Extending class group action attacks via sesquilinear pairings

Joseph Macula, CU Boulder Joint work with Katherine Stange

Asiacrypt 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

► E a supersingular elliptic curve over finite field F, char(F) = p, K an imaginary quadratic field, O an order in K

- ► E a supersingular elliptic curve over finite field F, char(F) = p, K an imaginary quadratic field, O an order in K
- A K-orientation of E is an embedding

 $\iota: K \hookrightarrow \mathsf{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q} \cong B_{p,\infty}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If $\iota(\mathcal{O}) \subset \operatorname{End}(E)$, ι is an \mathcal{O} -orientation If $\iota(\mathcal{O}) = \iota(K) \cap \operatorname{End}(E)$, ι is a primitive \mathcal{O} -orientation

- ► E a supersingular elliptic curve over finite field F, char(F) = p, K an imaginary quadratic field, O an order in K
- A K-orientation of E is an embedding

 $\iota: K \hookrightarrow \mathsf{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q} \cong B_{p,\infty}$

If $\iota(\mathcal{O}) \subset \operatorname{End}(E)$, ι is an \mathcal{O} -orientation If $\iota(\mathcal{O}) = \iota(K) \cap \operatorname{End}(E)$, ι is a primitive \mathcal{O} -orientation

We denote a supersingular curve E with a K-orientation ι by (E, ι)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

•
$$SS_{\mathcal{O}}^{pr} \coloneqq \{(E,\iota) : \iota \text{ a primitive } \mathcal{O}\text{-orientation}\}/\sim$$

(ロ)、(型)、(E)、(E)、 E) の(()

▶
$$SS_{\mathcal{O}}^{pr} := \{(E, \iota) : \iota \text{ a primitive } \mathcal{O}\text{-orientation}\}/ \sim$$

▶ Given $(E, \iota) \in SS_{\mathcal{O}}^{pr}$, $[\mathfrak{a}] \in Cl(\mathcal{O})$, define

$$E[\mathfrak{a}] = \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha))$$

Then there exists *K*-oriented isogeny $\varphi_{\mathfrak{a}}$ with kernel $E[\mathfrak{a}]$. This gives an action of $Cl(\mathcal{O})$ on $SS_{\mathcal{O}}^{pr}$ by

$$[\mathfrak{a}] \cdot (E, \iota) = (E/E[\mathfrak{a}], \iota_{\mathfrak{a}}), \iota_{\mathfrak{a}} = \frac{1}{\deg \varphi_{\mathfrak{a}}} \varphi_{\mathfrak{a}} \circ \iota \circ \hat{\varphi_{\mathfrak{a}}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Given a fixed orbit X in $SS_{\mathcal{O}}^{pr}$, $(E, \iota), (E', \iota') \in X$, find $[\mathfrak{a}] \in Cl(\mathcal{O})$ such that $[\mathfrak{a}] \cdot (E, \iota) = (E', \iota')$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Motivating Question

 SIDH no longer secure, as shown by Castryck and Decru (23), Robert (23), Maino and Martindale (22), and Maino-Martindale-Panny-Pope-Wesolowski (23)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Motivating Question

- SIDH no longer secure, as shown by Castryck and Decru (23), Robert (23), Maino and Martindale (22), and Maino-Martindale-Panny-Pope-Wesolowski (23)
- (Castryck, Houben, Merz, Mula, Buuren, Vercauteren 23): Can this attack be applied to instances of the vectorization problem?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An Instructive Example (from CHM + 23):

Assume: E, E' defined over \mathbb{F}_p , both with primitive orientation by $\mathbb{Z}[\sqrt{-p}]; \phi : E \to E'$ a secret \mathbb{F}_p -rational isogeny with ker $\phi = E[\mathfrak{a}]; \deg \phi = d$ known; $[\mathfrak{a}] \in Cl(\mathbb{Z}[\sqrt{-p}])$. Knowledge of $[\mathfrak{a}]$ reduces to knowledge of ϕ .

