1

Return 0

7/21

Unforgeability (Single-User)

Game Gg‘;s“ Adversary ‘A

.' (vk, sk) P Gen vk
SioN: M
‘. o <> Sign(sk, M) > LoN . |
Q g queries

S« SU{Mj} >

If Vrfy(vk, M*,6™) = 1

and M* & &
Return 1 f :
Adve Y (A) := Pr[GYSY(A) = 1
Return O sig (7 [Ggip™ (A) = 1]

7/21

Unforgeability (Multi-User)

Game Gg};mu-n Adversary ‘A

Forie {l,...,n}:
‘.' (vks, sk;) <3 Gen ASIRIRALY

>
SieN: 1, M
AR o sesn l
o
S SU{(.M)} g
i M*, o*

If Vrfy(vk, ,M* %) =1

and (i", M™) & &
Return 1

Advg, ™ "(A) = PriGEE ™ (A) = 1]

Return O

8 /21

Unforgeability (Multi-User with Corruptions)

Game Gg, ™" Adversary 4

‘ Forie {1,....,n}:
(Vkl’, Skl‘) (—$ Gen Vkl? SRR an

>
SIGN: 1, M
B s < ’
o
S~ SU{@i,M)} >
) CORRUPT: 1
€ «— 6 U {i} K
l >
X M* o*
<

H: VrfY(Vki*aM*a 0*) — 1

and (iX M*) & & and i* & G-
Return 1

AQVELTT(R) = PG () = 1]

Return O

9/21

Relations

Multi-user With corruptions
uf-mu-n uf-muc-n
Advg;, Advg;,

10/21

Relations

Multi-user With corruptions
Advg ™" Advg ™"
Type-|
no better relations known than <n- Advg‘i?“ <n- Advggsu

the general ones (e.g. RSA)

10/21

Relations

Multi-user

With corruptions

Advg ™" Advg ™"
Type-|
no better relations known than <n- Advg‘ic;“ <n- Advggsu
the general ones (e.g. RSA)
Type-I|
mu-tight, but not under ~ Advg‘ic:” <n- Advg‘i:‘gs“

corruptions (e.g. Schnorr)

10/21

Relations

Multi-user With corruptions
Advg ™" Advg ™"
Type-|
no better relations known than <n- Advg‘ic;“ <n- Advggsu
the general ones (e.g. RSA)
Type-I|
mu-tight, but not under ~ Advg‘ic;“ <n- Advg‘i;s“
corruptions (e.g. Schnorr)
Type-lll
muc-tight (“special” constructions, ~ Advg]i;s“ ~ Advgf{—;su

e.g. [PKC:DGJL21])

10/21

Relations

Multi-user With corruptions
Advgmi;mu-n Advggmuc-n
Type-|
no better relations known than <n- Advggsu <n- Advg‘i;‘gs“
the general ones (e.g. RSA)
Type-I|
; uf-su uf-su <{] h £f
mu-tight, but not under ~ AdVSig <n- AdVSig mu-tight schemes seem to otrer
corruptions (e.g. Schnorr) no advantage in the muc setting
Type-lll
muc-tight (“special” constructions, ~ Advg]i;s“ ~ Advgf{—;su

e.g. [PKC:DGJL21])

10/21

Unforgeability (Multi-User with Corruptions)

Game Gg, ™" Adversary 4

‘ Forie {1,....,n}:
(Vkl’, Skl‘) (—$ Gen Vkl? SRR an

>
SicN: 1, M
B s < —
o
S~ SU{@i,M)} >
) CORRUPT: 1
€ «— 6 U {i} K
l >
X M* o*
<

H: VrfY(Vki*aM*a 0*) — 1

and (iX M*) & & and i* & G:
Return 1

AQVEL™T(R) = PG () = 1]

Return O

11/21

Unforgeability (Multi-User with Corruptions)

uf-muc-n
Game GSig

‘ Forie{l,...,n}:
(vk;, sk;) < Gen
V¥V RN

S —SU{,M)}

G «— 6 U{i}

If Vrfy(vk, ,M* %) =1

and (X M*) & & and i* & €:
Return 1

Return O

Vkl, S an

SIGN: 1, M

O

CORRUPT: 1

Skl‘

i* M, 6*

Adversary A

Always need to expect

n — 1 corruptions

Advuf—muc—

Sig

"(A4) := Pr[G

Sig

uf—muc—n(ﬂ) — 1]

