

Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms

Hengyi Luo Kaijie Jiang Yanbin Pan Anyu Wang

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

AsiaCrypt2024 December 13, 2024

Contents

Background

Lattice automorphism

Algorithm: Main idea

Reference

Background

HAWK

Lattice-based Signatures

Algorithm	Algorithm Information	Submitters	Comments
HAWK	Specification	Joppe W. Bos	Submit Comment
	Zip file	Olivier Bronchain	View Comments
	Website	Léo Ducas	
		Serge Fehr	
		Yu-Hsuan Huang	
		Thomas Pornin	
		Eamonn W. Postlethwaite	
		Thomas Prest	
		Ludo N. Pulles	
		Wessel van Woerden	

Figure: HAWK

- NIST submission additional call for signatures Round 2
- efficient / compact
- based on Lattice Isomorphism Problem

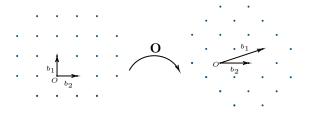
Hengyi Luo • Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms • November 9,2024

Background LIP, ZLIP and module-LIP

Lattices Isomorphism Problem

LIP(geometric version)

Given lattices bases $\mathbf{B}_1, \mathbf{B}_2 \in \mathsf{GL}_n(\mathbb{R})$ of isomorphic lattices, find $\mathbf{O} \in \mathcal{O}_n(\mathbb{R})$ and $\mathbf{U} \in \mathsf{GL}_n(\mathbb{Z})$ s.t. $\mathbf{B}_1 = \mathbf{OB}_2\mathbf{U}$.



Lattices Isomorphism Problem: Another Definition

For two positive definite matrices (quadratic forms) $\mathbf{G}_1, \mathbf{G}_2 \in \mathbb{Z}^{n \times n}$, we say $\mathbf{G}_1 \cong \mathbf{G}_2$ if there exists a unimodular matrix \mathbf{U} such that $\mathbf{U}^\top \mathbf{G}_1 \mathbf{U} = \mathbf{G}_2$.

$$\blacksquare$$
 Denote $\mathbf{G}_1 = \mathbf{B}_1^\top \mathbf{B}_1$, $\mathbf{G}_2 = \mathbf{B}_2^\top \mathbf{B}_2$, if $\mathbf{B}_1 = \mathbf{O}\mathbf{B}_2\mathbf{U}$, then

$$\mathbf{G}_1 \cong \mathbf{G}_2.$$

LIP: (quadratic form version)

Given two matrices $\mathbf{G}_1 \cong \mathbf{G}_2$, find a unimodular matrix \mathbf{U} such that $\mathbf{U}^\top \mathbf{G}_2 \mathbf{U} = \mathbf{G}_1$. In particular, If $\mathbf{G}_1 = \mathbf{I}_n$, we call this problem ZLIP.

Background LIP, ZLIP and module-LIP

Related cryptographic works

Algorithms

- In [HR14], Haviv and Regev propose an n^{O(n)}-time algorithm for the general LIP, which remains the fastest known algorithm for solving LIP.
- In [BGPSD23], Bennett et al. give a 2^{n/2}-time algorithm for ZLIP through reducing ZLIP to O(1)- uSVP.
- In [Duc23], Ducas gives a 2^{n/2}-time algorithm for ZLIP through reducing ZLIP to n/2 dimension SVP.

Cryptographic constructions

■ LIP with unstructured lattices [DvW22, BGPSD23], e.g. $\mathcal{L} = \mathbb{Z}^n$.

Structurally: module-LIP

- A number field K is a finite extension of the rational numbers Q. Let $\mathcal{O}_{\mathbb{K}}$ be the ring of integers of certain number field K. Examples: $K = \mathbb{Q}[X]/(X^{2^k} + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^{2^k} + 1)$ (or $K = \mathbb{Q}$ and $\mathcal{O}_K = \mathbb{Z}$).
- For any extension \mathbb{K} of degree d, there are exactly d embeddings $\sigma_1, ..., \sigma_d$ from \mathbb{K} into the complex numbers \mathbb{C} .
- We call this map $\sigma : x \in \mathbb{K} \mapsto (\sigma_1(x), \dots, \sigma_d(x))^T \in \mathbb{C}^d$ canonical embedding of number field \mathbb{K} .
- We will often identify \mathbb{K} with the image underlying its canonical embedding, then $\mathcal{O}_{\mathbb{K}}$ is a lattice.

