
ASIACRYPT 2024

Count Corruptions, Not Users:
Improved Tightness for Signatures, Encryption and Authenticated Key Exchange

Mihir Bellare, Doreen Riepel, Stefano Tessaro, Yizhao Zhang

/ 202

Motivation

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

/ 202

Motivation

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

• usersn
• corruptionsn − 1

/ 202

Motivation

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

• usersn
• corruptionsn − 1

Corruptions happen, but the number is likely small:
• Key-owners have high incentive to prevent exposure and take significant steps
• Internet services are increasingly storing their TLS signing keys in hardware security modules
• Use of threshold cryptography

/ 202

Motivation

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

• usersn
• corruptionsn − 1

Corruptions happen, but the number is likely small:
• Key-owners have high incentive to prevent exposure and take significant steps
• Internet services are increasingly storing their TLS signing keys in hardware security modules
• Use of threshold cryptography

Microsoft Storm-0885 attack (2023)1

• Attackers acquired a Microsoft account (MSA) consumer signing key used to authenticate tokens
• Affected were email accounts of 22 organizations and 500 individuals globally (e.g. top-tier US government officials)

1 https://www.microsoft.com/en-us/security/blog/2023/07/14/analysis-of-storm-0558-techniques-for-unauthorized-email-access/

/ 213

Motivation

Our model: cp-muc security (“corruption-parametrized”)

• usersn
• corruptions for c c ≪ n

/ 213

Motivation

Our model: cp-muc security (“corruption-parametrized”)

• usersn
• corruptions for c c ≪ n

Applications

• Signing, public-key and secret-key encryption, key exchange, …

• Similar to a “threshold” in secret sharing of MPC

/ 213

Motivation

Our model: cp-muc security (“corruption-parametrized”)

• usersn
• corruptions for c c ≪ n

Applications

• Signing, public-key and secret-key encryption, key exchange, …

• Similar to a “threshold” in secret sharing of MPC

Goal

• Better concrete security guarantees for protocols deployed in practice, where otherwise tight(er) bounds are
unknown or impossible

/ 214

Motivation

cp-muc security muc security

/ 214

Motivation

cp-muc security

Standard hybrid argument:

• Reduces to single-user (su) security

• Security loss linear in the number of users

muc security

/ 214

Motivation

cp-muc security

Standard hybrid argument:

• Reduces to single-user (su) security

• Security loss linear in the number of users

Our hope:

• Security loss linear in the number of corruptions

muc security

/ 214

Motivation

cp-muc security

Standard hybrid argument:

• Reduces to single-user (su) security

• Security loss linear in the number of users

Our hope:

• Security loss linear in the number of corruptions

muc security

Main question:
Can we give a general theorem? Under which conditions?

/ 215

Overview of our Results

Formal security specifications
• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

/ 215

Overview of our Results

Formal security specifications
• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers
• Technical tool that we introduce
• Essentially it determines how a (suitable) subset of users is picked

/ 215

Overview of our Results

Formal security specifications
• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers
• Technical tool that we introduce
• Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

• Basically all one-way (OW) games
• Indistinguishability (IND) games with independent challenge bits

/ 215

Overview of our Results

Formal security specifications
• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers
• Technical tool that we introduce
• Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

• Basically all one-way (OW) games
• Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games)

• IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
• AKE protocols
• Selective opening security

/ 215

Overview of our Results

Formal security specifications
• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers
• Technical tool that we introduce
• Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

• Basically all one-way (OW) games
• Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games)

• IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
• AKE protocols
• Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.

/ 215

Overview of our Results

Formal security specifications
• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers
• Technical tool that we introduce
• Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

• Basically all one-way (OW) games
• Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games)

• IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
• AKE protocols
• Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.

