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Corruptions happen, but the number is likely small: Q

e Key-owners have high incentive to prevent exposure and take significant steps
e Internet services are increasingly storing their TLS signing keys in hardware security modules
e Use of threshold cryptography

Microsoft Storm-0885 attack (2023)!

e Attackers acquired a Microsoft account (MSA) consumer signing key used to authenticate tokens
o Affected were email accounts of 22 organizations and 500 individuals globally (e.g. top-tier US government officials)

L https://www.microsoft.com/en-us/security /blog /2023 /07 /14 /analysis-of-storm-0558-techniques-for-unauthorized-email-access/ 2/20
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e C corruptions for c K n

Applications Q Q
e Signing, public-key and secret-key encryption, key exchange, ...
e Similar to a "threshold” in secret sharing of MPC

Goal

e Better concrete security guarantees for protocols deployed in practice, where otherwise tight(er) bounds are

unknown or impossible
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Standard hybrid argument: Our hope:
e Reduces to single-user (su) security e Security loss linear in the number of corruptions

e Security loss linear in the number of users

Main question:

Can we give a general theorem? Under which conditions?
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Hamming-weight determined samplers

e Technical tool that we introduce

e Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property) < Main focus of this talk (using the

» Basically all one-way (OW) games example of UF-CMA secure signatures)

e Indistinguishability (IND) games with independent challenge bits
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Digital Signatures

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

(vk, sk) «<* Gen
H vk R p

g 0/1 < Vrfy(vk, M, )

6/21



Unforgeability (Single-User)

Game Gg‘;s“ Adversary ‘A

3 &

7/21



Unforgeability (Single-User)

Game Gg‘;s“ Adversary ‘A

‘ (v, sk) <3 Gen vk i '

7/21



Unforgeability (Single-User)

Game Gg‘;s“ Adversary ‘A

‘ (vk, sk) <°* Gen vk
SioN: M
Q q qUErIes

S «— S UM} >

7/21



Unforgeability (Single-User)

Game Gg‘;s“ Adversary ‘A

‘ (vk, sk) <°* Gen vk
SioN: M
Q q qUErIes

S «— S UM} >

If Vrfy(vk, M* 6*) = 1

and M* & §:
Return 1

Return 0

7/21



Unforgeability (Single-User)

Game Gg‘;s“ Adversary ‘A

.' (vk, sk) P Gen vk
SioN: M
‘. o <> Sign(sk, M) > LoN . |
Q g queries

S« SU{Mj} >

If Vrfy(vk, M*,6™) = 1

and M* & &
Return 1 f :
Adve Y (A) := Pr[GYSY(A) = 1
Return O sig (7 [Ggip™ (A) = 1]

7/21



Unforgeability (Multi-User)

Game Gg};mu-n Adversary ‘A

Forie {l,...,n}:
‘.' (vks, sk;) <3 Gen ASIRIRALY

>
SieN: 1, M
AR o sesn l
o
S SU{(.M)} g
i M*, o*

If Vrfy(vk, ,M* %) =1

and (i", M™) & &
Return 1

Advg, ™ "(A) = PriGEE ™ (A) = 1]

Return O

8 /21



Unforgeability (Multi-User with Corruptions)

Game Gg, ™" Adversary 4

‘ Forie {1,....,n}:
(Vkl’, Skl‘) (—$ Gen Vkl? SRR an

>
SIGN: 1, M
B s < ’
o
S~ SU{@i,M)} >
) CORRUPT: 1
€ «— 6 U {i} K
l >
X M* o*
<

H: VrfY(Vki*aM*a 0*) — 1

and (iX M*) & & and i* & G-
Return 1

AQVELTT(R) = PG () = 1]

Return O

9/21



Relations

Multi-user With corruptions
uf-mu-n uf-muc-n
Advg;, Advg;,

10/21



Relations

Multi-user With corruptions
Advg ™" Advg ™"
Type-|
no better relations known than <n- Advg‘i?“ <n- Advggsu

the general ones (e.g. RSA)

10/21



Relations

Multi-user

With corruptions

Advg ™" Advg ™"
Type-|
no better relations known than <n- Advg‘ic;“ <n- Advggsu
the general ones (e.g. RSA)
Type-I|
mu-tight, but not under ~ Advg‘ic:” <n- Advg‘i:‘gs“

corruptions (e.g. Schnorr)