Background LIP, ZLIP and module-LIP

Structurally: module-LIP

- An $\mathcal{O}_{\mathbb{K}}$ -module lattice is a finitely generated module in \mathbb{K}^{ℓ} over $\mathcal{O}_{\mathbb{K}}$. It has the form $b_1\mathcal{I}_1 + \cdots + b_r\mathcal{I}_r$ where $b_i \in \mathbb{K}^{\ell}$, $\mathcal{I}_i \subseteq \mathbb{K}$ is an $\mathcal{O}_{\mathbb{K}}$ -ideal.
- We call r the rank of this module lattice and usually consider the case when $r = \ell$.

Structurally: module-LIP

Notation:
$$X^* := \overline{X}^T$$
, for any $X \in M_2(\mathbb{K})$.

quadratic form version(free module case)[DPPvW22]

Given $B, G \in GL_2(\mathbb{K})$, find $U \in GL_2(\mathcal{O}_{\mathbb{K}})$ such that $(BU)^*(BU) = G$.

 In [MPMPW24], Mureau et al. give the definition of module-LIP for general module lattices through pseudo-basis. Background LIP, ZLIP and module-LIP

Related cryptographic works

Algorithms

- There are a series of work about solve LIP with certain symmetry [GS02, JS14, JS17, LJS19], e.g. ideal lattices in $\mathbb{Z}[x]/(x^n + 1)$.
- In [MPMPW24], Mureau et al. propose a heuristic probability algorithm to solve rank 2 module-LIP in totally real number fields which runs in polynomial time for a large class of the inputs.

Construction

Signature scheme Hawk [DPPvW22]. Instantiated on the module $\mathcal{O}_{\mathbb{K}}^2$ where $\mathbb{K}=\mathbb{Q}(\zeta_{2^d}).$

Background LIP, ZLIP and module-LIP

Our Works

- We propose a **provable deterministic** polynomial-time algorithm that solves module-LIP for the rank-2 module $M \subset \mathbb{K}^2$ where \mathbb{K} is a totally real number field.
- We invalidates the omSVP assumption introduced by HAWK to prove its forgery security. We stress that our results haven't yielded any actual attack against HAWK.

Key tool

New lattice automorphism for rank 2 module lattice.

Lattice automorphism

Lattice Automorphism

Hengyi Luo • Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms • November 9,2024

Lattice automorphism

Lattice automorphism

Given a lattice base $\mathbf{B} \in GL_n(\mathbb{R})$, find $\mathbf{O} \in \mathcal{O}_n(\mathbb{R})$ and $\mathbf{U} \in GL_n(\mathbb{Z})$ s.t. $\mathbf{B} = \mathbf{OBU}$. We denote all such O by $\mathcal{O}(\mathcal{L}(\mathbf{B}))$ and all such U by $Aut(\mathbf{B}^T\mathbf{B})$. We refer to all of them as lattice automorphisms.

Notice that:

$$U \in \mathsf{Aut}(\mathbf{B}^T\mathbf{B})$$

 $\forall v,w \in \mathbb{Z}^n, \langle v,w\rangle_{\mathbf{B}^T\mathbf{B}} = v^TB^TBw = v^TU^TB^TBUw = \langle Uv,Uw\rangle_{\mathbf{B}^T\mathbf{B}}\,.$

Motivation: why we focus on lattice automorphism

- In [GS02], Gentry and Szydlo provide a polynomial-time algorithm for the ideal Lattice Isomorphism Problem (ideal-LIP).
 - Specifically, for an element f in the ring $R = \mathbb{Z}[x]/(x^n + 1)$, given (f) and $f^* \cdot f$, it is possible to efficiently recover f (up to multiplication by x^i).
- In [JS17], Lenstra and Silverberge point out that essence of successful is: let $G = \{x^i | i \in [2n]\}$, then $G \subseteq \mathcal{O}(R)$ and satisfies certain properties.
- In [JWL⁺23], Jiang et al. show that if we are able to find non-trivial lattice automorphisms of the input to ZLIP, then we can solve ZLIP.

