

Multiple-Tweak differential Attack against SCARF

Christina Boura¹ , Shahram Rasoolzadeh² , Dhiman Saha³ , Yosuke Todo⁴ 1 IRIF, 2 RUB, 3 Indian Institute of Technology, 4 NTT

Overview

- New types of block cipher are designed for each specific purpose.
	- SCARF (for cache attack) 10-bit block, 48-bit tweak
	- BipBip (for memory safety) 24-bit block, 40-bit tweak
- Unique feature
	- Block length is **extremely shorter** than the security level.
	- Tweak length is **enough higher** than the block length.
- Question?
	- Is the traditional statistical analysis enough?
		- \rightarrow More careful analysis is required !!
- **Result**
	- Precise differential probability evaluation for SCARF.
	- 7-round key recovery and full-round multi-key distinguisher on SCARF.

Differential cryptanalysis

If EDP[$\alpha \to \beta$] > 2⁻ⁿ, we can distinguish the cipher with a query complexity of EDP[$\alpha \to \beta$]⁻¹. New types of block ciphers has a short n and wide tweak.

Is guaranteeing $EDP[\alpha \rightarrow \beta] \approx 2^{-n}$ enough in this context?

Multiple tweak differential cryptanalysis

$$
\alpha \longrightarrow \boxed{E_{K,T}}
$$

$$
EDP[\alpha \to \beta] = \frac{1}{|\mathcal{K}|} \sum_{K \in \mathcal{K}} \frac{1}{|\mathcal{T}|} \sum_{T \in \mathcal{T}} \frac{\# \{x | E_{K,T}(x) \oplus E_{K,T}(x \oplus \alpha) = \beta\}}{2^n}
$$

The ideal probability is $\frac{1}{2n}$ $2^n - 1$, and we observe the "bias" from this ideal probability. $EDP[\alpha \rightarrow \beta] =$ $\mathbf{1}$ $2ⁿ-1$ $+$ ϵ . Assuming the binomial distribution, we can distinguish with a query complexity of $\epsilon^2/(2^n-1)$.

We can collect such pairs by **activating tweak**!!

We need to evaluate the differential probability accurately, but it's difficult in general.

In the case of SCARF

- SCARF
	- 10-bit block
	- 48-bit tweak
	- 80-bit security

- Security requirement 1 (collision model)
	- $-$ Attacker can query (x,T) and (x',T') .
	- If $E_T(x) = E_{T'}(x')$, the oracle return 1.
	- Attacker can't distinguish the cipher from ideal tweakable random permutation up to 2^{40} queries and 2^{80} time.

In the case of SCARF

- SCARF
	- 10-bit block
	- 48-bit tweak
	- 80-bit security

- Security requirement 2 (enc-then-dec)
	- Attacker can query (x,T,T').
	- $-$ Attacker can learn E_T^{-1} $_{T^{\prime }}^{-1}\circ E_{T}(x)$ with 1 query.
	- Attacker can't distinguish the cipher from ideal tweakable random permutation up to 2^{40} queries and 2^{80} time.

Relationship between two claims

Security requirement 1 (SR1, collision model)

- Weaker security $=$ more difficult to break.
- Respecting the real adversary scenario for cache attack.
- The definition is unfamiliar with cryptographers.

Security requirement 2 (SR2, enc-then-dec model)

- Stronger security $=$ easier to break.
- There is no such an oracle in real adversary scenario for cache attack.
- The definition is familiar with cryptographers.

- The G function is key-dependent function.
- If we ignore $(x \ll 1) \wedge (x \ll 2)$, it's a key-dependent linear function.
- Unique feature of the G function.

$$
\text{EDP}[\alpha \xrightarrow{G} \beta] = \begin{cases} 2^{-5}, & \text{if } \alpha \neq 0, \beta = *, \\ 1, & \text{if } \alpha = 0, \beta = 0, \\ 0, & \text{if } \alpha = 0, \beta \neq 0, \end{cases}
$$

– If the input difference is non-zero, the EDP is 2^{-5} independent of the output difference.