Main focus of this talk (using the
example of UF-CMA secure signatures)

/ 216

Digital Signatures

Syntax: A signature scheme is described via algorithms .𝖲𝗂𝗀 (𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇, 𝖵𝗋𝖿𝗒)

/ 216

Digital Signatures

Syntax: A signature scheme is described via algorithms .𝖲𝗂𝗀 (𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇, 𝖵𝗋𝖿𝗒)

(𝗏𝗄, 𝗌𝗄) ←$ 𝖦𝖾𝗇

𝗏𝗄

/ 216

Digital Signatures

Syntax: A signature scheme is described via algorithms .𝖲𝗂𝗀 (𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇, 𝖵𝗋𝖿𝗒)

(𝗏𝗄, 𝗌𝗄) ←$ 𝖦𝖾𝗇

σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄, M) M, σ

𝗏𝗄

/ 216

Digital Signatures

Syntax: A signature scheme is described via algorithms .𝖲𝗂𝗀 (𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇, 𝖵𝗋𝖿𝗒)

(𝗏𝗄, 𝗌𝗄) ←$ 𝖦𝖾𝗇

σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄, M) 0/1 ← 𝖵𝗋𝖿𝗒(𝗏𝗄, M, σ)
M, σ

𝗏𝗄

/ 217

Unforgeability (Single-User)

Adversary AGame G𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

/ 217

Unforgeability (Single-User)

Adversary A

𝗏𝗄(𝗏𝗄, 𝗌𝗄) ←$ 𝖦𝖾𝗇

Game G𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

/ 21

𝒮 ← 𝒮 ∪ {M}
σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄, M)

7

Unforgeability (Single-User)

 queriesq

Adversary A

σ
SIGN: M

𝗏𝗄(𝗏𝗄, 𝗌𝗄) ←$ 𝖦𝖾𝗇

Game G𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

/ 21

If

and :

 Return

Return

𝖵𝗋𝖿𝗒(𝗏𝗄, M⋆, σ⋆) = 1
M⋆ ∉ 𝒮

1
0

𝒮 ← 𝒮 ∪ {M}
σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄, M)

7

Unforgeability (Single-User)

 queriesq

Adversary A

σ
SIGN: M

M⋆, σ⋆

𝗏𝗄(𝗏𝗄, 𝗌𝗄) ←$ 𝖦𝖾𝗇

Game G𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

/ 21

If

and :

 Return

Return

𝖵𝗋𝖿𝗒(𝗏𝗄, M⋆, σ⋆) = 1
M⋆ ∉ 𝒮

1
0

𝒮 ← 𝒮 ∪ {M}
σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄, M)

7

Unforgeability (Single-User)

 queriesq

Adversary A

σ
SIGN: M

M⋆, σ⋆

𝗏𝗄(𝗏𝗄, 𝗌𝗄) ←$ 𝖦𝖾𝗇

A A𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 () := 𝖯𝗋[G𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀 () = 1]

Game G𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

/ 21

If

and :

 Return

Return

𝖵𝗋𝖿𝗒(𝗏𝗄i⋆ , M⋆, σ⋆) = 1
(i⋆, M⋆) ∉ 𝒮

1
0

𝒮 ← 𝒮 ∪ {(i, M)}
σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄i , M)

8

Unforgeability (Multi-User)

For :

i ∈ {1,…, n}
(𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇 𝗏𝗄1, …, 𝗏𝗄n

σ
SIGN: i, M

i⋆, M⋆, σ⋆

Game G𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀

A A𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀 () := 𝖯𝗋[G𝗎𝖿-𝗆𝗎-n

𝖲𝗂𝗀 () = 1]

 queriesq

Adversary A

/ 21

 queriesq

Adversary A

If

and and :

 Return

Return

𝖵𝗋𝖿𝗒(𝗏𝗄i⋆ , M⋆, σ⋆) = 1
(i⋆, M⋆) ∉ 𝒮 i⋆ ∉ 𝒞

1
0

𝒮 ← 𝒮 ∪ {(i, M)}
σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄i , M)

A A𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀 () := 𝖯𝗋[G𝗎𝖿-𝗆𝗎𝖼-n

𝖲𝗂𝗀 () = 1]

9

Unforgeability (Multi-User with Corruptions)

Game G𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

For :

i ∈ {1,…, n}
(𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇 𝗏𝗄1, …, 𝗏𝗄n

σ
SIGN: i, M

i⋆, M⋆, σ⋆

 queries< n𝗌𝗄i

CORRUPT: i
𝒞 ← 𝒞 ∪ {i}

/ 2110

Relations

Multi-user

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀

With corruptions

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

/ 2110

Relations

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

Type-I
no better relations known than
the general ones (e.g. RSA)

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

Multi-user

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀

With corruptions

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

/ 2110

Relations

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

Type-I
no better relations known than
the general ones (e.g. RSA)

Type-II
mu-tight, but not under
corruptions (e.g. Schnorr)