Motivation: why we focus on lattice automorphism

- For the instance used in HAWK, $\mathcal{O}_{\mathbb{K}}^2$ also has some known lattice automorphisms: $\{\zeta_{2^d}^i\}$.
- Its forgery security is based on the hardness of the one more SVP, which implied the difficulty of computing other lattice automorphisms.

So there is a natural question:

Does the algebraic structure of $\mathcal{O}^2_{\mathbb{K}}$ give us more lattice automorphisms?

Answer: Yes.

New lattice automorphism induced by symplectic matrix

• Let
$$J_2 := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
.

■ Let \mathbb{L} be a CM number field (e.g. cyclotomic field), $B \in GL_2(\mathbb{L})$, $U \in GL_2(\mathcal{O}_{\mathbb{L}})$, $G' = (BU)^*(BU)$.

Define
$$t_*: \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{L}^2 \mapsto \begin{pmatrix} x^* \\ y^* \end{pmatrix} \in \mathbb{L}^2$$
 as a $\mathbb Q$ linear map.

New lattice automorphism induced by symplectic matrix

New lattice automorphism

 $(BU)^{-1}J_2t_*(BU)$ is a lattice automorphism for quadratic $G' = (BU)^*BU$.

 $\begin{aligned} \forall v_i &= (BU)^{-1} (x_i, y_i)^T \in \mathbb{L}^2, \text{ i} = 1,2, \\ \text{then } (BU)^{-1} J_2 t_* (BU) v_i &= (BU)^{-1} (y_i^*, -x_i^*)^T, \text{ i} = 1,2. \end{aligned}$

$$\begin{split} &\langle v_1, v_2 \rangle_{G'} \\ =& \mathsf{tr}_{L/\mathbb{Q}}(v_1^*G'v_2) = \mathsf{tr}_{L/\mathbb{Q}}((x_1^*, y_1^*)(x_2, y_2)^T) \\ =& \mathsf{tr}_{L/\mathbb{Q}}(x_1^*x_2 + y_1^*y_2) = \mathsf{tr}_{L/\mathbb{Q}}(x_1x_2^* + y_1y_2^*) \\ =& \mathsf{tr}_{L/\mathbb{Q}}((y_1, -x_1)(y_2^*, -x_2^*)^T) \\ =& \mathsf{tr}_{L/\mathbb{Q}}(((BU)^{-1}J_2t_*(BU)v_1)^*G'((BU)^{-1}J_2t_*(BU)v_2)) \\ =& \left\langle (BU)^{-1}J_2t_*(BU)v_1, (BU)^{-1}J_2t_*(BU)v_2 \right\rangle_{G'}. \end{split}$$

Lattice automorphism

How to compute $(BU)^{-1}J_2t_*(BU)$

Proposition 1

 $\forall S \in GL_2(\mathbb{L}), S^{-1}J_2t_*S = (\det(S)^*I_2) \cdot (S^*S)^{-1} \cdot J_2t_*.$

Given $(BU)^{\ast}(BU),\,B,$ from the above proposition, we only need to compute $\det(BU).$

- $\blacksquare \ \det(U) \cdot \det(U)^* \longleftarrow \det((BU)^*(BU)) / (\det(B) \cdot \det(B)^*))$
- $(\det(U)) \leftarrow \mathcal{O}_{\mathbb{K}}$, if $U \in GL_2(\mathcal{O}_{\mathbb{L}})$ (hold on the free module-LIP case)

• det(U) (up to multiplication by ζ^i) \leftarrow solver for ideal-LIP.

For general module-LIP case, we need a more detailed argument to obtain $(\det(U))$.

