

Multiple-Tweak differential Attack against SCARF

Christina Boura¹, Shahram Rasoolzadeh², Dhiman Saha³, <u>Yosuke Todo⁴</u> 1 IRIF, 2 RUB, 3 Indian Institute of Technology, 4 NTT

Overview

- NTT 🕐
- New types of block cipher are designed for each specific purpose.
 - SCARF (for cache attack) 10-bit block, 48-bit tweak
 - BipBip (for memory safety) 24-bit block, 40-bit tweak
- Unique feature
 - Block length is **extremely shorter** than the security level.
 - Tweak length is enough higher than the block length.
- Question?
 - Is the traditional statistical analysis enough?
 - \rightarrow More careful analysis is required !!
- Result
 - Precise differential probability evaluation for SCARF.
 - 7-round key recovery and full-round multi-key distinguisher on SCARF.

Differential cryptanalysis

If $EDP[\alpha \rightarrow \beta] > 2^{-n}$, we can distinguish the cipher with a query complexity of $EDP[\alpha \rightarrow \beta]^{-1}$. New types of block ciphers has a short *n* and wide tweak.

Is guaranteeing $EDP[\alpha \rightarrow \beta] \approx 2^{-n}$ enough in this context?

Multiple tweak differential cryptanalysis

$$\alpha \longrightarrow E_{K,T} \longrightarrow \beta$$

$$\mathrm{EDP}[\alpha \to \beta] = \frac{1}{|\mathcal{K}|} \sum_{K \in \mathcal{K}} \frac{1}{|\mathcal{T}|} \sum_{T \in \mathcal{T}} \frac{\#\{x | E_{K,T}(x) \oplus E_{K,T}(x \oplus \alpha) = \beta\}}{2^n}$$

The ideal probability is $\frac{1}{2^{n}-1}$, and we observe the "bias" from this ideal probability. $EDP[\alpha \rightarrow \beta] = \frac{1}{2^{n}-1} + \epsilon$. Assuming the binomial distribution, we can distinguish with a query complexity of $\epsilon^{2}/(2^{n}-1)$.

We can collect such pairs by **activating tweak**!!

We need to evaluate the differential probability accurately, but it's difficult in general.

In the case of SCARF

- SCARF
 - 10-bit block
 - 48-bit tweak
 - 80-bit security

- Security requirement 1 (collision model)
 - Attacker can query (x,T) and (x',T').
 - If $E_T(x) = E_{T'}(x')$, the oracle return 1.
 - Attacker can't distinguish the cipher from ideal tweakable random permutation up to 2⁴⁰ queries and 2⁸⁰ time.

In the case of SCARF

- SCARF
 - 10-bit block
 - 48-bit tweak
 - 80-bit security

- Security requirement 2 (enc-then-dec)
 - Attacker can query (x,T,T').
 - Attacker can learn $E_{T'}^{-1} \circ E_T(x)$ with 1 query.
 - Attacker can't distinguish the cipher from ideal tweakable random permutation up to 2⁴⁰ queries and 2⁸⁰ time.

Relationship between two claims

Security requirement 1 (SR1, collision model)

- Weaker security = more difficult to break.
- Respecting the real adversary scenario for cache attack.
- The definition is unfamiliar with cryptographers.

Security requirement 2 (SR2, enc-then-dec model)

- Stronger security = easier to break.
- There is no such an oracle in real adversary scenario for cache attack.
- The definition is familiar with cryptographers.

- Differential property of the G function
 - The G function is key-dependent function.
 - If we ignore $(x <<< 1) \land (x <\ll 2)$, it's a key-dependent linear function.
 - Unique feature of the G function.

$$\mathrm{EDP}[\alpha \xrightarrow{G} \beta] = \begin{cases} 2^{-5}, & \text{if } \alpha \neq 0, \beta = *, \\ 1, & \text{if } \alpha = 0, \beta = 0, \\ 0, & \text{if } \alpha = 0, \beta \neq 0, \end{cases}$$

– If the input difference is non-zero, the EDP is 2^{-5} independent of the output difference.