11/21

Unforgeability (Multi-User with Corruptions)

Game Gg‘.c'mUC'(”’C) Adversary A
g

‘ Forie {l,...,n}:
(vk;. ski) < Ger ASIEIEA L B '
SIGN: 1, M
AR seen _—
Q q qUErIes

o
S < SU{IM)} g
4 CORRUPT: 1
& —eull sk; . Q ¢ queries (¢ <K n)
i* M* c*
4 b b
If Vrfy(vk, ,M* %) =1
and (X M*) & & and i* & €:
Return 1 f ;)
Advg, ™ (R) = PrIGY ™ (A) = 1]
Return 0 2

12 /21

Unforgeability (Multi-User with Corruptions)

Game GYI-mue-(.o) Adversary A
Sig

‘ Forie{l,...,n}:
(vk;. ski) < Ger ASIEIEA L B '
SieN: 1, M
AA o sieew — -
| Q g queries

O

S «SU{,M)} >
4 CORRUPT: 1
¢ e sk; . Q ¢ queries (¢ <K n)
* & M* * /\
< L , 0 More fine-grained view

If Vrfy(vk, ,M* %) =1

and (X M*) & & and i* & €:
Return 1

(cp-muc, “corruption-parametrized”)

Advg ™A = PriGE ™ (A) = 1]

Return O

12 /21

cp-muc Theorem

Theorem (from su/mu to cp-muc):

Let n, ¢ be integers s.t. 0 < ¢ < n. For any adversary A against uf-muc-(n, ¢) security of Sig, there

exists an adversary ‘B against uf-mu-m security of Sig s.t.

13/20

cp-muc Theorem

Theorem (from su/mu to cp-muc):

Let n, ¢ be integers s.t. 0 < ¢ < n. For any adversary A against uf-muc-(n, ¢) security of Sig, there

exists an adversary ‘B against uf-mu-m security of Sig s.t.

uf—muc—(n,c) uf-mu-m y - n — 1
Advsig (A) < e(c+ 1) - Advg;, (‘B) where e =~ 2.71, m = 1
C —

13/20

cp-muc Theorem

Theorem (from su/mu to cp-muc):

Let n, ¢ be integers s.t. 0 < ¢ < n. For any adversary A against uf-muc-(n, ¢) security of Sig, there

exists an adversary ‘B against uf-mu-m security of Sig s.t.

uf—muc—(n,c) uf-mu-m y - n — 1
Advsig (A) < e(c+ 1) - Advg;, (‘B) where e =~ 2.71, m = 1
C —

For mu-tight secure schemes, there exists an adversary ‘B’ against uf-su security s.t.

13/20

cp-muc Theorem

Theorem (from su/mu to cp-muc):

Let n, ¢ be integers s.t. 0 < ¢ < n. For any adversary A against uf-muc-(n, ¢) security of Sig, there

exists an adversary ‘B against uf-mu-m security of Sig s.t.

uf—muc—(n,c) uf-mu-m y - n — 1
Advsig (A) < e(c+ 1) - Advg;, (‘B) where e =~ 2.71, m = 1
C —

For mu-tight secure schemes, there exists an adversary ‘B’ against uf-su security s.t.

Advg’;;m“‘(”@(«ﬂ) <e(c+ 1) Advg M (B')

13/20

cp-muc Theorem

Theorem (from su/mu to cp-muc):

Let n, ¢ be integers s.t. 0 < ¢ < n. For any adversary A against uf-muc-(n, ¢) security of Sig, there

exists an adversary ‘B against uf-mu-m security of Sig s.t.

Ad uf-muc-(n,c) 1 A uf-mu-m h y 1 n—1
VSig (A) <e(c+1)- dVSig (‘B) where e & 2.71, m = —

For mu-tight secure schemes, there exists an adversary ‘B’ against uf-su security s.t.