Lattice automorphism

Application

- Above lattice automorphism invalidates the omSVP assumption used in HAWK's forgery security analysis, although it **does not** yield any actual attacks against HAWK itself.
- But it may help the side channel attacks. For example, in [GR24], it is necessary to guess the preimage of two vectors, while using the lattice automorphism only requires guessing the preimage of one vector.
- For totally real number fields case, we can use it to solve the rank 2 module-LIP.

The polynomial time algorithm for rank 2 module-LIP in totally real number fields

Module-LIP

- A number field K is called totally real if for each embedding of K into the complex numbers the image lies inside the real numbers.
 e.g., K = Q(ζ) ∩ R = Q(ζ + ζ⁻¹)
- In this case, t_* is commutative with BU, so what we actually obtain is $J_{BU} := (BU)^{-1} J_2(BU).$

Recall:

module-LIP(free module version)

Assume \mathbb{K} is a totally real number fields and $\mathbb{L} = \mathbb{K}(i)$. Given $B, G' \in GL_2(\mathbb{K})$, assume $(BU)^*(BU) = G'$. We want to find such a $U \in GL_2(\mathcal{O}_{\mathbb{K}})$.

Naive attempt

Combining J_{BU} with {diag(a, a)}, use the previous algorithm [LJS19].

$$\mathcal{O}^2_{\mathbb{K}}$$
 case: \checkmark general case: \bigstar

Reason: Previous algorithms needs strong symmetry of the lattice.

Another attempt: sub module lattice under isomorphism

- BU transform $\mathcal{O}^2_{\mathbb{L}}$ to $B\mathcal{O}^2_{\mathbb{L}}$.
- Can we find a sub (module) lattice $M \subseteq \mathcal{O}^2_{\mathbb{L}}$, $M' \subseteq B\mathcal{O}^2_{\mathbb{L}}$ with lower rank using J_{BU} s.t. BU transform M to M'?
- Let E_{λ} be the eigenspace of eigenvalue λ . $J_2 \in M_2(\mathbb{L})$ has eigenvalue $\pm i$.
- For $B \in GL_2(\mathbb{L})$, $U \in GL_2(\mathcal{O}_{\mathbb{L}})$, we have

 $E_{\iota}(J_{BU}) \cap \mathcal{O}_{\mathbb{L}}^2 = U^{-1}(E_{\iota}(J_B) \cap \mathcal{O}_{\mathbb{L}}^2) = (BU)^{-1}(E_{\iota}(J_2) \cap B\mathcal{O}_{\mathbb{L}}^2),$

which is a rank 1 module lattice (not full rank).

Deal with rank 1 module-LIP

For a given rank 1 module M, we can write it as $\mathcal{I} \cdot v$

Rank 1 module-LIP

Given $S^{-1}\mathcal{I}v$, \mathcal{I}, v , and S^*S for some vector $v \in \mathbb{L}^d$, $\mathcal{O}_{\mathbb{L}}$ -ideal $\mathcal{I} \subseteq \mathbb{L}$, matrix $S \in \mathsf{GL}_n(\mathbb{L})$, ask finding $S^{-1}v$.

- d = 1 : it's just ideal-LIP. In this time S, v ∈ L, multiplying the inverse of *Iv* to S⁻¹*Iv*, the problem translates into the classical case: finding S, given *O*_LS⁻¹ and S*S.
 This has been solved in previous works.
- $d \ge 1$: we do similar treatment: multiplying the inverse of \mathcal{I} to $S^{-1}\mathcal{I}v$. The problem translates into:

finding $S^{-1}v$, given v, $\mathcal{O}_{\mathbb{L}}S^{-1}v$ and S^*S . This can be solved using the algorithm in [LJS19].

