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Modern applications ask for security in the presence of powerful adversaries who may adaptively corrupt parties.

• Key exchange (TLS), messaging (Signal, MLS), etc.

Typical model: muc security (multi-user with corruptions)

•  usersn
•  corruptionsn − 1

Corruptions happen, but the number is likely small:
• Key-owners have high incentive to prevent exposure and take significant steps
• Internet services are increasingly storing their TLS signing keys in hardware security modules
• Use of threshold cryptography

Microsoft Storm-0885 attack (2023)1

• Attackers acquired a Microsoft account (MSA) consumer signing key used to authenticate tokens
• Affected were email accounts of 22 organizations and 500 individuals globally (e.g. top-tier US government officials)

1 https://www.microsoft.com/en-us/security/blog/2023/07/14/analysis-of-storm-0558-techniques-for-unauthorized-email-access/
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Motivation

Our model: cp-muc security (“corruption-parametrized”)

•  usersn
•  corruptions for c c ≪ n

Applications

• Signing, public-key and secret-key encryption, key exchange, …

• Similar to a “threshold” in secret sharing of MPC

Goal

• Better concrete security guarantees for protocols deployed in practice, where otherwise tight(er) bounds are 
unknown or impossible 
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Motivation

cp-muc security 

Standard hybrid argument: 

• Reduces to single-user (su) security 

• Security loss linear in the number of users

Our hope: 

• Security loss linear in the number of corruptions

muc security

Main question: 
Can we give a general theorem? Under which conditions? 
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Overview of our Results

Formal security specifications
• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game

Hamming-weight determined samplers
• Technical tool that we introduce
• Essentially it determines how a (suitable) subset of users is picked

General cp-muc theorem (applies to all games which satisfy “locality” property)

• Basically all one-way (OW) games
• Indistinguishability (IND) games with independent challenge bits

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games)

• IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal)
• AKE protocols
• Selective opening security

We also give matching optimality (impossibility) results for a large class of games and schemes.

Main focus of this talk (using the 
example of UF-CMA secure signatures) 
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(𝗏𝗄, 𝗌𝗄) ←$ 𝖦𝖾𝗇

σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄, M) 0/1 ← 𝖵𝗋𝖿𝗒(𝗏𝗄, M, σ)
M, σ

𝗏𝗄
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Unforgeability (Single-User)

Adversary A

𝗏𝗄(𝗏𝗄, 𝗌𝗄) ←$ 𝖦𝖾𝗇

Game G𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀
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𝒮 ← 𝒮 ∪ {M}
σ ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄, M)

7

Unforgeability (Single-User)

 queriesq

Adversary A

σ
SIGN: M

𝗏𝗄(𝗏𝗄, 𝗌𝗄) ←$ 𝖦𝖾𝗇

Game G𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀
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Unforgeability (Multi-User)
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Unforgeability (Multi-User with Corruptions)

Game G𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀

For : 

     

i ∈ {1,…, n}
(𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇 𝗏𝗄1, …, 𝗏𝗄n

σ
SIGN: i, M
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 queries< n𝗌𝗄i

CORRUPT: i
𝒞 ← 𝒞 ∪ {i}
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For : 
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(𝗏𝗄i, 𝗌𝗄i) ←$ 𝖦𝖾𝗇 𝗏𝗄1, …, 𝗏𝗄n
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 queriesq

Adversary A

 queries c (c ≪ n)

More fine-grained view 
(cp-muc, “corruption-parametrized”) 
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cp-muc Theorem

Theorem (from su/mu to cp-muc):
Let  be integers s.t. . For any adversary A against  security of , there 

exists an adversary B against  security of  s.t. 

n, c 0 ≤ c < n 𝗎𝖿-𝗆𝗎𝖼-(n, c) 𝖲𝗂𝗀
𝗎𝖿-𝗆𝗎-m 𝖲𝗂𝗀
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Relations

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

Type-I 
no better relations known than 
the general ones (e.g. RSA) 

Type-II 
mu-tight, but not under 
corruptions (e.g. Schnorr) 

Type-III  
muc-tight (“special” constructions, 
e.g. [PKC:DGJL21])

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀  ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀  ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀

Multi-user 

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎-n
𝖲𝗂𝗀

With corruptions 

𝖠𝖽𝗏𝗎𝖿-𝗆𝗎𝖼-n
𝖲𝗂𝗀
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Type-I 
no better relations known than 
the general ones (e.g. RSA) 

Type-II 
mu-tight, but not under 
corruptions (e.g. Schnorr) 

Type-III  
muc-tight (“special” constructions, 
e.g. [PKC:DGJL21])

 ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀

 ≈ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎
𝖲𝗂𝗀  ≤ n ⋅ 𝖠𝖽𝗏𝗎𝖿-𝗌𝗎

𝖲𝗂𝗀
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𝖲𝗂𝗀
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*  m = n/c
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Overview of our Results

Formal security specifications 
• Syntax that translates into a single-user (su), multi-user (mu) and corruptions (muc) game 

Hamming-weight determined samplers 
• Technical tool that we introduce 
• Essentially it determines how a (suitable) subset of users is picked 

General cp-muc theorem (applies to all games which satisfy “locality” property) 

• Basically all one-way (OW) games 
• Indistinguishability (IND) games with independent challenge bits 

Indirect applications of the cp-muc theorem (specialized results for “non-local” and “more advanced” games) 

• IND-CCA with a single challenge bit across users (via FO, Hashed ElGamal) 
• AKE protocols 
• Selective opening security 

We also give matching optimality (impossibility) results for a large class of games and schemes.
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Conclusion

• In practice the number of corruptions is expected to be much smaller than the number of users. 

• This was not reflected in models and thus concrete bounds for signing, encryption and key exchange. 

• Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes. 

It applies to Schnorr signatures, ElGamal-type encryption, and more. 

• Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight 
mu security (Type-II schemes).
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• Our cp-muc framework gives a more fine-grained view and justifies standard parameter choices for many schemes. 

It applies to Schnorr signatures, ElGamal-type encryption, and more. 

• Tight muc security (Type-III schemes) is notoriously hard to achieve and we therefore suggest to focus on tight 
mu security (Type-II schemes).
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