• Differential property of the round function

$$\operatorname{EDP}[\alpha \xrightarrow{R_1} \beta] = \begin{cases} P_S[\alpha^L, \beta^R] \times 2^{-5}, & \text{if } \alpha^L \neq 0, \\ 1, & \text{if } \alpha^L = 0 \text{ and } (\beta_L, \beta_R) = (\alpha_R, 0), \\ 0, & \text{if } \alpha^L = 0 \text{ and } (\beta_L, \beta_R) \neq (\alpha_R, 0), \end{cases}$$

- If α^L is non-zero the EDP is $P_S[\alpha^L, \beta^R] \times 2^{-5}$ independent of β^L .
 - Any β^L appears with an equal probability.
 - $P_S[\alpha^L, \beta^R]$ is the differential probability of the S-box.

• Lemma

- F is any permutation. - EDP[$\alpha \xrightarrow{F \circ R_1} \beta$] = $\sum_{\gamma} EDP[\alpha \xrightarrow{R_1} \gamma] \times EDP[\gamma \xrightarrow{F} \beta]$ = $\sum_{\gamma} 2^{-5} \times P_S[\alpha^L, \gamma^R] \times EDP[\gamma \xrightarrow{F} \beta].$

- Namely, $EDP[\alpha \xrightarrow{F \circ R} \beta]$ does not depend on α^R if $\alpha^L \neq 0$.

ß

• The property of enc-then-dec structure

$$\mathrm{EDP}[\alpha \xrightarrow{1+1} \beta] = \begin{cases} 1, & \alpha = (0, \alpha^R), \beta = (0, \beta^R), \alpha^R = \beta^R, \\ 0, & \alpha = (0, *), \beta = (\beta^L, *), \beta^L \neq 0, \\ 0, & \alpha = (\alpha^L, *), \beta = (0, *), \alpha^L \neq 0, \\ P_{S^{-1} \circ S}[\alpha^L, \beta^L] \times 2^{-5}, & \alpha = (\alpha^L, *), \beta = (\beta^L, *), \alpha^L \neq 0, \beta^L \neq 0, \end{cases}$$

- To compute the EDP accurately, we need to $O(2^{3n})$ time in general.
- For SCARF, thanks to the unique structure, the following 4 patterns are enough to compute the EDP.

$$EDP[(0, \alpha^R) \xrightarrow{R+R'} (0, \beta^R)], \qquad EDP[(0, \alpha^R) \xrightarrow{R+R'} (\beta^L, *)], \\ EDP[(\alpha^L, *) \xrightarrow{R+R'} (0, \beta^R)], \qquad EDP[(\alpha^L, *) \xrightarrow{R+R'} (\beta^L, *)].$$

• Then, the complexity is reduced to $O(2^{1.5n})$.

Multiple multi-tweak differential

- Multiple differential enhances the distinguishing advantage.
- When we use LLR statistics, the data complexity is about the inverse of the capacity.
 - Capacity using full-active differentials.

$$C_{all} = 1023 \times \sum_{\alpha \neq 0} \sum_{\beta \neq 0} \varepsilon_{\alpha,\beta}^2.$$

- Capacity using right-hand active differentials.

$$C = 1023 \times \sum_{\alpha^R \neq 0} \sum_{\beta^R \neq 0} \varepsilon^2_{(0,\alpha^R),(0,\beta^R)},$$

Multiple multi-tweak differential

• Summary of the capacity

Round	2+2	3+3	4+4	5+5	6+6	7+7	8+8
$-\log_2(\mathcal{C})$	3.37	13.39	32.20	42.40	60.89	70.89	88.95
$-\log_2(C_{all})$	2.38	13.38	31.20	42.19	59.89	70.88	87.95

Experiments for LLR test for 4+4.

Experiments for LLR test for 5+5.

Our theoretical estimations of EDP and LLR statistics are experimentally verified.

Key recovery against 7 rounds

Define reduced-round SCARF

NTT 🕐

- We define a 7-round SCARF as the right one.
 - We use the same tweakey schedule as the original.
 - We remove the first round function.
 - Attack overview.
 - 1. Data collection.
 - 2. Partial-key recovery using (6+6)-round multiple differential distinguisher.
 - 3. Key recovery using (5S+5S)-round differential distinguisher.