▶ With $m = \ell^r$, $(\ell, d) = 1$, ℓ a small prime splitting in $\mathbb{Q}(\sqrt{-p})$, there are bases $\{P, Q\}, \{P', Q'\}$ for E[m], E'[m], respectively, and

$${\mathcal P}'=\lambda\phi({\mathcal P}), \;\; {\mathcal Q}'=\mu\phi({\mathcal Q}), \;\; \lambda,\mu\in {\mathbb Z}/m{\mathbb Z}^*$$

An Instructive Example (from CHM + 23):

Assume: E, E' defined over \mathbb{F}_p , both with primitive orientation by $\mathbb{Z}[\sqrt{-p}]; \phi : E \to E'$ a secret \mathbb{F}_p -rational isogeny with ker $\phi = E[\mathfrak{a}]; \deg \phi = d$ known; $[\mathfrak{a}] \in Cl(\mathbb{Z}[\sqrt{-p}])$. Knowledge of $[\mathfrak{a}]$ reduces to knowledge of ϕ .

▶ With $m = \ell^r$, $(\ell, d) = 1$, ℓ a small prime splitting in $\mathbb{Q}(\sqrt{-p})$, there are bases $\{P, Q\}, \{P', Q'\}$ for E[m], E'[m], respectively, and

$$P'=\lambda\phi(P), \ \ Q'=\mu\phi(Q), \ \ \lambda,\mu\in\mathbb{Z}/m\mathbb{Z}^*$$

Properties of the *m*-Weil pairing $e_m(\cdot, \cdot)$ imply

$$e_m(P',P')=e_m(P,P)^{\lambda^2 d}$$

An Instructive Example (from CHM + 23):

Assume: E, E' defined over \mathbb{F}_p , both with primitive orientation by $\mathbb{Z}[\sqrt{-p}]; \phi : E \to E'$ a secret \mathbb{F}_p -rational isogeny with ker $\phi = E[\mathfrak{a}]; \deg \phi = d$ known; $[\mathfrak{a}] \in Cl(\mathbb{Z}[\sqrt{-p}])$. Knowledge of $[\mathfrak{a}]$ reduces to knowledge of ϕ .

▶ With $m = \ell^r$, $(\ell, d) = 1$, ℓ a small prime splitting in $\mathbb{Q}(\sqrt{-p})$, there are bases $\{P, Q\}, \{P', Q'\}$ for E[m], E'[m], respectively, and

$$\mathcal{P}'=\lambda\phi(\mathcal{P}),\ \ \mathcal{Q}'=\mu\phi(\mathcal{Q}),\ \ \lambda,\mu\in\mathbb{Z}/m\mathbb{Z}^*$$

▶ Properties of the *m*-Weil pairing $e_m(\cdot, \cdot)$ imply

$$e_m(P',P')=e_m(P,P)^{\lambda^2 d}$$

• Unfortunately, $e_m(P, P) = 1$

Self-Pairings

 Search for pairings non-degenerate on a cyclic subgroup of E compatible with oriented isogenies

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Self-Pairings

- Search for pairings non-degenerate on a cyclic subgroup of E compatible with oriented isogenies
- CHM+ construct such pairings. This yields efficient attacks on the vectorization problem when
 - (i) The degree of the secret isogeny is known
 - (ii) The discriminant $\Delta_{\mathcal{O}}$ of the primitive order contains a large smooth square factor
 - (iii) To perform the necessary computations, may need to significantly extend the base field

(N.B.: work in preparation by Castryck, Decru, Maino, Martindale, Panny, Pope, Robert, Wesolowski appears to remove the square part of condition (ii))

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Can be defined purely formally, thus even for curves without CM ("Sesquilinear Pairings on Elliptic Curves", Stange, 2024)

First steps

Given an imaginary quadratic order O = Z[τ], let ρ be the left-regular representation of O acting on basis {1, τ}:

$$\rho(\alpha) = \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} \iff \alpha = \mathsf{a} + \mathsf{c}\tau, \alpha\tau = \mathsf{b} + \mathsf{d}\tau$$

Can be defined purely formally, thus even for curves without CM ("Sesquilinear Pairings on Elliptic Curves", Stange, 2024)

First steps

Given an imaginary quadratic order O = Z[τ], let ρ be the left-regular representation of O acting on basis {1, τ}:

$$\rho(\alpha) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \iff \alpha = a + c\tau, \alpha\tau = b + d\tau$$

• Define action of \mathcal{O} on $(\mathbb{F}^*)^{\times 2}$ by $(x, y)^{\alpha} = (x^a y^b, x^c y^d)$