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

Multi-user

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀

With corruptions

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

/ 2110

Relations

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

Type-I
no better relations known than
the general ones (e.g. RSA)

Type-II
mu-tight, but not under
corruptions (e.g. Schnorr)

Type-III
muc-tight (“special” constructions,
e.g. [PKC:DGJL21])

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

Multi-user

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀

With corruptions

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

/ 2110

Relations

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

Type-I
no better relations known than
the general ones (e.g. RSA)

Type-II
mu-tight, but not under
corruptions (e.g. Schnorr)

Type-III
muc-tight (“special” constructions,
e.g. [PKC:DGJL21])

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

Multi-user

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀

With corruptions

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

mu-tight schemes seem to offer
no advantage in the muc setting

/ 21

 queriesq

Adversary A

 queries< n

If

and and :

 Return

Return

𝖵𝗋𝖿𝗒(𝗏𝗄i⋆ , M⋆, σ⋆) = 1
(i⋆, M⋆) ∉ 𝒮 i⋆ ∉ 𝒞

1
0

𝒮 ← 𝒮 ∪ {(i, M)}
σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄i , M)

A A𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀 () := 𝖯𝗋[G𝗎𝖿-𝗆𝗎𝖼-n

𝖲𝗂𝗀 () = 1]

11

Unforgeability (Multi-User with Corruptions)

Game G𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

For :

i ∈ {1,…, n}
(𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇 𝗏𝗄1, …, 𝗏𝗄n

σ
SIGN: i, M

i⋆, M⋆, σ⋆

𝗌𝗄i

CORRUPT: i
𝒞 ← 𝒞 ∪ {i}

/ 21

 queriesq

Adversary A

 queries< n

If

and and :

 Return

Return

𝖵𝗋𝖿𝗒(𝗏𝗄i⋆ , M⋆, σ⋆) = 1
(i⋆, M⋆) ∉ 𝒮 i⋆ ∉ 𝒞

1
0

𝒮 ← 𝒮 ∪ {(i, M)}
σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄i , M)

A A𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀 () := 𝖯𝗋[G𝗎𝖿-𝗆𝗎𝖼-n

𝖲𝗂𝗀 () = 1]

11

Unforgeability (Multi-User with Corruptions)

Game G𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

For :

i ∈ {1,…, n}
(𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇 𝗏𝗄1, …, 𝗏𝗄n

σ
SIGN: i, M

i⋆, M⋆, σ⋆

𝗌𝗄i

CORRUPT: i
𝒞 ← 𝒞 ∪ {i}

Always need to expect

 corruptions n − 1

/ 21

If

and and :

 Return

Return

𝖵𝗋𝖿𝗒(𝗏𝗄i⋆ , M⋆, σ⋆) = 1
(i⋆, M⋆) ∉ 𝒮 i⋆ ∉ 𝒞

1
0

𝒮 ← 𝒮 ∪ {(i, M)}
σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄i , M)

A A𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () := 𝖯𝗋[G𝗎𝖿-𝗆𝗎𝖼-(n,c)

𝖲𝗂𝗀 () = 1]

12

Unforgeability (Multi-User with Corruptions)

Game G𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀

For :

i ∈ {1,…, n}
(𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇 𝗏𝗄1, …, 𝗏𝗄n

σ
SIGN: i, M

i⋆, M⋆, σ⋆

𝗌𝗄i

CORRUPT: i
𝒞 ← 𝒞 ∪ {i}

 queriesq

Adversary A

 queries c (c ≪ n)

/ 21

If

and and :

 Return

Return

𝖵𝗋𝖿𝗒(𝗏𝗄i⋆ , M⋆, σ⋆) = 1
(i⋆, M⋆) ∉ 𝒮 i⋆ ∉ 𝒞

1
0

𝒮 ← 𝒮 ∪ {(i, M)}
σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄i , M)

A A𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () := 𝖯𝗋[G𝗎𝖿-𝗆𝗎𝖼-(n,c)

𝖲𝗂𝗀 () = 1]

12

Unforgeability (Multi-User with Corruptions)

Game G𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀

For :

i ∈ {1,…, n}
(𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇 𝗏𝗄1, …, 𝗏𝗄n

σ
SIGN: i, M

i⋆, M⋆, σ⋆

𝗌𝗄i

CORRUPT: i
𝒞 ← 𝒞 ∪ {i}

 queriesq

Adversary A

 queries c (c ≪ n)