• Differential property of the round function

$$
\text{EDP}[\alpha \xrightarrow{R_1} \beta] = \begin{cases} P_S[\alpha^L, \beta^R] \times 2^{-5}, & \text{if } \alpha^L \neq 0, \\ 1, & \text{if } \alpha^L = 0 \text{ and } (\beta_L, \beta_R) = (\alpha_R, 0), \\ 0, & \text{if } \alpha^L = 0 \text{ and } (\beta_L, \beta_R) \neq (\alpha_R, 0), \end{cases}
$$

- $-$ If α^L is non-zero the EDP is $P_S[\alpha^L,\beta^R] \times 2^{-5}$ independent of $\pmb{\beta}^L.$
	- Any β^L appears with an equal probability.
	- $P_{\mathcal{S}}[\alpha^L, \beta^R]$ is the differential probability of the S-box.

• Lemma

– F is any permutation. - $EDP[\alpha \xrightarrow{F \circ R_1} \beta] = \sum EDP[\alpha \xrightarrow{R_1} \gamma] \times EDP[\gamma \xrightarrow{F} \beta]$ $=\sum_{\gamma} 2^{-5} \times P_S[\alpha^L, \gamma^R] \times \text{EDP}[\gamma \xrightarrow{F} \beta].$

- Namely, $EDP[\alpha]$ $F \circ R$ β] does not depend on α^R if $\alpha^L \neq 0$.

 $\boldsymbol{\beta}$

• The property of enc-then-dec structure

$$
\text{EDP}[\alpha \xrightarrow{1+1} \beta] = \begin{cases} 1, & \alpha = (0, \alpha^R), \beta = (0, \beta^R), \alpha^R = \beta^R, \\ 0, & \alpha = (0, *), \beta = (\beta^L, *), \beta^L \neq 0, \\ 0, & \alpha = (\alpha^L, *), \beta = (0, *), \alpha^L \neq 0, \\ P_{S^{-1} \circ S}[\alpha^L, \beta^L] \times 2^{-5}, & \alpha = (\alpha^L, *), \beta = (\beta^L, *), \alpha^L \neq 0, \beta^L \neq 0, \end{cases}
$$

- To compute the EDP accurately, we need to $O(2^{3n})$ time in general.
- For SCARF, thanks to the unique structure, the following 4 patterns are enough to compute the EDP.

$$
\text{EDP}[(0, \alpha^R) \xrightarrow{R+R'} (0, \beta^R)], \qquad \text{EDP}[(0, \alpha^R) \xrightarrow{R+R'} (\beta^L, *)],
$$

\n
$$
\text{EDP}[(\alpha^L, *) \xrightarrow{R+R'} (0, \beta^R)], \qquad \text{EDP}[(\alpha^L, *) \xrightarrow{R+R'} (\beta^L, *)].
$$

• Then, the complexity is reduced to $O(2^{1.5n})$.

Multiple multi-tweak differential

-
- Multiple differential enhances the distinguishing advantage.
- When we use LLR statistics, the data complexity is about the inverse of the capacity.
	- Capacity using full-active differentials.

$$
C_{all} = 1023 \times \sum_{\alpha \neq 0} \sum_{\beta \neq 0} \varepsilon_{\alpha,\beta}^2.
$$

– Capacity using right-hand active differentials.

$$
C = 1023 \times \sum_{\alpha^R \neq 0} \sum_{\beta^R \neq 0} \varepsilon^2_{(0,\alpha^R),(0,\beta^R)},
$$

Multiple multi-tweak differential

• Summary of the capacity

Experiments for LLR test for 4+4. Experiments for LLR test for 5+5.

Our theoretical estimations of EDP and LLR statistics are experimentally verified.

Key recovery against 7 rounds

Define reduced-round SCARF

- We define a 7-round SCARF as the right one.
	- We use the same tweakey schedule as the original.
	- We remove the first round function.
	- Attack overview.
		- 1. Data collection.
		- 2. Partial-key recovery using (6+6)-round multiple differential distinguisher.
		- 3. Key recovery using (5S+5S)-round differential distinguisher.

