Count Corruptions, Not Users: Improved Tightness for Signatures, Encryption and Authenticated Key Exchange

Mihir Bellare, <u>Doreen Riepel</u>, Stefano Tessaro, Yizhao Zhang ASIACRYPT 2024

UC San Diego

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

- *n* users
- n-1 corruptions

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

- *n* users
- n-1 corruptions

Corruptions happen, but **the number is likely small**:

- Key-owners have high incentive to prevent exposure and take significant steps
- Internet services are increasingly storing their TLS signing keys in hardware security modules
- Use of threshold cryptography

Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

- *n* users
- n-1 corruptions

Corruptions happen, but **the number is likely small**:

- Key-owners have high incentive to prevent exposure and take significant steps
- Internet services are increasingly storing their TLS signing keys in hardware security modules
- Use of threshold cryptography

Microsoft Storm-0885 attack (2023)¹

- Attackers acquired a Microsoft account (MSA) consumer signing key used to authenticate tokens

• Affected were email accounts of 22 organizations and 500 individuals globally (e.g. top-tier US government officials)

¹ https://www.microsoft.com/en-us/security/blog/2023/07/14/analysis-of-storm-0558-techniques-for-unauthorized-email-access/

Our model: cp-muc security ("corruption-parametrized")

- *n* users
- c corruptions for $c \ll n$

Our model: cp-muc security ("corruption-parametrized")

- *n* users
- c corruptions for $c \ll n$

Applications

- Signing, public-key and secret-key encryption, key exchange, ...
- Similar to a "threshold" in secret sharing of MPC

Our model: cp-muc security ("corruption-parametrized")

- *n* users
- c corruptions for $c \ll n$

Applications

- Signing, public-key and secret-key encryption, key exchange, ...
- Similar to a "threshold" in secret sharing of MPC

Goal

unknown or impossible

• Better concrete security guarantees for protocols deployed in practice, where otherwise tight(er) bounds are

muc security

cp-muc security

muc security

Standard hybrid argument:

- Reduces to single-user (su) security
- Security loss linear in the number of users

cp-muc security

muc security

Standard hybrid argument:

- Reduces to single-user (su) security
- Security loss linear in the number of users

cp-muc security

Our hope:

• Security loss linear in the number of corruptions

muc security

Standard hybrid argument:

- Reduces to single-user (su) security
- Security loss linear in the number of users

Can we give a general theorem? Under which conditions?

cp-muc security

Our hope:

• Security loss linear in the number of corruptions

Main question:

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy "locality" property)

- Basically all one-way (OW) games
- Indistinguishability (IND) games with independent challenge bits

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy "locality" property)

- Basically all one-way (OW) games
- Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for "non-local" and "more advanced" games)

- IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
- AKE protocols
- Selective opening security

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy "locality" property)

- Basically all one-way (OW) games
- Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for "non-local" and "more advanced" games)

- IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
- AKE protocols
- Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy "locality" property)

- Basically all one-way (OW) games
- Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for "non-local" and "more advanced" games)

- IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
- AKE protocols
- Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.

Main focus of this talk (using the example of UF-CMA secure signatures)

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

 $(vk, sk) \leftarrow^{\$} Gen$ $(vk, sk) \leftarrow^{\$} Gen$ $\phi \leftarrow^{\$} Sign(sk, M)$

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

 $(vk, sk) \leftarrow^{\$} Gen$ $(vk, sk) \leftarrow^{\$} Gen$ $\phi \leftarrow^{\$} Sign(sk, M)$

 $(vk, sk) \leftarrow {}^{\$} Gen$

 $(vk, sk) \leftarrow^{\$} Gen$

 $\sigma \leftarrow^{\$} \operatorname{Sign}(\operatorname{sk}, M)$

 $\mathcal{S} \leftarrow \mathcal{S} \cup \{M\}$

 $(vk, sk) \leftarrow^{\$} Gen$

 $\sigma \leftarrow^{\$} \operatorname{Sign}(\operatorname{sk}, M)$

 $\mathcal{S} \leftarrow \mathcal{S} \cup \{M\}$

If Vrfy(vk, M^* , σ^*) = 1 and $M^* \notin S$: Return 1 Return 0 S

 $(vk, sk) \leftarrow^{\$} Gen$

 $\sigma \leftarrow^{\$} \operatorname{Sign}(\operatorname{sk}, M)$

 $\mathcal{S} \leftarrow \mathcal{S} \cup \{M\}$

If Vrfy(vk, M^* , σ^*) = 1 and $M^* \notin S$: Return 1 Return 0 S

$$\mathsf{Adv}^{\mathsf{uf-su}}_{\mathsf{Sig}}(\mathcal{A}) := \mathsf{Pr}[\mathbf{G}^{\mathsf{uf-su}}_{\mathsf{Sig}}(\mathcal{A}) = 1]$$