More fine-grained view
(cp-muc, “corruption-parametrized”)

/ 20

cp-muc Theorem

Theorem (from su/mu to cp-muc):
Let be integers s.t. . For any adversary A against security of , there

exists an adversary B against security of s.t.

n, c 0 ≤ c < n 𝗎𝖿-𝗆𝗎𝖼-(n, c) 𝖲𝗂𝗀
𝗎𝖿-𝗆𝗎-m 𝖲𝗂𝗀

13

/ 20

cp-muc Theorem

Theorem (from su/mu to cp-muc):
Let be integers s.t. . For any adversary A against security of , there

exists an adversary B against security of s.t.

n, c 0 ≤ c < n 𝗎𝖿-𝗆𝗎𝖼-(n, c) 𝖲𝗂𝗀
𝗎𝖿-𝗆𝗎-m 𝖲𝗂𝗀

13

 A B where , 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 () e ≈ 2.71 m = ⌊ n − 1
c − 1 ⌋

/ 20

cp-muc Theorem

Theorem (from su/mu to cp-muc):
Let be integers s.t. . For any adversary A against security of , there

exists an adversary B against security of s.t.

n, c 0 ≤ c < n 𝗎𝖿-𝗆𝗎𝖼-(n, c) 𝖲𝗂𝗀
𝗎𝖿-𝗆𝗎-m 𝖲𝗂𝗀

For mu-tight secure schemes, there exists an adversary B against security s.t.′ 𝗎𝖿-𝗌𝗎

13

 A B where , 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 () e ≈ 2.71 m = ⌊ n − 1
c − 1 ⌋

/ 20

cp-muc Theorem

Theorem (from su/mu to cp-muc):
Let be integers s.t. . For any adversary A against security of , there

exists an adversary B against security of s.t.

n, c 0 ≤ c < n 𝗎𝖿-𝗆𝗎𝖼-(n, c) 𝖲𝗂𝗀
𝗎𝖿-𝗆𝗎-m 𝖲𝗂𝗀

For mu-tight secure schemes, there exists an adversary B against security s.t.′ 𝗎𝖿-𝗌𝗎

13

 A B where , 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 () e ≈ 2.71 m = ⌊ n − 1
c − 1 ⌋

 A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀 (′)

/ 20

cp-muc Theorem

Theorem (from su/mu to cp-muc):
Let be integers s.t. . For any adversary A against security of , there

exists an adversary B against security of s.t.

n, c 0 ≤ c < n 𝗎𝖿-𝗆𝗎𝖼-(n, c) 𝖲𝗂𝗀
𝗎𝖿-𝗆𝗎-m 𝖲𝗂𝗀

For mu-tight secure schemes, there exists an adversary B against security s.t.′ 𝗎𝖿-𝗌𝗎

13

 A B where , 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 () e ≈ 2.71 m = ⌊ n − 1
c − 1 ⌋

 A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀 (′) main benefit for Type-II schemes

/ 20

cp-muc Theorem

Theorem (from su/mu to cp-muc):
Let be integers s.t. . For any adversary A against security of , there

exists an adversary B against security of s.t.

n, c 0 ≤ c < n 𝗎𝖿-𝗆𝗎𝖼-(n, c) 𝖲𝗂𝗀
𝗎𝖿-𝗆𝗎-m 𝖲𝗂𝗀

For mu-tight secure schemes, there exists an adversary B against security s.t.′ 𝗎𝖿-𝗌𝗎

13

 A B where , 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 () e ≈ 2.71 m = ⌊ n − 1
c − 1 ⌋

 A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀 (′) main benefit for Type-II schemes

assuming security for small number of users offers

a non-trivial trade-off between and

𝗆𝗎
𝗌𝗎 𝗆𝗎𝖼

/ 20

cp-muc Theorem

Theorem (from su/mu to cp-muc):
Let be integers s.t. . For any adversary A against security of , there

exists an adversary B against security of s.t.

n, c 0 ≤ c < n 𝗎𝖿-𝗆𝗎𝖼-(n, c) 𝖲𝗂𝗀
𝗎𝖿-𝗆𝗎-m 𝖲𝗂𝗀

For mu-tight secure schemes, there exists an adversary B against security s.t.′ 𝗎𝖿-𝗌𝗎