Advé};muc_(n’c)(‘ﬂ) <elc+1)- Advgf;u(") ﬁ main benefit for Type-ll schemes

13/20

cp-muc Theorem

Theorem (from su/mu to cp-muc):

Let n, ¢ be integers s.t. 0 < ¢ < n. For any adversary A against uf-muc-(n, ¢) security of Sig, there

exists an adversary ‘B against uf-mu-m security of Sig s.t.

uf-muc-(n,c) uf-mu-m - - n—1
Advsig (A) < e(c+ 1) - Advg;, (‘B) where e =~ 2.71, m = 1
C —
/\ \

assuming mu security for small number of users offers

a non-trivial trade-off between su and muc

For mu-tight secure schemes, there exists an adversary ‘B’ against uf-su security s.t.

Advggmuc_(n’c)(‘ﬂ) <elc+1)- Advgf;”(fB’) ﬁ main benefit for Type-1l schemes

13/20

cp-muc Theorem

Theorem (from su/mu to cp-muc):

Let n, ¢ be integers s.t. 0 < ¢ < n. For any adversary A against uf-muc-(n, ¢) security of Sig, there

exists an adversary ‘B against uf-mu-m security of Sig s.t.

AV (@) < o+ 1) - AdVEE™(B) where e & 271, m = V J < Example:

<
N c—1 n = 100 Million
assuming mu security for small number of users offers ¢ = 100 Thousand
a non-trivial trade-off between su and muc m = 999

For mu-tight secure schemes, there exists an adversary ‘B’ against uf-su security s.t.

Advggmuc_(n’c)(‘ﬂ) <elc+1)- Advgf;”(fB’) ﬁ main benefit for Type-1l schemes

13/20

cp-muc Theorem

Theorem (from su/mu to cp-muc):

Let n, ¢ be integers s.t. 0 < ¢ < n. For any adversary A against uf-muc-(n, ¢) security of Sig, there

exists an adversary ‘B against uf-mu-m security of Sig s.t.

AV (@) < o+ 1) - AdVEE™(B) where e & 271, m = V J < Example:

<
N c—1 n = 100 Million
assuming mu security for small number of users offers ¢ = 100 Thousand
a non-trivial trade-off between su and muc m = 999

For mu-tight secure schemes, there exists an adversary ‘B’ against uf-su security s.t.

Advggmuc_(n’c)(‘ﬂ) <elc+1)- Advgf;”(ﬂ%’) ﬁ main benefit for Type-Il schemes

Inspiration: Optimal bounds for FDH signatures [C:Coron(1]

e Instead of losing a factor linear in the number of hash queries, reduction loses number of signing queries

13/20

cp-muc Theorem

Refining and generalizing [C:Coron01]

y
A

14 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

. 8
A

/ /
vki, ..., vk;,

i M*, c*

14 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

vki, ..., vk, ‘
| '
AN vKi, ..., VK,
>
CORRUPT: 1
< " .
sk; \) c queries
>
i*, M*, o* i*, M*, o~

< <

14 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

vki, ..., vk, ‘
>
Forie {l,...,n} '
B rikbith st Prib=1]=p vky, ..., vk,
>
<+ CORRUPT: l .
sk; g \) c queries
i, M*, 6* i, M*, o*

< <

14 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

vk, ..., vk, » ‘
Forie {l,...,n} '
& A

Pick bit b; s.t. Prib;=1] = p vk, ..., vk,
If b, =0: (vk, sk;) <® Gen

>

CORRUPT: 1

< * .
Sk' \) C queries
L >

: ok ALk Kk
4 i, M™*, 6™ 4 1, M7, o

14 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

vk, ..., vk, » ‘
Forie {l,...,n} '
& A

Pick bit b; s.t. Prib;=1] = p vki, o vk
If b, =0: (vk, sk;) <® Gen
It b, =1: vk; < vk) CORRUPT: 1 . |
Ski X \) C queries
LMY o LM o*