Let E/\mathbb{F} have CM by \mathcal{O} . Given $\alpha \in \mathcal{O}$, we construct a pairing

$$\begin{aligned} \widehat{T}_{\alpha}^{\tau} &: E[\overline{\alpha}](\mathbb{F}) \times E(\mathbb{F})/[\alpha] E(\mathbb{F}) \to (\mathbb{F}^*)^{\times 2}/((\mathbb{F}^*)^{\times 2})^{\alpha} \\ \text{as follows:} \\ \text{With } \rho(\alpha) &= \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \\ \alpha &= a + c\tau, \alpha\tau = b + d\tau, \overline{\alpha} = d - c\tau, \overline{\alpha}\tau = -b + a\tau \\ \blacktriangleright \text{ Take } P \in E[\overline{\alpha}], \text{ define functions } f_{P,1}, f_{P,2} \text{ such that} \end{aligned}$$

$$div(f_{P,1}) = a([-\tau]P) + b(P) - (a+b)(\infty)$$
$$div(f_{P,2}) = c([-\tau]P) + d(P) - (c+d)(\infty)$$

• Define for $Q \in E(\mathbb{F})$,

$$D_{Q,1} = ([-\tau]Q + [-\tau]R) - ([-\tau]R), \quad D_{Q,2} = (Q+R) - (R).$$

with R chosen so that the supports of $div(f_{P,i})$ and $D_{Q,j}$ are disjoint for each pair *i*, *j*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Define for $Q \in E(\mathbb{F})$,

$$D_{Q,1} = ([-\tau]Q + [-\tau]R) - ([-\tau]R), \quad D_{Q,2} = (Q+R) - (R).$$

with R chosen so that the supports of $div(f_{P,i})$ and $D_{Q,j}$ are disjoint for each pair i, j

• Then $\widehat{T}^{\tau}_{\alpha}(P,Q) =$

 $(f_{P,1}(D_{Q,1}), f_{P,2}(D_{Q,1})) (f_{P,1}(D_{Q,2}), f_{P,2}(D_{Q,2}))^{\overline{\tau}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Define for $Q \in E(\mathbb{F})$,

$$D_{Q,1} = ([-\tau]Q + [-\tau]R) - ([-\tau]R), \quad D_{Q,2} = (Q+R) - (R).$$

with R chosen so that the supports of $div(f_{P,i})$ and $D_{Q,j}$ are disjoint for each pair i, j

• Then $\widehat{T}^{ au}_{lpha}(P,Q) =$

 $(f_{P,1}(D_{Q,1}), f_{P,2}(D_{Q,1})) (f_{P,1}(D_{Q,2}), f_{P,2}(D_{Q,2}))^{\overline{\tau}}$

Unwinding the definitions, this turns out to be a somewhat natural extension of the Tate pairing; T^τ_α(P, Q) = f_P(D_Q) for f_P = f_{P,1}f^τ_{P,2}, D_Q = D_{Q,1} + τ · D_{Q,2} (see Stange, 2024)

Theorem (Stange 2024):

The pairing above is well-defined and satisfies

▶ Sesquilinearity: For $P \in E[\overline{\alpha}](\mathbb{F})$ and $Q \in E(\mathbb{F})$,

$$\widehat{\mathcal{T}}^{ au}_{lpha}([\gamma]P,[\delta]Q)=\widehat{\mathcal{T}}^{ au}_{lpha}(P,Q)^{\overline{\gamma}\delta}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Stange 2024):

The pairing above is well-defined and satisfies

• Sesquilinearity: For $P \in E[\overline{\alpha}](\mathbb{F})$ and $Q \in E(\mathbb{F})$,

$$\widehat{\mathcal{T}}^{ au}_{lpha}([\gamma]P,[\delta]Q)=\widehat{\mathcal{T}}^{ au}_{lpha}(P,Q)^{\overline{\gamma}\delta}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Compatibility: $\phi : E \to E' \mathcal{O}$ -oriented, $P \in E[\overline{\alpha}](\mathbb{F})$ and $Q \in E(\mathbb{F})$, $\widehat{T}^{\tau}_{\alpha}(\phi P, \phi Q) = \widehat{T}^{\tau}_{\alpha}(P, Q)^{\deg \phi}$.