13

 A B where , 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 () e ≈ 2.71 m = ⌊ n − 1
c − 1 ⌋

 A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀 (′)

 Example:

 Million

 Thousand

n = 100
c = 100
m = 999

main benefit for Type-II schemes

assuming security for small number of users offers

a non-trivial trade-off between and

𝗆𝗎
𝗌𝗎 𝗆𝗎𝖼

/ 20

cp-muc Theorem

Theorem (from su/mu to cp-muc):
Let be integers s.t. . For any adversary A against security of , there

exists an adversary B against security of s.t.

n, c 0 ≤ c < n 𝗎𝖿-𝗆𝗎𝖼-(n, c) 𝖲𝗂𝗀
𝗎𝖿-𝗆𝗎-m 𝖲𝗂𝗀

For mu-tight secure schemes, there exists an adversary B against security s.t.′ 𝗎𝖿-𝗌𝗎

Inspiration: Optimal bounds for FDH signatures [C:Coron01]
• Instead of losing a factor linear in the number of hash queries, reduction loses number of signing queries

13

 A B where , 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 () e ≈ 2.71 m = ⌊ n − 1
c − 1 ⌋

 A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀 (′)

 Example:

 Million

 Thousand

n = 100
c = 100
m = 999

main benefit for Type-II schemes

assuming security for small number of users offers

a non-trivial trade-off between and

𝗆𝗎
𝗌𝗎 𝗆𝗎𝖼

/ 21

cp-muc Theorem

Refining and generalizing [C:Coron01]

14

/ 21

cp-muc Theorem

Refining and generalizing [C:Coron01]

𝗏𝗄′ 1, …, 𝗏𝗄′ n

14

i⋆, M⋆, σ⋆

/ 21

cp-muc Theorem

Refining and generalizing [C:Coron01]

𝗏𝗄1, …, 𝗏𝗄n

CORRUPT: i
𝗌𝗄i

𝗏𝗄′ 1, …, 𝗏𝗄′ n

14

i⋆, M⋆, σ⋆

 queriesc

i⋆, M⋆, σ⋆

/ 21

cp-muc Theorem

Refining and generalizing [C:Coron01]

For i ∈ {1,…, n}
 Pick bit s.t. bi 𝖯𝗋[bi = 1] = p 𝗏𝗄1, …, 𝗏𝗄n

CORRUPT: i
𝗌𝗄i

𝗏𝗄′ 1, …, 𝗏𝗄′ n

14

i⋆, M⋆, σ⋆

 queriesc

i⋆, M⋆, σ⋆

/ 21

cp-muc Theorem

Refining and generalizing [C:Coron01]

For i ∈ {1,…, n}
 Pick bit s.t. bi 𝖯𝗋[bi = 1] = p
 If : bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇

𝗏𝗄1, …, 𝗏𝗄n

CORRUPT: i
𝗌𝗄i

𝗏𝗄′ 1, …, 𝗏𝗄′ n

14

i⋆, M⋆, σ⋆

 queriesc

i⋆, M⋆, σ⋆

/ 21

cp-muc Theorem

Refining and generalizing [C:Coron01]

For i ∈ {1,…, n}
 Pick bit s.t. bi 𝖯𝗋[bi = 1] = p
 If : bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇
 If : bi = 1 𝗏𝗄i ← 𝗏𝗄′ i

𝗏𝗄1, …, 𝗏𝗄n

CORRUPT: i
𝗌𝗄i

𝗏𝗄′ 1, …, 𝗏𝗄′ n

14

i⋆, M⋆, σ⋆

 queriesc

i⋆, M⋆, σ⋆

/ 21

cp-muc Theorem

Refining and generalizing [C:Coron01]

For i ∈ {1,…, n}
 Pick bit s.t. bi 𝖯𝗋[bi = 1] = p
 If : bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇
 If : bi = 1 𝗏𝗄i ← 𝗏𝗄′ i

𝗏𝗄1, …, 𝗏𝗄n

CORRUPT: i
𝗌𝗄i

𝗏𝗄′ 1, …, 𝗏𝗄′ n

Reduction is successful if

• Corruption queries are only issued for users s.t.

