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Background

▶ E a supersingular elliptic curve over finite field F,
char(F) = p, K an imaginary quadratic field, O an order in K

▶ A K-orientation of E is an embedding

ι : K ↪→ End(E )⊗Z Q ∼= Bp,∞

If ι(O) ⊂ End(E ), ι is an O-orientation
If ι(O) = ι(K ) ∩ End(E ), ι is a primitive O-orientation

▶ We denote a supersingular curve E with a K -orientation ι by
(E , ι)
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Background

▶ SSpr
O := {(E , ι) : ι a primitive O-orientation}/ ∼

▶ Given (E , ι) ∈ SSpr
O ,[a] ∈ Cl(O), define

E [a] =
⋂
α∈a

ker(ι(α))

Then there exists K -oriented isogeny φa with kernel E [a].
This gives an action of Cl(O) on SSpr

O by

[a] · (E , ι) = (E/E [a], ιa), ιa =
1

degφa
φa ◦ ι ◦ φ̂a



Background

▶ SSpr
O := {(E , ι) : ι a primitive O-orientation}/ ∼

▶ Given (E , ι) ∈ SSpr
O ,[a] ∈ Cl(O), define

E [a] =
⋂
α∈a

ker(ι(α))

Then there exists K -oriented isogeny φa with kernel E [a].
This gives an action of Cl(O) on SSpr

O by

[a] · (E , ι) = (E/E [a], ιa), ιa =
1

degφa
φa ◦ ι ◦ φ̂a



Background

▶ The vectorization problem:

Given a fixed orbit X in SSpr
O , (E , ι), (E ′, ι′) ∈ X ,

find [a] ∈ Cl(O) such that [a] · (E , ι) = (E ′, ι′)



Motivating Question

▶ SIDH no longer secure, as shown by Castryck and Decru (23),
Robert (23), Maino and Martindale (22), and
Maino-Martindale-Panny-Pope-Wesolowski (23)

▶ (Castryck, Houben, Merz, Mula, Buuren, Vercauteren 23):
Can this attack be applied to instances of the vectorization
problem?
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An Instructive Example (from CHM+ 23):

Assume: E ,E ′ defined over Fp, both with primitive orientation by
Z[
√
−p]; ϕ : E → E ′ a secret Fp-rational isogeny with

ker ϕ = E [a]; deg ϕ = d known; [a] ∈ Cl(Z[
√
−p]). Knowledge of

[a] reduces to knowledge of ϕ.

▶ With m = ℓr , (ℓ, d) = 1, ℓ a small prime splitting in Q(
√
−p),

there are bases {P,Q}, {P ′,Q ′} for E [m],E ′[m], respectively,
and

P ′ = λϕ(P), Q ′ = µϕ(Q), λ, µ ∈ Z/mZ∗

▶ Properties of the m-Weil pairing em(·, ·) imply

em(P
′,P ′) = em(P,P)

λ2d

▶ Unfortunately, em(P,P) = 1
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Self-Pairings

▶ Search for pairings non-degenerate on a cyclic subgroup of E
compatible with oriented isogenies

▶ CHM+ construct such pairings. This yields efficient attacks
on the vectorization problem when

(i) The degree of the secret isogeny is known
(ii) The discriminant ∆O of the primitive order contains a large

smooth square factor
(iii) To perform the necessary computations, may need to

significantly extend the base field

(N.B.: work in preparation by Castryck, Decru, Maino,
Martindale, Panny, Pope, Robert, Wesolowski appears to
remove the square part of condition (ii))
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Sesquilinear Pairings

Can be defined purely formally, thus even for curves without CM
(“Sesquilinear Pairings on Elliptic Curves”, Stange, 2024)

First steps

▶ Given an imaginary quadratic order O = Z[τ ], let ρ be the
left-regular representation of O acting on basis {1, τ}:

ρ(α) =

(
a b
c d

)
⇐⇒ α = a+ cτ, ατ = b + dτ

▶ Define action of O on (F∗)×2 by (x , y)α = (xayb, xcyd)
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Sesquilinear Pairings

Let E/F have CM by O. Given α ∈ O, we construct a pairing

T̂ τ
α : E [α](F)× E (F)/[α]E (F) → (F∗)×2/((F∗)×2)α

as follows:

With ρ(α) =

(
a b
c d

)
,

α = a+ cτ, ατ = b + dτ, α = d − cτ, ατ = −b + aτ

▶ Take P ∈ E [α], define functions fP,1, fP,2 such that

div(fP,1) = a([−τ ]P) + b(P)− (a+ b)(∞)

div(fP,2) = c([−τ ]P) + d(P)− (c + d)(∞)



Sesquilinear Pairings

▶ Define for Q ∈ E (F),

DQ,1 = ([−τ ]Q+[−τ ]R)− ([−τ ]R), DQ,2 = (Q+R)− (R).

with R chosen so that the supports of div(fP,i ) and DQ,j are
disjoint for each pair i , j

▶ Then T̂ τ
α(P,Q) =

(fP,1(DQ,1), fP,2(DQ,1)) (fP,1(DQ,2), fP,2(DQ,2))
τ

▶ Unwinding the definitions, this turns out to be a somewhat
natural extension of the Tate pairing; T̂ τ

α(P,Q) = fP(DQ) for
fP = fP,1f

τ
P,2, DQ = DQ,1 + τ · DQ,2 (see Stange, 2024)
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Sesquilinear Pairings

Theorem (Stange 2024):

The pairing above is well-defined and satisfies

▶ Sesquilinearity: For P ∈ E [α](F) and Q ∈ E (F),

T̂ τ
α([γ]P, [δ]Q) = T̂ τ

α(P,Q)γδ.