Theorem (Stange 2024):

The pairing above is well-defined and satisfies

• Sesquilinearity: For $P \in E[\overline{\alpha}](\mathbb{F})$ and $Q \in E(\mathbb{F})$,

$$\widehat{\mathcal{T}}^{ au}_{lpha}([\gamma] P, [\delta] Q) = \widehat{\mathcal{T}}^{ au}_{lpha}(P, Q)^{\overline{\gamma}\delta}.$$

- Compatibility: $\phi : E \to E' \mathcal{O}$ -oriented, $P \in E[\overline{\alpha}](\mathbb{F})$ and $Q \in E(\mathbb{F})$, $\widehat{T}^{\tau}_{\alpha}(\phi P, \phi Q) = \widehat{T}^{\tau}_{\alpha}(P, Q)^{\deg \phi}$.
- Non-degeneracy: α ∈ O coprime to char(𝔅) and Δ_O. N = N(α), 𝔅 contains the N-th roots of unity, P ∈ E[N](𝔅) such that OP = E[N] = E[N](𝔅). Then

$$\widehat{T}^{\tau}_{\alpha}: E[\overline{\alpha}](\mathbb{F}) \times E(\mathbb{F})/[\alpha] E(\mathbb{F}) \to (\mathbb{F}^*)^{\times 2}/((\mathbb{F}^*)^{\times 2})^{\alpha},$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is non-degenerate.

These pairings are efficiently computable via a Miller-style algorithm (Algorithm 5.7, Stange, 2024)

Similar to the Tate pairing, a final exponentiation gives values in the roots of unity:

$$(\overline{\mathbb{F}}^*)/(\overline{\mathbb{F}}^*)^lpha o \mu_{N(lpha)}^{ imes 2} \subseteq (\overline{\mathbb{F}}^*)^{ imes 2}, \quad x\mapsto x^{(q-1)lpha^{-1}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Key idea:

Sesquilinear pairings respect $\mathcal{O}\text{-module}$ structure, not merely $\mathbb{Z}\text{-module}$ structure. This yields new instances of non-trivial self-pairings.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Recall that in the statement of non-degeneracy of \hat{T}_{α}^{τ} , one condition is that E[N] is a cyclic \mathcal{O} -module, where $N = N(\alpha)$. A straightforward extension of results of (Lenstra, 1996) yields:

Recall that in the statement of non-degeneracy of \hat{T}^{τ}_{α} , one condition is that E[N] is a cyclic \mathcal{O} -module, where $N = N(\alpha)$. A straightforward extension of results of (Lenstra, 1996) yields:

► Theorem (M., Stange): E/F, K imaginary quadratic, O ⊂ K, E O-oriented, f = [O' : O], O' primitive orientation. E[m] cyclic O-module iff (m, f) = 1.

So, there many instances where \hat{T}^{τ}_{α} is non-degenerate. This in turn yields non-degenerate self-pairings.

Theorem (M., Stange):

Let *E* be an elliptic curve oriented by $\mathcal{O} = \mathbb{Z}[\tau]$. Let *m* be coprime to the discriminant $\Delta_{\mathcal{O}}$. Let \mathbb{F} be a finite field containing the *m*-th roots of unity. Suppose $E[m] = E[m](\mathbb{F})$. Let *P* have order *m*. Let *s* be the maximal divisor of *m* such that $E[s] \subseteq \mathcal{O}P$. Then the multiplicative order *m'* of $\widehat{T}_m^{\tau}(P, P)$ satisfies $s \mid m' \mid 2s^2$.

In particular, if OP = E[m], then s = m and the self-pairing has order m. If $OP = \mathbb{Z}P$, then s = 1, and in fact, in this case, the self-pairing is trivial.

Efficient = polynomial in size of input, i.e., polynomial in log m (the torsion) and log q (q the cardinality of base field where E[m] fully rational)

- Efficient = polynomial in size of input, i.e., polynomial in log m (the torsion) and log q (q the cardinality of base field where E[m] fully rational)
- Having an *O*-oriented curve means having an explicit orientation; given α ∈ *O*, can compute its action [α] on a point *P* on *E* efficiently

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Efficient = polynomial in size of input, i.e., polynomial in log m (the torsion) and log q (q the cardinality of base field where E[m] fully rational)
- Having an *O*-oriented curve means having an explicit orientation; given α ∈ *O*, can compute its action [α] on a point *P* on *E* efficiently

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Degree *d* of hidden isogeny ϕ is known

- Efficient = polynomial in size of input, i.e., polynomial in log m (the torsion) and log q (q the cardinality of base field where E[m] fully rational)
- Having an *O*-oriented curve means having an explicit orientation; given α ∈ *O*, can compute its action [α] on a point *P* on *E* efficiently
- Degree d of hidden isogeny ϕ is known
- *m* is coprime to the characteristic *p* of the given field 𝔽, and *m* is smooth, meaning that its factors are polynomial in size, so that discrete logarithms in µ_m or *E*[*m*] are computable in polynomial time. In particular, we can efficiently write any element of *E*[*m*] in terms of a given basis