10/21



Relations

Multi-user With corruptions
Advg ™" Advg ™"
Type-|
no better relations known than <n- Advg‘ic;“ <n- Advggsu
the general ones (e.g. RSA)
Type-I|
mu-tight, but not under ~ Advg‘ic;“ <n- Advg‘i;s“
corruptions (e.g. Schnorr)
Type-lll
muc-tight (“special” constructions, ~ Advg]i;s“ ~ Advgf{—;su

e.g. [PKC:DGJL21])

10/21



Relations

Multi-user With corruptions
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no better relations known than <n- Advggsu <n- Advg‘i;‘gs“
the general ones (e.g. RSA)
Type-I|
; uf-su uf-su <{ ] h £f
mu-tight, but not under ~ AdVSig <n- AdVSig mu-tight schemes seem to otrer
corruptions (e.g. Schnorr) no advantage in the muc setting
Type-lll
muc-tight (“special” constructions, ~ Advg]i;s“ ~ Advgf{—;su

e.g. [PKC:DGJL21])
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Unforgeability (Multi-User with Corruptions)

uf-muc-n
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For mu-tight secure schemes, there exists an adversary ‘B’ against uf-su security s.t.
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Inspiration: Optimal bounds for FDH signatures [C:Coron(1]

e Instead of losing a factor linear in the number of hash queries, reduction loses number of signing queries
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e Corruption queries are only issued for users i s.t. b, = 0

Advg, ™ R) < e(c + 1) - Advg™ " (B)

o Final solution is for a user i* s.t. b, =

form~nlc 14



Relations

Multi-user With corruptions
Advg ™" Advg ™"
Type-|
no better relations known than <n- Advg‘ic;“ <n- Advggsu
the general ones (e.g. RSA)
Type-I|
mu-tight, but not under ~ Advg‘ic;“ <n- Advg‘i;s“
corruptions (e.g. Schnorr)
Type-lll
muc-tight (“special” constructions, ~ Advg]i;s“ ~ Advgf{—;su

e.g. [PKC:DGJL21])
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Relations

Multi-user With corruptions Parametrized

Advgli‘;mu-n Advgfi';muc-n Advg]i;muc-(n,c)
Type-|
no better relations known than <n- Advggsu <n- Advg‘i;‘gs“ <elc+1)- Advgf-mu-m
the general ones (e.g. RSA) '
Type-I|
mu-tight, but not under ~ Advg’i;Su <n- Advg};s“ <elc+1)- Advg};s“
corruptions (e.g. Schnorr)
Type-lll :

_ 3 N uf-su
muc-tight (“special’ constructions, ~ Advg}cgsu ~ Advgfgsu ~ AdVSig
e.g. [PKC:DGJL21])
*m=nl/c
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Relations

Multi-user With corruptions Parametrized

Advg ™" Advgi, ™" Advifmee )
Type-|
no better relations known than <n- Advggsu <n- Advg‘i;‘gs“ <elc+1)- Advgf-mu-m
the general ones (e.g. RSA) '
Type-I|
mu-tight, but not under ~ Advg’i;Su <n- Advg};s“ <elc+1)- Advg};s“
corruptions (e.g. Schnorr)
Type-IlI :

_ 3 o uf-su
muc-tight (“special’ constructions, ~ Advg}cgsu ~ Advgfgsu ~ AdVSig
e.g. [PKC:DGJL21])
*m=nlc
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Overview of our Results

Formal security specifications

e Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

e Technical tool that we introduce

e Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

e Basically all one-way (OW) games

e Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games)

e IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
e AKE protocols
e Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.
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Conclusion

e In practice the number of corruptions is expected to be much smaller than the number of users.
e This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.

e Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.

— It applies to Schnorr signatures, ElGamal-type encryption, and more.

e Tight muc security (Type-Ill schemes) is notoriously hard to achieve and we therefore suggest to focus on tight

mu security (Type-Il schemes).
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Conclusion

e In practice the number of corruptions is expected to be much smaller than the number of users.
e This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.

e Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes.

— It applies to Schnorr signatures, ElGamal-type encryption, and more.

e Tight muc security (Type-Ill schemes) is notoriously hard to achieve and we therefore suggest to focus on tight

mu security (Type-Il schemes).
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