Count Corruptions, Not Users: Improved Tightness for Signatures, Encryption and Authenticated Key Exchange

ASIACRYPT 2024 Mihir Bellare, Doreen Riepel, Stefano Tessaro, Yizhao Zhang

UC San Diego

Modern applications ask for security in the presence of powerful adversaries who may **adaptively corrupt** parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

Modern applications ask for security in the presence of powerful adversaries who may **adaptively corrupt** parties.

- *n* users
- $n-1$ corruptions

• Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

Modern applications ask for security in the presence of powerful adversaries who may **adaptively corrupt** parties.

- *n* users
- $n-1$ corruptions

• Key exchange (TLS), messaging (Signal, MLS), etc.

- Key-owners have high incentive to prevent exposure and take significant steps
- Internet services are increasingly storing their TLS signing keys in hardware security modules
- Use of threshold cryptography

Typical model: muc security (multi-user with corruptions)

Corruptions happen, but **the number is likely small:**

Modern applications ask for security in the presence of powerful adversaries who may **adaptively corrupt** parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

- Key-owners have high incentive to prevent exposure and take significant steps
- Internet services are increasingly storing their TLS signing keys in hardware security modules
- Use of threshold cryptography

Typical model: muc security (multi-user with corruptions)

- *n* users
- *n* − 1 corruptions

Corruptions happen, but **the number is likely small:**

Microsoft Storm-0885 attack (2023)¹

- Attackers acquired a Microsoft account (MSA) consumer signing key used to authenticate tokens
-

• Affected were email accounts of 22 organizations and 500 individuals globally (e.g. top-tier US government officials)

¹ https://www.microsoft.com/en-us/security/blog/2023/07/14/analysis-of-storm-0558-techniques-for-unauthorized-email-access/

Our model: cp-muc security ("corruption-parametrized")

- *n* users
- *c* corruptions for *c* ≪ *n*

Our model: cp-muc security ("corruption-parametrized")

- *n* users
- *c* corruptions for *c* ≪ *n*

Applications

- Signing, public-key and secret-key encryption, key exchange, …
- Similar to a "threshold" in secret sharing of MPC

Our model: cp-muc security ("corruption-parametrized")

- *n* users
- *c* corruptions for *c* ≪ *n*

Applications

- Signing, public-key and secret-key encryption, key exchange, …
- Similar to a "threshold" in secret sharing of MPC

Goal

• Better concrete security guarantees for protocols deployed in practice, where otherwise tight(er) bounds are

unknown or impossible

Motivation

muc security cp-muc security

Motivation

cp-muc security

Standard hybrid argument:

- Reduces to single-user (su) security
- Security loss linear in the number of users

muc security

cp-muc security

Standard hybrid argument:

- Reduces to single-user (su) security
- Security loss linear in the number of users

Our hope:

• Security loss linear in the number of corruptions

muc security

cp-muc security

Standard hybrid argument:

- Reduces to single-user (su) security
- Security loss linear in the number of users

Our hope:

• Security loss linear in the number of corruptions

muc security

Main question:

Can we give a general theorem? Under which conditions?

Overview of our Results

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Overview of our Results

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

Overview of our Results

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Basically all one-way (OW) games
- Indistinguishability (IND) games with independent challenge bits

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy "locality" property)

Overview of our Results

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy "locality" property)

- Basically all one-way (OW) games
- Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for "non-local" and "more advanced" games)

- IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
- AKE protocols
- Selective opening security

Overview of our Results

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

- IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
- AKE protocols
- Selective opening security

General cp-muc theorem (applies to all games which satisfy "locality" property)

- Basically all one-way (OW) games
- Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for "non-local" and "more advanced" games)

We also give matching optimality (impossibility) results for a large class of games and schemes.

Overview of our Results

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

- IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
- AKE protocols
- Selective opening security

General cp-muc theorem (applies to all games which satisfy "locality" property)

- Basically all one-way (OW) games
- Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for "non-local" and "more advanced" games)

We also give matching optimality (impossibility) results for a large class of games and schemes.

```
Main focus of this talk (using the 
example of UF-CMA secure signatures)
```


Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

 $(vk, sk) \leftarrow$ ^{\$} Gen $\sigma \leftarrow$ ^{\$} Sign(sk, *M*) *M*, σ

Syntax: A signature scheme Sig is described via algorithms (Gen, Sign, Vrfy).