A slight modification of the sesquilinear pairing:

$$T'_m(P,Q) = (t_m([\tau]P,Q), t_m(P,Q))$$

This pairing remains non-degenerate whenever E[m] is a cyclic \mathcal{O} -module, bilinear, compatible with \mathcal{O} -oriented isogenies. It yields the following result

Theorem (M., Stange):

Suppose $\phi: E \to E'$ of degree $d, m \mid \Delta_{\mathcal{O}}$, coprime to d, polynomially many square roots of 1 modulo $m. P \in E[m]$ and $P' \in E'[m]$ such that $\mathcal{O}P = E[m], \mathcal{O}P' = E'[m]$. There exists efficiently computable point $Q \in E[m]$ of order m with $S \subset E'[m]$ of polynomial size containing $\phi(Q)$ computable in polynomially many operations in field of definition of E[m].

With knowledge of φ(Q) for an order m point Q, O-module structure of E[m] and φ an O-oriented isogeny yield knowledge of φ on E[m].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- With knowledge of φ(Q) for an order m point Q, O-module structure of E[m] and φ an O-oriented isogeny yield knowledge of φ on E[m].
- ▶ By exploiting O-module structure, computations take place over field of definition of E[m] instead of E[m²]. This yields polynomial-time attacks on additional instances of the vectorization problem.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof (Sketch, for *m* odd):

►
$$\exists \tau \in \mathcal{O} \text{ s.t. } \mathbb{Z}[\tau] \equiv \mathcal{O} \text{ modulo } m; Tr(\tau) \equiv N(\tau) \equiv 0$$

(mod m)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Proof (Sketch, for *m* odd):

►
$$\exists \tau \in \mathcal{O} \text{ s.t. } \mathbb{Z}[\tau] \equiv \mathcal{O} \text{ modulo } m; Tr(\tau) \equiv N(\tau) \equiv 0$$

(mod m)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$T'_m(P,P)^{\deg\phi} = T'_m(P',P')^{N(\lambda)}$$

Proof (Sketch, for *m* odd):

►
$$\exists \tau \in \mathcal{O} \text{ s.t. } \mathbb{Z}[\tau] \equiv \mathcal{O} \text{ modulo } m; Tr(\tau) \equiv N(\tau) \equiv 0$$

(mod m)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$T'_m(P,P)^{\deg\phi} = T'_m(P',P')^{N(\lambda)}$$

►
$$\lambda \equiv a + b\tau$$
 modulo m , $N(\lambda) \equiv a^2 \pmod{m'}$, so $\phi[\tau]P = [a][\tau]P'$ for some a

Proof (Sketch, for *m* odd):

► $\exists \tau \in \mathcal{O} \text{ s.t. } \mathbb{Z}[\tau] \equiv \mathcal{O} \text{ modulo } m; Tr(\tau) \equiv N(\tau) \equiv 0$ (mod m)

$$T'_m(P,P)^{\deg\phi} = T'_m(P',P')^{N(\lambda)}$$

- $\lambda \equiv a + b\tau$ modulo m, $N(\lambda) \equiv a^2 \pmod{m'}$, so $\phi[\tau]P = [a][\tau]P'$ for some a
- Our assumptions imply set of possible values of a is efficiently computable and of polynomial size

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example (adapted from Castryck): $E: y^2 = x^3 + x, p = 4 \cdot 3^r - 1$. Then j(E) = 1728 and E is supersingular. With π_p the Frobenius endomorphism, $[i]: (x, y) \mapsto (-x, iy),$

$$\tau := \frac{i + \pi_p}{2} \in \mathsf{End}(E).$$

 $N(\tau) = 3^r$ and $Tr(\tau) = 0$. Let $\mathcal{O} = \mathbb{Z}[\tau]$, so $N(\tau) \mid \Delta_{\mathcal{O}}$. Let $m = 3^r$. Then $m \mid \Delta_{\mathcal{O}}$. $E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/4 \cdot 3^r \mathbb{Z})^2$, so $E[3^r] \subset E(\mathbb{F}_{p^2})$. All pairings computations take place in $E(\mathbb{F}_{p^2})$; with m > 4d, SIDH portion of attack is efficient.

This is in contrast to methods of CHM+23, where a base change to field of definition of E[3^{2r}] is required. This degree grows exponentially with r.

Thank you!