▶ Compatibility: ϕ : E → E ′ O-oriented, P ∈ E [α](F) and
Q ∈ E (F),

T̂ τ
α(ϕP, ϕQ) = T̂ τ

α(P,Q)deg ϕ.

▶ Non-degeneracy: α ∈ O coprime to char(F) and ∆O.
N = N(α), F contains the N-th roots of unity, P ∈ E [N](F)
such that OP = E [N] = E [N](F). Then

T̂ τ
α : E [α](F)× E (F)/[α]E (F) → (F∗)×2/((F∗)×2)α,

is non-degenerate.
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Sesquilinear Pairings

These pairings are efficiently computable via a Miller-style
algorithm (Algorithm 5.7, Stange, 2024)

Similar to the Tate pairing, a final exponentiation gives values in
the roots of unity:

(F∗
)/(F∗

)α → µ×2
N(α) ⊆ (F∗

)×2, x 7→ x (q−1)α−1
.



Sesquilinear Pairings

Key idea:

Sesquilinear pairings respect O-module structure, not merely
Z-module structure. This yields new instances of non-trivial
self-pairings.



Sesquilinear Pairings

Recall that in the statement of non-degeneracy of T̂ τ
α , one

condition is that E [N] is a cyclic O-module, where N = N(α). A
straightforward extension of results of (Lenstra, 1996) yields:

▶ Theorem (M., Stange): E/F, K imaginary quadratic, O ⊂ K ,
E O-oriented, f = [O′ : O], O′ primitive orientation. E [m]
cyclic O-module iff (m, f ) = 1.
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Sesquilinear Pairings

So, there many instances where T̂ τ
α is non-degenerate. This in turn

yields non-degenerate self-pairings.

Theorem (M., Stange):

Let E be an elliptic curve oriented by O = Z[τ ]. Let m be coprime
to the discriminant ∆O. Let F be a finite field containing the m-th
roots of unity. Suppose E [m] = E [m](F). Let P have order m. Let
s be the maximal divisor of m such that E [s] ⊆ OP. Then the
multiplicative order m′ of T̂ τ

m(P,P) satisfies s | m′ | 2s2.

In particular, if OP = E [m], then s = m and the self-pairing has
order m. If OP = ZP, then s = 1, and in fact, in this case, the
self-pairing is trivial.



Computational Assumptions

▶ Efficient = polynomial in size of input, i.e., polynomial in
logm (the torsion) and log q (q the cardinality of base field
where E [m] fully rational)

▶ Having an O-oriented curve means having an explicit
orientation; given α ∈ O, can compute its action [α] on a
point P on E efficiently

▶ Degree d of hidden isogeny ϕ is known

▶ m is coprime to the characteristic p of the given field F, and
m is smooth, meaning that its factors are polynomial in size,
so that discrete logarithms in µm or E [m] are computable in
polynomial time. In particular, we can efficiently write any
element of E [m] in terms of a given basis
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Extending Prior Attacks

A slight modification of the sesquilinear pairing:

T ′
m(P,Q) = (tm([τ ]P,Q), tm(P,Q))

This pairing remains non-degenerate whenever E [m] is a cyclic
O-module, bilinear, compatible with O-oriented isogenies. It yields
the following result

Theorem (M., Stange):

Suppose ϕ : E → E ′ of degree d , m | ∆O, coprime to d ,
polynomially many square roots of 1 modulo m. P ∈ E [m] and
P ′ ∈ E ′[m] such that OP = E [m], OP ′ = E ′[m]. There exists
efficiently computable point Q ∈ E [m] of order m with S ⊂ E ′[m]
of polynomial size containing ϕ(Q) computable in polynomially
many operations in field of definition of E [m].



Extending Prior Attacks

▶ With knowledge of ϕ(Q) for an order m point Q, O-module
structure of E [m] and ϕ an O-oriented isogeny yield
knowledge of ϕ on E [m].

▶ By exploiting O-module structure, computations take place
over field of definition of E [m] instead of E [m2]. This yields
polynomial-time attacks on additional instances of the
vectorization problem.
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Extending Prior Attacks

Proof (Sketch, for m odd):

▶ ∃τ ∈ O s.t. Z[τ ] ≡ O modulo m; Tr(τ) ≡ N(τ) ≡ 0
(mod m)

▶ T ′
m(P,P)

deg ϕ = T ′
m(P

′,P ′)N(λ)

▶ λ ≡ a+ bτ modulo m, N(λ) ≡ a2 (mod m′), so
ϕ[τ ]P = [a][τ ]P ′ for some a

▶ Our assumptions imply set of possible values of a is efficiently
computable and of polynomial size
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Extending Prior Attacks

Example (adapted from Castryck):

E : y2 = x3 + x , p = 4 · 3r − 1. Then j(E ) = 1728 and E is
supersingular. With πp the Frobenius endomorphism,
[i ] : (x , y) 7→ (−x , iy),

τ :=
i + πp

2
∈ End(E ).

N(τ) = 3r and Tr(τ) = 0. Let O = Z[τ ], so N(τ) | ∆O. Let
m = 3r . Then m | ∆O. E (Fp2) ∼= (Z/4 · 3rZ)2, so E [3r ] ⊂ E (Fp2).
All pairings computations take place in E (Fp2); with m > 4d ,
SIDH portion of attack is efficient.

▶ This is in contrast to methods of CHM+23, where a base
change to field of definition of E [32r ] is required. This degree
grows exponentially with r .



Thank you!