• Final solution is for a user s.t.

i bi = 0
i⋆ bi⋆ = 1

14

i⋆, M⋆, σ⋆

 queriesc

i⋆, M⋆, σ⋆

/ 21

cp-muc Theorem

Refining and generalizing [C:Coron01]

For i ∈ {1,…, n}
 Pick bit s.t. bi 𝖯𝗋[bi = 1] = p
 If : bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇
 If : bi = 1 𝗏𝗄i ← 𝗏𝗄′ i

𝗏𝗄1, …, 𝗏𝗄n

CORRUPT: i
𝗌𝗄i

𝗏𝗄′ 1, …, 𝗏𝗄′ n

Reduction is successful if

• Corruption queries are only issued for users s.t.

• Final solution is for a user s.t.

i bi = 0
i⋆ bi⋆ = 1

14

i⋆, M⋆, σ⋆

A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n

𝖲𝗂𝗀 ()

 queriesc

i⋆, M⋆, σ⋆

/ 21

cp-muc Theorem

Refining and generalizing [C:Coron01]

For i ∈ {1,…, n}
 Pick bit s.t. bi 𝖯𝗋[bi = 1] = p
 If : bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇
 If : bi = 1 𝗏𝗄i ← 𝗏𝗄′ i

𝗏𝗄1, …, 𝗏𝗄n

CORRUPT: i
𝗌𝗄i

𝗏𝗄′ 1, …, 𝗏𝗄′ n

Reduction is successful if

• Corruption queries are only issued for users s.t.

• Final solution is for a user s.t.

i bi = 0
i⋆ bi⋆ = 1

14

i⋆, M⋆, σ⋆

We don’t need

 public keys! n

A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n

𝖲𝗂𝗀 ()

 queriesc

i⋆, M⋆, σ⋆

/ 21

𝗏𝗄′ 1, …, 𝗏𝗄′ m

cp-muc Theorem

Refining and generalizing [C:Coron01]

For

 Pick bit s.t.

 If :

 If : Use next

i ∈ {1,…, n}
bi 𝖯𝗋[bi = 1] = p

bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇
bi = 1 𝗏𝗄′ i′

CORRUPT: i
𝗌𝗄i

Reduction is successful if

• Corruption queries are only issued for users s.t.

• Final solution is for a user s.t.

i bi = 0
i⋆ bi⋆ = 1

15

i⋆, M⋆, σ⋆

A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n

𝖲𝗂𝗀 ()

 queriesc

i⋆, M⋆, σ⋆

𝗏𝗄1, …, 𝗏𝗄n

/ 21

𝗏𝗄′ 1, …, 𝗏𝗄′ m

cp-muc Theorem

Refining and generalizing [C:Coron01]

For

 Pick bit s.t.

 If :

 If : Use next

i ∈ {1,…, n}
bi 𝖯𝗋[bi = 1] = p

bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇
bi = 1 𝗏𝗄′ i′

CORRUPT: i
𝗌𝗄i

Reduction is successful if

• Corruption queries are only issued for users s.t.

• Final solution is for a user s.t.

i bi = 0
i⋆ bi⋆ = 1

15

i⋆, M⋆, σ⋆

A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n

𝖲𝗂𝗀 ()

 queriesc

i⋆, M⋆, σ⋆

This may fail

for small ! m

𝗏𝗄1, …, 𝗏𝗄n

/ 21

𝗏𝗄′ 1, …, 𝗏𝗄′ m

cp-muc Theorem

Refining and generalizing [C:Coron01]

For

 If :

 If : Use next

i ∈ {1,…, n}
bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇
bi = 1 𝗏𝗄′ i′

CORRUPT: i
𝗌𝗄i

Reduction is successful if

• Corruption queries are only issued for users s.t.

• Final solution is for a user s.t.

i bi = 0
i⋆ bi⋆ = 1

16

i⋆, M⋆, σ⋆

A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 ()

 queriesc

i⋆, M⋆, σ⋆

Pick string
with Hamming weight

(b1, …, bn) ∈ {0,1}n

m
𝗏𝗄1, …, 𝗏𝗄n

/ 21

𝗏𝗄′ 1, …, 𝗏𝗄′ m

cp-muc Theorem

Refining and generalizing [C:Coron01]

For

 If :

 If : Use next

i ∈ {1,…, n}
bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇
bi = 1 𝗏𝗄′ i′

CORRUPT: i
𝗌𝗄i

Reduction is successful if

• Corruption queries are only issued for users s.t.