Step 1. Data collection

- We assume the SR2 and enc-then-dec oracle.
- Squared data collection.
 - Prepare 2^{30} tweaks T_i .
 - Query the full code book to \tilde{E}_{T_i,T_0} .
 - The data complexity is 2⁴⁰, which is the data limit.
 - Exploit the special property, $\tilde{E}_{T_i,T_j} = \tilde{E}_{T_j,T_0}^{-1} \circ \tilde{E}_{T_i,T_0}$.
 - It allows us to collect $2^{29+29+9} = 2^{67}$ (independent) pairs.

18

Step 2. multiple differential distinguisher

- Guess 30 bits of K^1 .
- Use multiple differential distinguisher where $\alpha \in \mathbb{F}_2^5 \setminus 0$ and $\beta \in \mathbb{F}_2^5 \setminus 0$.
- We can recover the guessed 30 bits.
 - However, the remaining 30 bits of K^1 is not recovered.

NTT 🕐

Step 3. differential distinguisher

- Guess the remaining 30 bits of K^1 and 5 bits of K^2 .
- Use differential distinguisher from (1,0) to (1,0).
- Recover the full K^1 .
- We recover other keys with external procedure.

Multikey full-round distinguisher

Question?

• The definition of **bit security**.

- Existing works [NW18,WY21,WY23] discuss how to define bit security properly.
- Bit security of Primitive [MW18]
 - Let T(A) be the time complexity of the algorithm A, that is linear under repetition. For any primitive, its bit security is defined as $\min_{A} \log \frac{T(A)}{adv^{A}}$.
- We estimate the bit security of SCARF respecting this definition.
 - Based on the LLR-based multiple differential distinguisher

$$\log \frac{T(A)}{adv^A} = 44.95 + 22.60 = 67.55 \ll 80 \,!!$$

– Namely, SCARF doesn't provide the 80-bit security...??

Multikey distinguisher

- WY21 and WY23 discuss a concrete attack procedure matching to the bit security.
 - Their procedure repeats the algorithm multiple times and store each bias.
 - To distinguisher in practice, these biases are combined.
- The attack can be valid assuming the multikey distinguisher.
 - Run the attack algorithm and compute the LLR statistics.
 - Repeat this procedure multiple times and distinguish by combining all statistics.
- For both SR1 and SR2, the complexity is lower than 2⁸⁰.
 - The attack complexity is $2^{67.55}$ for SR2.
 - The attack complexity is $2^{78.6}$ for SR1.

Observation

Connection to the BCT

- Connection to the Boomerang Connectivity Table (BCT)
 - The DDT of $S^{-1} \circ S$ is highly related to the BCT of S.
 - Up to 3+3 rounds, the BCT strongly affects the differential probability.
 - From 4 rounds, the differential probability is more influential.

Better S-box

- Are there better S-box?
 - Using the APN as the S-box is better than SCARF S-box.
 - How about low-latency S-box?
 - We explore **1016** × **5! S-boxes** satisfying the same design criteria of SCARF.
 - The following is the best alternation of the SCARF S-box.

 $S_{alt} = \begin{bmatrix} 00, 01, 03, 0D, 06, 13, 16, 0F, 19, 10, 0B, 17, 09, 1D, 1A, 1C, \\ 1E, 0C, 15, 04, 08, 1B, 11, 0A, 1F, 14, 12, 02, 05, 07, 18, 0E \end{bmatrix}$

Conclusion

- More careful analysis is required for short-block cipher.
 - Guaranteeing 2^{-n} probability is not enough.
 - Estimating the EDP is required.
 - In general, it's difficult.
 - Thanks to the property of the G function, it's very efficient for SCARF.
- Attack on SCARF.
 - The 7-round key recovery on SR2.
 - The full-round multi-key distinguisher on both SR1 and SR2.
- Observation
 - The original SCARF S-box is not optimal in the context of the differential cryptanalysis.