Step 1. Data collection

- We assume the SR2 and enc-then-dec oracle.
- Squared data collection.
	- Prepare 2^{30} tweaks T_i .
	- $-$ Query the full code book to $\tilde{E}_{T_i,T_0}.$
		- The data complexity is 2^{40} , which is the data limit.
	- Exploit the special property, $\tilde{E}_{T_{\textit{i}}, T_{\textit{j}}} = \tilde{E}_{T_{\textit{j}}, T_{\textit{0}}}^{-1}$ $\overline{T}_{j,T_0}^{-1} \circ \overline{E}_{T_i,T_0}.$
		- It allows us to collect $2^{29+29+9} = 2^{67}$ (independent) pairs.

Step 2. multiple differential distinguisher

- Guess 30 bits of K^1 .
- Use multiple differential distinguisher where $\alpha \in \mathbb{F}_2^5 \setminus 0$ and $\beta \in \mathbb{F}_2^5 \setminus 0$.
- We can recover the guessed 30 bits.
	- $-$ However, the remaining 30 bits of K^1 is not recovered.

Step 3. differential distinguisher

- Guess the remaining 30 bits of K^1 and 5 bits of K^2 .
- Use differential distinguisher from $(1,0)$ to $(1,0)$.
- Recover the full K^1 .
- We recover other keys with external procedure.

Multikey full-round distinguisher

Question?

• The definition of **bit security**.

- Existing works [NW18,WY21,WY23] discuss how to define bit security properly.
- Bit security of Primitive [MW18]
	- Let T(A) be the time complexity of the algorithm A, that is linear under repetition. For any primitive, its bit security is defined as min \overline{A} $\log \frac{T(A)}{G}$ adv^A .
- We estimate the bit security of SCARF respecting this definition.
	- Based on the LLR-based multiple differential distinguisher

$$
\log \frac{T(A)}{adv^A} = 44.95 + 22.60 = 67.55 \ll 80
$$
!!

– Namely, SCARF doesn't provide the 80-bit security…??

Multikey distinguisher

- WY21 and WY23 discuss a concrete attack procedure matching to the bit security.
	- Their procedure repeats the algorithm multiple times and store each bias.
	- To distinguisher in practice, these biases are combined.
- The attack can be valid assuming the multikey distinguisher.
	- Run the attack algorithm and compute the LLR statistics.
	- Repeat this procedure multiple times and distinguish by combining all statistics.
- For both SR1 and SR2, the complexity is lower than 2^{80} .
	- The attack complexity is 2^{67.55} for SR2.
	- $-$ The attack complexity is $2^{78.6}$ for SR1.

Observation

Connection to the BCT

- Connection to the Boomerang Connectivity Table (BCT)
	- $-$ The DDT of $S^{-1} \circ S$ is highly related to the BCT of S.
	- Up to 3+3 rounds, the BCT strongly affects the differential probability.
	- From 4 rounds, the differential probability is more influential.

Better S-box

- Are there better S-box?
	- Using the APN as the S-box is better than SCARF S-box.
	- How about low-latency S-box?
		- We explore **1016 × 5! S-boxes** satisfying the same design criteria of SCARF.
		- The following is the best alternation of the SCARF S-box.

 $S_{alt} = [00, 01, 03, 0D, 06, 13, 16, 0F, 19, 10, 0B, 17, 09, 1D, 1A, 1C,$ 1E, 0C, 15, 04, 08, 1B, 11, 0A, 1F, 14, 12, 02, 05, 07, 18, 0E

Conclusion

- More careful analysis is required for short-block cipher.
	- $-$ Guaranteeing 2^{-n} probability is not enough.
	- Estimating the EDP is required.
		- In general, it's difficult.
		- Thanks to the property of the G function, it's very efficient for SCARF.
- Attack on SCARF.
	- The 7-round key recovery on SR2.
	- The full-round multi-key distinguisher on both SR1 and SR2.
- **Observation**
	- The original SCARF S-box is not optimal in the context of the differential cryptanalysis.