Summary

Main steps(free module case)

- Compute J_{BU} .
- Compute $\mathcal{L}_{BU} = \ker(J_{BU} m_i) \cap \mathcal{O}_{\mathbb{L}}^2$ and vector $v_B \in \mathbb{L}^2$, ideal $\mathcal{I}_B \subseteq \mathbb{L}$ s.t. $\ker(J_2 - m_i) \cap B\mathcal{O}_{\mathbb{L}}^2 = \mathcal{I}_B \cdot v_B$.
- Find $(BU)^{-1}v_B$ from \mathcal{L}_{BU} , \mathcal{I}_B , v_B and then recover BU.

In general case, we need use the properties of the pseudo-basis for more refined handling.

Regard above algorithm as reduction

Theorem 1

Let \mathbb{L} be a CM number field. Given $B^{-1}J'B$, B^*B and $B\mathcal{O}^2_{\mathbb{L}}$ for any element J' in $\mathcal{U}_2(\mathcal{O}_{\mathbb{L}}) \setminus \mu(\mathbb{L})I_2$, we can find B in polynomial time.

Hengyi Luo • Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms • November 9,2024

Thanks for your attention!

Huck Bennett, Atul Ganju, Pura Peetathawatchai, and Noah Stephens-Davidowitz.

Just how hard are rotations of zn? algorithms and cryptography with the simplest lattice.

In Advances in Cryptology – EUROCRYPT 2023: 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V, page 252–281, Berlin, Heidelberg, 2023. Springer-Verlag.

Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel P. J. van Woerden.

Hawk: Module LIP makes lattice signatures fast, compact and simple. In Shweta Agrawal and Dongdai Lin, editors, *Advances in Cryptology* -*ASIACRYPT 2022* - 28th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part IV, volume 13794 of Lecture Notes in Computer Science, pages 65–94. Springer, 2022.

Leo Ducas.

Provable lattice reduction of zn with blocksize n/2. *Designs, Codes and Cryptography*, 92:1–8, 11 2023.

Léo Ducas and Wessel P. J. van Woerden.

On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography.

In Orr Dunkelman and Stefan Dziembowski, editors, *Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part III,* volume 13277 of *Lecture Notes in Computer Science,* pages 643–673. Springer, 2022.

Morgane Guerreau and Mélissa Rossi.

A not so discrete sampler: Power analysis attacks on HAWK signature scheme.

Cryptology ePrint Archive, Paper 2024/1248, 2024.

Craig Gentry and Michael Szydlo. Cryptanalysis of the revised NTRU signature scheme.

In Lars R. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications of Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings, volume 2332 of Lecture Notes in Computer Science, pages 299–320. Springer, 2002.

Ishay Haviv and Oded Regev.

On the lattice isomorphism problem.

In Chandra Chekuri, editor, *Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014*, pages 391–404. SIAM, 2014.

Hendrik W. Lenstra Jr. and Alice Silverberg.

Revisiting the gentry-szydlo algorithm.

In Juan A. Garay and Rosario Gennaro, editors, *Advances in Cryptology* - *CRYPTO 2014* - *34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I*, volume 8616 of *Lecture Notes in Computer Science*, pages 280–296. Springer, 2014.

Hendrik W. Lenstra Jr. and Alice Silverberg. Lattices with symmetry.

J. Cryptol., 30(3):760-804, 2017.

Kaijie Jiang, Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, and Xiaoyun Wang.

Exploiting the symmetry of zn: Randomization and the automorphism problem.

In Advances in Cryptology – ASIACRYPT 2023: 29th International Conference on the Theory and Application of Cryptology and Information Security, Guangzhou, China, December 4–8, 2023, Proceedings, Part IV, page 167–200, Berlin, Heidelberg, 2023. Springer-Verlag.

Hendrik W Lenstra Jr and Alice Silverberg. Testing isomorphism of lattices over cm-orders. SIAM Journal on Computing, 48(4):1300–1334, 2019.

 Guilhem Mureau, Alice Pellet-Mary, Georgii Pliatsok, and Alexandre Wallet.
 Cryptanalysis of rank-2 module-lip in totally real number fields.
 In Advances in Cryptology – EUROCRYPT 2024: 43rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland, May 26–30, 2024, Proceedings, Part VII, page 226–255, Berlin, Heidelberg, 2024. Springer-Verlag.