Unforgeability (Multi-User)

If $Vrfy(vk_{i^{\star}}, M^{\star}, \sigma^{\star}) = 1$ and $(i^{\star}, M^{\star}) \notin S$: Return 1 Return 0

 $\mathsf{Adv}^{\mathsf{uf-mu-}n}_{\mathsf{Sig}}(\mathcal{A}) := \mathsf{Pr}[\mathbf{G}^{\mathsf{uf-mu-}n}_{\mathsf{Sig}}(\mathcal{A}) = 1]$

Unforgeability (Multi-User with Corruptions)

Multi-user

Adv^{uf-mu-n} Sig

With corruptions

 $\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{muc}-n}$

Multi-user

 $\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{mu}-n}$

Type-I

no better relations known than the general ones (e.g. RSA)

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

With corruptions

 $\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{muc}-n}$

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

Multi-user

 $Adv_{Sig}^{uf-mu-n}$

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr) $\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$

 $pprox Adv_{Sig}^{uf-su}$

With corruptions

 $Adv_{Sig}^{uf-muc-n}$

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

Multi-user

 $Adv_{Sig}^{uf-mu-n}$

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr)

Type-III

muc-tight (''special'' constructions, e.g. [PKC:DGJL21]) $\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$

 $\approx Adv_{Sig}^{uf-su}$

With corruptions

 $Adv_{Sig}^{uf-muc-n}$

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

$$\approx Adv_{Sig}^{uf-su}$$

Multi-user

 $Adv_{Sig}^{uf-mu-n}$

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr)

Type-III

muc-tight (''special'' constructions, e.g. [PKC:DGJL21]) $\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$

 $\approx Adv_{Sig}^{uf-su}$

With corruptions

 $Adv_{Sig}^{uf-muc-n}$

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

 $\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$

mu-tight schemes seem to offer no advantage in the muc setting

$$\approx Adv_{Sig}^{uf-su}$$

Unforgeability (Multi-User with Corruptions)

Unforgeability (Multi-User with Corruptions)

Unforgeability (Multi-User with Corruptions)

Unforgeability (Multi-User with Corruptions)

Let n, c be integers s.t. $0 \le c < n$. For any adversary A against uf-muc-(n, c) security of Sig, there exists an adversary \mathcal{B} against uf-mu-m security of Sig s.t.

Let n, c be integers s.t. $0 \le c < n$. For any adversary A against uf-muc-(n, c) security of Sig, there exists an adversary \mathcal{B} against uf-mu-m security of Sig s.t.

$$\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \le e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}m}(\mathcal{B}) \qquad \text{where } e \approx 2.71, \ m = \left\lfloor \frac{n-1}{c-1} \right\rfloor$$

Let n, c be integers s.t. $0 \le c < n$. For any adversary A against uf-muc-(n, c) security of Sig, there exists an adversary \mathcal{B} against uf-mu-m security of Sig s.t.

$$\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \le e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}m}(\mathcal{B}) \qquad \text{where } e \approx 2.71, \ m = \left\lfloor \frac{n-1}{c-1} \right\rfloor$$

For mu-tight secure schemes, there exists an adversary \mathcal{B}' against uf-su security s.t.

Let n, c be integers s.t. $0 \le c < n$. For any adversary A against uf-muc-(n, c) security of Sig, there exists an adversary \mathcal{B} against uf-mu-m security of Sig s.t.

$$\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \le e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}m}(\mathcal{B}) \qquad \text{where } e \approx 2.71, \ m = \left\lfloor \frac{n-1}{c-1} \right\rfloor$$

For mu-tight secure schemes, there exists an adversary \mathcal{B}' against uf-su security s.t.

$$\operatorname{Adv}_{\operatorname{Sig}}^{\operatorname{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \operatorname{Adv}_{\operatorname{Sig}}^{\operatorname{uf-su}}(\mathcal{A})$$

 (\mathcal{B}')

Let n, c be integers s.t. $0 \le c < n$. For any adversary A against uf-muc-(n, c) security of Sig, there exists an adversary \mathcal{B} against uf-mu-m security of Sig s.t.

$$\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \le e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}m}(\mathcal{B}) \qquad \text{where } e \approx 2.71, \ m = \left\lfloor \frac{n-1}{c-1} \right\rfloor$$

For mu-tight secure schemes, there exists an adversary \mathcal{B}' against uf-su security s.t.