14 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

K, ..., vk’
Mo, g
Forie {l,...,n}
B rickbith st Prb=1]=p ki vk
If b, =0: (vk, sk;) <® Gen
It b, =1: vk; < vk; CORRUPT: 1 .
sk; g \) c queries
i* M* 6* i* M* 6*

< . 2 < ’ ’

Reduction i1s successful if

e Corruption queries are only issued for users i s.t. b, = 0

o Final solution is for a user i* s.t. b, =

14 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

K1, ..., VK]
woti g
Forie {l,...,n}
B rickbith st Prb=1]=p ki vk
If b, =0: (vk, sk;) <® Gen
It b, =1: vk; < vk; CORRUPT: 1 .
sk; g \) c queries
i* M* 6* i* M* 6*

< 2 . < ’ ’

Reduction i1s successful if

e Corruption queries are only issued for users i s.t. b, = 0

Advg, ™ A) < e(c + 1) - Advg,™ ' (B)

o Final solution is for a user i* s.t. b, =

14 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

vki, ..., vk, ‘
>
f N Fori € {1,....n)
We don't need

. ' ' . — — ki.....vk
bublic keys A Pickbith st Prb=1]=p ki oV
| | If b, =0: (vk, sk;) <® Gen
It b, =1: vk; « vk; <+ CORRUPT: 1 .
sk; g \) c queries
i* M*, c* i* M*, c*
< <

Reduction i1s successful if

e Corruption queries are only issued for users i s.t. b, = 0

Advg, ™ A) < e(c + 1) - Advg,™ ' (B)

o Final solution is for a user i* s.t. b, =

14 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

vk, ..., vkJ, » ‘
Y

Pick bit b; s.t. Pr[b, = 1] = p vki, VK
If b, =0: (vk, sk;) <® Gen
If b, =1: Use next vk; < CORRUPT: 1 . |
sk X \) C queries
LMY o LM o*

Reduction i1s successful if

e Corruption queries are only issued for users i s.t. b, = 0

o Final solution is for a user i* s.t. b, =

15 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

vk, ..., vkJ, » ‘
Y

Pick bit b; s.t. Pr[b, = 1] =p vki, ..., vk, R
If b, =0: (vk, sk;) <® Gen
This may fail = |f b, =1: Use next vk <+ CORRUPT: l . |
for small m! sk; R \) c queries
i%, M*, 6* i*, M*, 6*
< <

Reduction i1s successful if

e Corruption queries are only issued for users i s.t. b, = 0

o Final solution is for a user i* s.t. b, =

15 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

vk, ..., vk, ‘ | |
> Pick string (by,...,b,) € {0,1}"
with Hamming weight m
B roric{l.. . n ki, o Ve
If b, = 0: (vk;, sk;) <°* Gen
If b, = 1: Use next vk <« CORRUPT: i . |
Skl' R \) C queries
i* M* 6* i* M* 6*

< 2 . < ’ ’

Reduction i1s successful if

e Corruption queries are only issued for users i s.t. b, = 0

o Final solution is for a user i* s.t. b, =

16 /21

cp-muc Theorem

Refining and generalizing [C:Coron01]

What is the

vk’, ..., vk’ .
— ‘ Pick string (b, ...,b,) € {0,1}" << optimal m? |
with Hamming weight m
B roric{l.. . n ki, o Ve
If b, = 0: (vk;, sk;) <°* Gen
If b; = 1: Use next vk; <+ CORRUPT: 1 . |
Ski R \) C queries
i, M*, 6* i, M™*, 6™
< <

Reduction i1s successful if

e Corruption queries are only issued for users i s.t. b, = 0

o Final solution is for a user i* s.t. b, =

16 /21

cp-muc Theorem

This is captured by our abstraction of Hamming-weight determined samplers

Refining and generalizing [C:Coron01]

(via their success and error probability)

§

V
vki, ..., vk,
> ‘ Pick string (by,...,b,) € {0,1}"

with Hamming weight m

B roric{l.. . n vki, ... vk,

>
If b, = 0: (vk;, sk;) <°* Gen
If b, =1: Use next vk} <+ CORRUPT: 1 .
Skl' R \) C queries
i* M* c* %, M*, c*
< <