• Final solution is for a user s.t.

i bi = 0
i⋆ bi⋆ = 1

16

i⋆, M⋆, σ⋆

A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 ()

 queriesc

i⋆, M⋆, σ⋆

Pick string
with Hamming weight

(b1, …, bn) ∈ {0,1}n

m
𝗏𝗄1, …, 𝗏𝗄n

What is the

optimal ? m

/ 18

𝗏𝗄′ 1, …, 𝗏𝗄′ m

cp-muc Theorem

Refining and generalizing [C:Coron01]

For

 If :

 If : Use next

i ∈ {1,…, n}
bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇
bi = 1 𝗏𝗄′ i′

CORRUPT: i
𝗌𝗄i

Reduction is successful if

• Corruption queries are only issued for users s.t.

• Final solution is for a user s.t.

i bi = 0
i⋆ bi⋆ = 1

17

i⋆, M⋆, σ⋆

A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 ()

 queriesc

i⋆, M⋆, σ⋆

Pick string
with Hamming weight

(b1, …, bn) ∈ {0,1}n

m
𝗏𝗄1, …, 𝗏𝗄n

This is captured by our abstraction of Hamming-weight determined samplers
(via their success and error probability)

/ 18

𝗏𝗄′ 1, …, 𝗏𝗄′ m

cp-muc Theorem

Refining and generalizing [C:Coron01]

For

 If :

 If : Use next

i ∈ {1,…, n}
bi = 0 (𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇
bi = 1 𝗏𝗄′ i′

CORRUPT: i
𝗌𝗄i

Reduction is successful if

• Corruption queries are only issued for users s.t.

• Final solution is for a user s.t.

i bi = 0
i⋆ bi⋆ = 1

17

i⋆, M⋆, σ⋆

A B𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀 () ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m

𝖲𝗂𝗀 ()

 queriesc

i⋆, M⋆, σ⋆

Pick string
with Hamming weight

(b1, …, bn) ∈ {0,1}n

m
𝗏𝗄1, …, 𝗏𝗄n

for m ≈ n/c

This is captured by our abstraction of Hamming-weight determined samplers
(via their success and error probability)

/ 2118

Relations

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

Type-I
no better relations known than
the general ones (e.g. RSA)

Type-II
mu-tight, but not under
corruptions (e.g. Schnorr)

Type-III
muc-tight (“special” constructions,
e.g. [PKC:DGJL21])

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

Multi-user

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀

With corruptions

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

/ 2119

Relations

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

Type-I
no better relations known than
the general ones (e.g. RSA)

Type-II
mu-tight, but not under
corruptions (e.g. Schnorr)

Type-III
muc-tight (“special” constructions,
e.g. [PKC:DGJL21])

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

Multi-user

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀

With corruptions

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

Parametrized

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀

 ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m
𝖲𝗂𝗀

 ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

* m = n/c

/ 2119

Relations

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

Type-I
no better relations known than
the general ones (e.g. RSA)

Type-II
mu-tight, but not under
corruptions (e.g. Schnorr)

Type-III
muc-tight (“special” constructions,
e.g. [PKC:DGJL21])

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

Multi-user

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀

With corruptions

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

Parametrized

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-(n,c)
𝖲𝗂𝗀

 ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-m
𝖲𝗂𝗀

 ≤ e(c + 1) ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

* m = n/c

/ 2120

Overview of our Results

Formal security specifications
• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers
• Technical tool that we introduce
• Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

• Basically all one-way (OW) games
• Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games)

• IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
• AKE protocols
• Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.

/ 2121

Conclusion

• In practice the number of corruptions is expected to be much smaller than the number of users.

• This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.

• Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.

It applies to Schnorr signatures, ElGamal-type encryption, and more.

• Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight
mu security (Type-II schemes).

/ 2121

Conclusion

• In practice the number of corruptions is expected to be much smaller than the number of users.

• This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.

• Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.

It applies to Schnorr signatures, ElGamal-type encryption, and more.

• Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight
mu security (Type-II schemes).

ePrint: ia.cr/2024/1258

http://ia.cr/2024/1258

/ 2121

Conclusion

• In practice the number of corruptions is expected to be much smaller than the number of users.

• This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.

• Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.

It applies to Schnorr signatures, ElGamal-type encryption, and more.

• Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight
mu security (Type-II schemes).

Thank you!

ePrint: ia.cr/2024/1258

http://ia.cr/2024/1258