$$\operatorname{Adv}_{\operatorname{Sig}}^{\operatorname{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \operatorname{Adv}_{\operatorname{Sig}}^{\operatorname{uf-su}}(\mathcal{A})$$

 (\mathcal{B}') main benefit for Type-II schemes

Let n, c be integers s.t. $0 \le c < n$. For any adversary A against uf-muc-(n, c) security of Sig, there exists an adversary \mathcal{B} against uf-mu-m security of Sig s.t.

$$\operatorname{\mathsf{Adv}}_{\operatorname{\mathsf{Sig}}}^{\operatorname{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \operatorname{\mathsf{Adv}}_{\operatorname{\mathsf{Sig}}}^{\operatorname{uf-mu-}m}(\mathcal{B}) \quad \text{where } e \approx 2.71, \quad m = \left\lfloor \frac{n-1}{c-1} \right\rfloor$$

assuming mu security for small number of users offers
a non-trivial trade-off between su and muc

For mu-tight secure schemes, there exists an adversary \mathcal{B}' against uf-su security s.t.

$$\operatorname{Adv}_{\operatorname{Sig}}^{\operatorname{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \operatorname{Adv}_{\operatorname{Sig}}^{\operatorname{uf-su}}(a)$$

 (\mathcal{B}') main benefit for Type-II schemes

Let n, c be integers s.t. $0 \le c < n$. For any adversary A against uf-muc-(n, c) security of Sig, there exists an adversary \mathcal{B} against uf-mu-m security of Sig s.t.

$$\operatorname{Adv}_{\operatorname{Sig}}^{\operatorname{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \operatorname{Adv}_{\operatorname{Sig}}^{\operatorname{uf-mu-}m}(\mathcal{B}) \quad \text{where } e \approx 2.71, \quad m = \left\lfloor \frac{n-1}{c-1} \right\rfloor \quad \left\{ \begin{array}{c} \operatorname{Example:} \\ n = 100 \text{ Millions} \\ c = 100 \text{ Millions} \\ m = 999 \end{array} \right\}$$

For mu-tight secure schemes, there exists an adversary \mathcal{B}' against uf-su security s.t.

Let n, c be integers s.t. $0 \le c < n$. For any adversary A against uf-muc-(n, c) security of Sig, there exists an adversary \mathcal{B} against uf-mu-m security of Sig s.t.

$$\operatorname{Adv}_{\operatorname{Sig}}^{\operatorname{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \operatorname{Adv}_{\operatorname{Sig}}^{\operatorname{uf-mu-}m}(\mathcal{B}) \quad \text{where } e \approx 2.71, \quad m = \left\lfloor \frac{n-1}{c-1} \right\rfloor \quad \left\{ \begin{array}{c} \operatorname{Example:} \\ n = 100 \text{ Millions} \\ c = 100 \text{ Millions} \\ m = 999 \end{array} \right\}$$

For mu-tight secure schemes, there exists an adversary \mathcal{B}' against uf-su security s.t.

Inspiration: Optimal bounds for FDH signatures [C:Coron01]

• Instead of losing a factor linear in the number of hash queries, reduction loses number of signing queries

Refining and generalizing [C:Coron01]

For $i \in \{1, ..., n\}$

Refining and generalizing [C:Coron01]

$$\bullet i^{\star}, M^{\star}, \sigma^{\star}$$

Reduction is successful if

- Corruption queries are only issued for users *i* s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

Refining and generalizing [C:Coron01]

$$\bullet i^{\star}, M^{\star}, \sigma^{\star}$$

Reduction is successful if

- Corruption queries are only issued for users *i* s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}^{\mathsf{uf-muc-}(n,c)}_{\mathsf{Sig}}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}^{\mathsf{uf-mu-}n}_{\mathsf{Sig}}(\mathcal{B})$

Refining and generalizing [C:Coron01]

$$\bullet i^{\star}, M^{\star}, \sigma^{\star}$$

Reduction is successful if

- Corruption queries are only issued for users *i* s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}^{\mathsf{uf-muc-}(n,c)}_{\mathsf{Sig}}(\mathcal{A}) \le e(c+1) \cdot \mathsf{Adv}^{\mathsf{uf-mu-}n}_{\mathsf{Sig}}(\mathcal{B})$

Refining and generalizing [C:Coron01]

$$\bullet i^{\star}, M^{\star}, \sigma^{\star}$$

Reduction is successful if

- Corruption queries are only issued for users *i* s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}^{\mathsf{uf-muc-}(n,c)}_{\mathsf{Sig}}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}^{\mathsf{uf-mu-}n}_{\mathsf{Sig}}(\mathcal{B})$