Reduction i1s successful if

e Corruption queries are only issued for users i s.t. b, = 0

o Final solution is for a user i* s.t. b, =

17/18

cp-muc Theorem

This is captured by our abstraction of Hamming-weight determined samplers

Refining and generalizing [C:Coron01]

(via their success and error probability)

§

V

> ‘ Pick string (by,...,b,) € {0,1}"

with Hamming weight m

B roric{l.. . n vki, ... vk,

/ /
vki, ..., vk,

>
If b, = 0: (vk;, sk;) <°* Gen
If b, =1: Use next vk} <+ CORRUPT: 1 .
Skl' R \) C queries
i* M* c* %, M*, c*
< <

Reduction i1s successful if

e Corruption queries are only issued for users i s.t. b, = 0

Advg, ™ R) < e(c + 1) - Advg™ " (B)

o Final solution is for a user i* s.t. b, =

form~nlc 14

Relations

Multi-user With corruptions
Advg ™" Advg ™"
Type-|
no better relations known than <n- Advg‘ic;“ <n- Advggsu
the general ones (e.g. RSA)
Type-I|
mu-tight, but not under ~ Advg‘ic;“ <n- Advg‘i;s“
corruptions (e.g. Schnorr)
Type-lll
muc-tight (“special” constructions, ~ Advg]i;s“ ~ Advgf{—;su

e.g. [PKC:DGJL21])

18 /21

Relations

Multi-user With corruptions Parametrized

Advgli‘;mu-n Advgfi';muc-n Advg]i;muc-(n,c)
Type-|
no better relations known than <n- Advggsu <n- Advg‘i;‘gs“ <elc+1)- Advgf-mu-m
the general ones (e.g. RSA) '
Type-I|
mu-tight, but not under ~ Advg’i;Su <n- Advg};s“ <elc+1)- Advg};s“
corruptions (e.g. Schnorr)
Type-lll :

_ 3 N uf-su
muc-tight (“special’ constructions, ~ Advg}cgsu ~ Advgfgsu ~ AdVSig
e.g. [PKC:DGJL21])
*m=nl/c

19 /21

Relations

Multi-user With corruptions Parametrized

Advg ™" Advgi, ™" Advifmee)
Type-|
no better relations known than <n- Advggsu <n- Advg‘i;‘gs“ <elc+1)- Advgf-mu-m
the general ones (e.g. RSA) '
Type-I|
mu-tight, but not under ~ Advg’i;Su <n- Advg};s“ <elc+1)- Advg};s“
corruptions (e.g. Schnorr)
Type-IlI :

_ 3 o uf-su
muc-tight (“special’ constructions, ~ Advg}cgsu ~ Advgfgsu ~ AdVSig
e.g. [PKC:DGJL21])
*m=nlc

19 /21

Overview of our Results

Formal security specifications

e Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

e Technical tool that we introduce

e Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

e Basically all one-way (OW) games

e Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games)

e IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
e AKE protocols
e Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.

20/21

Conclusion

e In practice the number of corruptions is expected to be much smaller than the number of users.
e This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.

e Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.

— It applies to Schnorr signatures, ElGamal-type encryption, and more.

e Tight muc security (Type-Ill schemes) is notoriously hard to achieve and we therefore suggest to focus on tight

mu security (Type-Il schemes).

21/21

Conclusion

e In practice the number of corruptions is expected to be much smaller than the number of users.
e This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.

e Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.

— It applies to Schnorr signatures, ElGamal-type encryption, and more.

e Tight muc security (Type-Ill schemes) is notoriously hard to achieve and we therefore suggest to focus on tight

mu security (Type-Il schemes).

ePrint: ia.cr/2024/1258

21/21

http://ia.cr/2024/1258

Conclusion

e In practice the number of corruptions is expected to be much smaller than the number of users.
e This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.

e Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.

— It applies to Schnorr signatures, ElGamal-type encryption, and more.

e Tight muc security (Type-Ill schemes) is notoriously hard to achieve and we therefore suggest to focus on tight

mu security (Type-Il schemes).

ePrint: ia.cr/2024/1258

Thank you!

21/21

http://ia.cr/2024/1258