 $(vk, sk) \leftarrow$ ^{\$} Gen

Unforgeability (Single-User)

Unforgeability (Single-User)

 $(vk, sk) \leftarrow$ ^{\$} Gen vk

Unforgeability (Single-User)

 $\sigma \leftarrow$ ^{\$} Sign(sk, *M*)

 $\mathcal{S} \leftarrow \mathcal{S} \cup \{M\}$

If $Vrfy(vk, M^{\star}, \sigma^{\star}) = 1$ and $M^{\star} \notin \mathcal{S}$: Return 1 Return 0

/21 7

Unforgeability (Single-User)

 $(vk, sk) \leftarrow$ ^{\$} Gen vk

 $\sigma \leftarrow$ ^{\$} Sign(sk, *M*)

 $\mathcal{S} \leftarrow \mathcal{S} \cup \{M\}$

If $Vrfy(vk, M^{\star}, \sigma^{\star}) = 1$ and $M^{\star} \notin \mathcal{S}$: Return 1 Return 0

/21 7

Unforgeability (Single-User)

$$
\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}(\mathcal{A}) := \mathsf{Pr}[\mathbf{G}_{\mathsf{Sig}}^{\mathsf{uf-su}}(\mathcal{A}) = 1]
$$

 $(vk, sk) \leftarrow$ ^{\$} Gen vk

 $\sigma \leftarrow$ ^{\$} Sign(sk, *M*)

 $\mathcal{S} \leftarrow \mathcal{S} \cup \{M\}$

If Vrfy(vk<sub>i^{*}, M^{*},
$$
\sigma^*
$$
) = 1
and $(i^*$, M^{*}) \notin S:
Return 1
Return 0</sub>

 $\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}n}(\mathcal{A}) := \mathsf{Pr}[\mathbf{G}_{\mathsf{Sig}}^{\mathsf{uf-mu-}n}(\mathcal{A}) = 1]$

/21 8

Unforgeability (Multi-User)

Multi-user

Adv_{Sig}

With corruptions

$$
\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}
$$

Type-I

no better relations known than the general ones (e.g. RSA)

$$
\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}
$$

Multi-user

Adv_{Sig}

With corruptions

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr) $\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}$

 \approx Adv $_{\rm Sig}^{\rm uf-su}$

$$
\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}
$$

$$
\text{uf-su} \leq n \cdot \text{Adv}_{\text{Sig}}^{\text{uf-su}}
$$

Multi-user

Adv_{Sig}

With corruptions

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr)

Type-III

muc-tight ("special" constructions, e.g. [PKC:DGJL21])

 $\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}$

 \approx Adv^{uf-su}

$$
\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}
$$

$$
\text{uf-su} \leq n \cdot \text{Adv}_{\text{Sig}}^{\text{uf-su}}
$$

$$
\approx \text{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}
$$

Multi-user

Adv_{Sig}

With corruptions

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr)

Type-III

muc-tight ("special" constructions, e.g. [PKC:DGJL21])

 $\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}$

 \approx Adv^{uf-su}

$$
\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}
$$

uf-su
Sig $\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}$

$$
\approx \text{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}
$$

Multi-user

Adv_{Sig}

With corruptions

Adv_{Sig}

mu-tight schemes seem to offer no advantage in the muc setting

Let *n*, *c* be integers s.t. $0 \le c < n$. For any adversary *A* against uf-muc-(*n*, *c*) security of Sig, there exists an adversary $\mathcal B$ against uf-mu-m security of Sig s.t.

Let *n*, *c* be integers s.t. $0 \le c < n$. For any adversary *A* against uf-muc-(*n*, *c*) security of Sig, there exists an adversary $\mathcal B$ against uf-mu-m security of Sig s.t.

$$
\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-m}}(\mathcal{B}) \qquad \text{where } e \approx 2.71, \ m = \left\lfloor \frac{n-1}{c-1} \right\rfloor
$$

Let *n*, *c* be integers s.t. $0 \le c < n$. For any adversary *A* against uf-muc-(*n*, *c*) security of Sig, there exists an adversary $\mathcal B$ against uf-mu-m security of Sig s.t.

$$
\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-m}}(\mathcal{B}) \qquad \text{where } e \approx 2.71, \ m = \left\lfloor \frac{n-1}{c-1} \right\rfloor
$$

For mu-tight secure schemes, there exists an adversary B' against uf-su security s.t.

Let *n*, *c* be integers s.t. $0 \le c < n$. For any adversary *A* against uf-muc-(*n*, *c*) security of Sig, there exists an adversary $\mathcal B$ against uf-mu-m security of Sig s.t.

$$
\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-m}}(\mathcal{B}) \qquad \text{where } e \approx 2.71, \ m = \left\lfloor \frac{n-1}{c-1} \right\rfloor
$$

For mu-tight secure schemes, there exists an adversary B' against uf-su security s.t.

$$
\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}(\mathcal{B}
$$

 (B')

Let *n*, *c* be integers s.t. $0 \le c < n$. For any adversary *A* against uf-muc-(*n*, *c*) security of Sig, there exists an adversary $\mathcal B$ against uf-mu-m security of Sig s.t.