Refining and generalizing [C:Coron01]

Reduction is successful if

- Corruption queries are only issued for users i s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}^{\mathsf{uf-muc-}(n,c)}_{\mathsf{Sig}}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}^{\mathsf{uf-mu-}n}_{\mathsf{Sig}}(\mathcal{B})$

Refining and generalizing [C:Coron01]

$$\bullet$$
 $i^{\star}, M^{\star}, \sigma^{\star}$

Reduction is successful if

- Corruption queries are only issued for users *i* s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

Refining and generalizing [C:Coron01]

$$\bullet$$
 $i^{\star}, M^{\star}, \sigma^{\star}$

Reduction is successful if

- Corruption queries are only issued for users *i* s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}^{\mathsf{uf-muc-}(n,c)}_{\mathsf{Sig}}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}^{\mathsf{uf-mu-}m}_{\mathsf{Sig}}(\mathcal{B})$

$$\bullet i^{\star}, M^{\star}, \sigma^{\star}$$

Reduction is successful if

- Corruption queries are only issued for users *i* s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}^{\mathsf{uf-muc-}(n,c)}_{\mathsf{Sig}}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}^{\mathsf{uf-mu-}m}_{\mathsf{Sig}}(\mathcal{B})$

$$\bullet i^{\star}, M^{\star}, \sigma^{\star}$$

Reduction is successful if

- Corruption queries are only issued for users *i* s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

$$\mathsf{Adv}^{\mathsf{uf-muc-}(n,c)}_{\mathsf{Sig}}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}^{\mathsf{uf-mu-}m}_{\mathsf{Sig}}(\mathcal{B})$$

for $m \approx n/c$

Relations

Multi-user

 $Adv_{Sig}^{uf-mu-n}$

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr)

Type-III

muc-tight (''special'' constructions, e.g. [PKC:DGJL21]) $\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$

 $pprox Adv_{Sig}^{uf-su}$

With corruptions

 $Adv_{Sig}^{uf-muc-n}$

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

$$\approx Adv_{Sig}^{uf-su}$$

Relations

Multi-user

 $Adv_{Sig}^{uf-mu-n}$

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr)

Type-III

muc-tight (''special'' constructions, e.g. [PKC:DGJL21]) $\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$

 $pprox Adv_{Sig}^{uf-su}$

With corruptions

$Adv_{Sig}^{uf-muc-n}$

Parametrized

 $Adv_{Sig}^{uf-muc-(n,c)}$

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

 $\leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}m}$

$$\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$$

 $\leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}$

 $\approx Adv_{Sig}^{uf-su}$

$$pprox Adv_{Sig}^{uf-su}$$

m = n/c

Relations

Multi-user

 $Adv_{Sig}^{uf-mu-n}$

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr)

Type-III

muc-tight (''special'' constructions, e.g. [PKC:DGJL21]) $\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$

 $\approx Adv_{Sig}^{uf-su}$

With corruptions

$Adv_{Sig}^{uf-muc-n}$

Parametrized

 $Adv_{Sig}^{uf-muc-(n,c)}$

$$\leq n \cdot \text{Adv}_{\text{Sig}}^{\text{uf-su}} \leq e(c+1) \cdot \text{Adv}_{\text{Sig}}^{\text{uf-mu-}m}$$

 $\leq n \cdot \mathrm{Adv}_{\mathrm{Sig}}^{\mathrm{uf-su}}$

 $\leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}$

 $\approx Adv_{Sig}^{uf-su}$

$$pprox Adv_{Sig}^{uf-su}$$

m = n/c

Overview of our Results

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy "locality" property)

- Basically all one-way (OW) games
- Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for "non-local" and "more advanced" games)

- IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
- AKE protocols
- Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.

Conclusion

- In practice the number of corruptions is expected to be much smaller than the number of users.
- This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.
- Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.
 It applies to Schnorr signatures, ElGamal-type encryption, and more.
- Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight mu security (Type-II schemes).

Conclusion

- In practice the number of corruptions is expected to be much smaller than the number of users.
- This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.
- Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.
 It applies to Schnorr signatures, ElGamal-type encryption, and more.
- Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight mu security (Type-II schemes).

ePrint: ia.cr/2024/1258

Conclusion

- In practice the number of corruptions is expected to be much smaller than the number of users.
- This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.
- Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.
 It applies to Schnorr signatures, ElGamal-type encryption, and more.
- Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight mu security (Type-II schemes).

ePrint: ia.cr/2024/1258

Thank you!