$$
\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-m}}(\mathcal{B}) \qquad \text{where } e \approx 2.71, \ m = \left\lfloor \frac{n-1}{c-1} \right\rfloor
$$

For mu-tight secure schemes, there exists an adversary B' against uf-su security s.t.

$$
\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}(\mathcal{B}
$$

 (\mathcal{B}') < main benefit for Type-II schemes

Let *n*, *c* be integers s.t. $0 \le c < n$. For any adversary *A* against uf-muc-(*n*, *c*) security of Sig, there exists an adversary $\mathcal B$ against uf-mu-m security of Sig s.t.

$$
\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}(\mathcal{B}
$$

 (\mathcal{B}') < main benefit for Type-II schemes

$$
\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-m}}(\mathcal{B}) \qquad \text{where } e \approx 2.71, m = \left\lfloor \frac{n-1}{c-1} \right\rfloor
$$
\n
$$
\longrightarrow
$$
\n
$$
\boxed{\begin{array}{c}\n\text{assuming mu security for small number of users offers} \\
\text{a non-trivial trade-off between su and muc}\n\end{array}}
$$

For mu-tight secure schemes, there exists an adversary B' against uf-su security s.t.

Let *n*, *c* be integers s.t. $0 \le c < n$. For any adversary *A* against uf-muc-(*n*, *c*) security of Sig, there exists an adversary $\mathcal B$ against uf-mu-m security of Sig s.t.

$$
Adv_{Sig}^{uf-muc-(n,c)}(\mathcal{A}) \le e(c+1) \cdot Adv_{Sig}^{uf-mu-m}(\mathcal{B}) \qquad \text{where } e \approx 2.71, m = \left\lfloor \frac{n-1}{c-1} \right\rfloor \begin{cases} \text{Example:} \\ n = 100 \text{ million} \\ n = 100 \text{ billion} \\ \text{a non-trivial trade-off between su and muc} \end{cases}
$$

For mu-tight secure schemes, there exists an adversary B' against uf-su security s.t.

$$
Adv_{Sig}^{uf-muc-(n,c)}(\mathcal{A}) \leq e(c+1) \cdot Adv_{Sig}^{uf-su}(\mathcal{B}') \qquad \text{main benefit for Type-II schemes}
$$

Let *n*, *c* be integers s.t. $0 \le c < n$. For any adversary *A* against uf-muc-(*n*, *c*) security of Sig, there exists an adversary $\mathcal B$ against uf-mu-m security of Sig s.t.

Inspiration: Optimal bounds for FDH signatures [C:Coron01]

• Instead of losing a factor linear in the number of hash queries, reduction loses number of signing queries

$$
Adv_{Sig}^{uf-muc-(n,c)}(\mathcal{A}) \le e(c+1) \cdot Adv_{Sig}^{uf-mu-m}(\mathcal{B}) \qquad \text{where } e \approx 2.71, m = \left\lfloor \frac{n-1}{c-1} \right\rfloor \begin{cases} \text{Example:} \\ n = 100 \text{ million} \\ n = 100 \text{ million} \\ c = 100 \text{ Thomson} \\ m = 999 \end{cases}
$$

For mu-tight secure schemes, there exists an adversary \mathcal{B}' against uf-su security s.t.

$$
Adv_{Sig}^{uf-muc-(n,c)}(\mathcal{A}) \leq e(c+1) \cdot Adv_{Sig}^{uf-su}(\mathcal{B}')
$$
 main benefit for Type-II schemes

Refining and generalizing [C:Coron01]

/21 14

Refining and generalizing [C:Coron01]

Reduction is successful if

- Corruption queries are only issued for users i s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

$$
i^{\star}, M^{\star}, \sigma^{\star}
$$

Refining and generalizing [C:Coron01]

Reduction is successful if

- Corruption queries are only issued for users i s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n, c)}(\mathcal{A}) \leq e(c + 1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}n}(\mathcal{B})$

$$
i^{\star}, M^{\star}, \sigma^{\star}
$$

Refining and generalizing [C:Coron01]

Reduction is successful if

- Corruption queries are only issued for users i s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n, c)}(\mathcal{A}) \leq e(c + 1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}n}(\mathcal{B})$

$$
i^{\star}, M^{\star}, \sigma^{\star}
$$

Refining and generalizing [C:Coron01]

Reduction is successful if

- Corruption queries are only issued for users i s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n, c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}n}(\mathcal{B})$

$$
i^{\star}, M^{\star}, \sigma^{\star}
$$

Refining and generalizing [C:Coron01]

Reduction is successful if

- Corruption queries are only issued for users i s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n, c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}n}(\mathcal{B})$

Refining and generalizing [C:Coron01]

Reduction is successful if

- Corruption queries are only issued for users i s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

$$
i^{\star}, M^{\star}, \sigma^{\star}
$$

Refining and generalizing [C:Coron01]

Reduction is successful if

- Corruption queries are only issued for users i s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

 $\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n, c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}m}(\mathcal{B})$

$$
i^{\star}, M^{\star}, \sigma^{\star}
$$

Reduction is successful if

- Corruption queries are only issued for users i s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

For $i \in \{1, ..., n\}$ with Hamming weight *m*

If $b_i = 1$: Use next vk'_i

 $\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n, c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}m}(\mathcal{B})$

$$
i^{\star}, M^{\star}, \sigma^{\star}
$$

This is captured by our abstraction of Hamming-weight determined samplers (via their success and error probability)

/18 17

Reduction is successful if

- Corruption queries are only issued for users i s.t. $b_i = 0$
- Final solution is for a user i^* s.t. $b_{i^*} = 1$

For $i \in \{1, ..., n\}$ with Hamming weight *m*

If $b_i = 1$: Use next vk'_i

$$
\mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-muc-}(n,c)}(\mathcal{A}) \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-mu-}m}(\mathcal{B})
$$

for $m \approx n/c$

$$
i^{\star}, M^{\star}, \sigma^{\star}
$$

This is captured by our abstraction of Hamming-weight determined samplers (via their success and error probability)

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr)

Type-III

muc-tight ("special" constructions, e.g. [PKC:DGJL21])

 $\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}$

 \approx Adv^{uf-su}

$$
\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}
$$

$$
\text{uf-su} \leq n \cdot \text{Adv}_{\text{Sig}}^{\text{uf-su}}
$$

$$
\approx \text{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}
$$

Multi-user

Adv_{Sig}

With corruptions

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr)

Type-III

muc-tight ("special" constructions, e.g. [PKC:DGJL21])

 $\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}$

$$
\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}
$$

 $\leq e(c + 1) \cdot \text{Adv}_{\text{Sig}}^{\text{uf-mu-m}}$

$$
\approx \text{Adv}_{\text{Sig}}^{\text{uf-su}} \leq n \cdot \text{Adv}_{\text{Sig}}^{\text{uf-su}}
$$

 $\leq e(c + 1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}$

[≈] -

Multi-user

Adv_{Sig}

With corruptions

Adv_{Sig}

Parametrized

 $\mathsf{Adv}_{\mathsf{Sip}}^{\mathsf{uf-muc-}(n,c)}$ Sig

$$
\approx \text{Adv}_{\text{Sig}}^{\text{uf-su}}
$$

 $**m* = n/c$

Type-I

no better relations known than the general ones (e.g. RSA)

Type-II

mu-tight, but not under corruptions (e.g. Schnorr)

Type-III

muc-tight ("special" constructions, e.g. [PKC:DGJL21])

 $\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}-\mathsf{su}}$

 \approx Adv $_{\rm Siz}^{\rm uf-su}$

[≈] -

Multi-user

Adv_{Sig}

$$
\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}\text{-}\mathsf{su}} \leq e(c+1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf}\text{-}\mathsf{mu}\text{-}\mathsf{m}}
$$

uf-su
Sig $\leq n \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}$

 $\leq e(c + 1) \cdot \mathsf{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}$

With corruptions

Adv_{Sig}

Parametrized

 $\mathsf{Adv}_{\mathsf{Sip}}^{\mathsf{uf-muc-}(n,c)}$ Sig

$$
\approx \text{Adv}_{\mathsf{Sig}}^{\mathsf{uf-su}}
$$

 $**m* = n/c$

Overview of our Results

Formal security specifications

• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers

- Technical tool that we introduce
- Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy "locality" property)

- Basically all one-way (OW) games
- Indistinguishability (IND) games with independent challenge bits

- IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
- AKE protocols
- Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.

Indirect applications of the cp-muc theorem (specialized results for "non-local" and "more advanced" games)

Conclusion

- In practice the number of corruptions is expected to be much smaller than the number of users.
- This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.
- Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes. - It applies to Schnorr signatures, ElGamal-type encryption, and more.
- Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight mu security (Type-II schemes).

Conclusion

- In practice the number of corruptions is expected to be much smaller than the number of users.
- This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.
- Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes. - It applies to Schnorr signatures, ElGamal-type encryption, and more.
- Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight mu security (Type-II schemes).

ePrint: ia.cr/2024/1258

Conclusion

- In practice the number of corruptions is expected to be much smaller than the number of users.
- This was not reflected in models and thus concrete bounds for signing, encryption and key exchange.
- Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes. - It applies to Schnorr signatures, ElGamal-type encryption, and more.
- Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight mu security (Type-II schemes).

Thank you!

ePrint: ia.cr/2024/1258