C' c'wquet Lobs

Th h IdP II

Quick Reminders

AHE: Additively Homomorphic Encryption

Enc(pt,) Enc(pt,)

Enc(pt,+pt,)

Quick Reminders

AHE: Additively Homomorphic Encryption

Enc(pt,) Enc(pt,)

Enc(pt,+pt,)

Threshold Encryption:

e
S e @)
@ . nc(pt) @2
O

Output: pt

TAHE - Threshold Additively
Homomorphic Encryption

DKG - Distributed Key Generation

()
@ DKG @
A

Public Output: pk, vkI

Private Output: S,

TAHE - Threshold Additively
Homomorphic Encryption

DKG - Distributed Key Generation Threshold Decryption
rw ds.+x
vk 1 1
s
3,) Eal
DKG @ vk
k
N/ N/ f@] ‘ f@] vk,
@ N s, . N s, dsg*o,
=== r. V‘l‘lkaz
Public Output: pk, vkI L@J Sg
Private Output: S, Output: pt

What is it good for?

1 Voting Systems [FPSO01, DIN10, KLM20]

2 Threshold Signatures Protocols [GGN16,
FMM24+]

3 General Purpose MPC [BDTZ16]

4 Secret Maintenance On Blockchains

What is it good for?

1 Voting Systems [FPSO01, DIN10, KLM20]

2 Threshold Signatures Protocols [GGN16,
FMM24+]

3 General Purpose MPC [BDTZ16]

4 Secret Maintenance On Blockchains

The Paillier Cryptosystem

pk: N=pq sk: d=1mod N, d=0 mod ¢(N)

Enc(m:r)=1+N)"rN mod(N?2)

Dec(ct)=[ct** mod(N?)-1]/N

Threshold Paillier Encryption
Assuming a Trusted Dealer

Trusted Dealer
®
W

pk: N=pq.
p and g are safe
primes

s;: Shamir Secret
Sharing over N$(N)

vk ve-
visarandom
quadratic residue

Threshold Paillier Encryption
Assuming a Trusted Dealer

Trusted Dealer Threshold Decryption =(ds.c2dls.c-3ds o-4)2
IS T
A
e OB
= & -

vk
pk: N=pg. rj “ ot ! I vk,
p and q are safe @ LJ :

primes LJ S, S, pt=(x-1)/N-(c)'mod(N)
Ak
& -

S;: Shamir Secret

Sharing over N$(N)
VK VS ds,=ct>-* ds =ct*-* ds,=ct®-?
visarandom T T 4

quadratic residue

So what is the problem

We don’t know how to practically
generate N which consists of Safe Primes.

Can you have a scheme with
practical DKG and efficient proofs?

What was Done up now?

Key Generation

Proof Efficiency

Assumptions

[ACS02]
Safe Primes

X

[DKO1]-Ad Hoc
Assumptions

9 No Batching :(

[FSO1]
B-Rough

X

[HMR19]
Cut-and-Choose

This Work

X
X
v

90 ® X O

*[BDTZ16]: r-recovery, 2 rounds decryption

So what'’s So great about Safe Primes?

e QR iscyclic.

So what'’s So great about Safe Primes?

e QRiscyclic.

e Almost every elementis a generator.

So what'’s So great about Safe Primes?

e QRiscyclic.

e Almost every elementis a generator.

e Forasmalleifx®=1mod (N?) =>x=1mod (N?).

So what'’s So great about Safe Primes?

e QRiscyclic.
e Almost every elementis a generator.

e Forasmalleifx®=1mod (N?) =>x=1mod (N?).

e Denote log, (ct)=a. Specifically in the soundness proof we get x=ds/vk® if x=1
the statement is correct.

So what'’s So great about Safe Primes?
Nothing...

e QR,is cyclic.
GCD(P-1,Q-1)=2 is enough for this.

e Almost every element is a generator.
There are Enough “Almost Generators”.

e For a small e if x°=1 mod (N2)>x=1mod (N2).
x°n=1 mod(N?) gives either x=1 mod (N?) or allows for factorization of N

e The Main Point: There exists bad statement an adversary may be able to
prove but finding them reduces to factoring.

Factoring Nincase x = 1
x°n=1 mod(N?) x%9=1 mod(N?)

X®=

mod(N?) x y°=1 mod(N?)

v

Factoring N

Factoring N

Case -1
1 Factor e

2 Remove powers of 2 from e (terminates in an odd number or a square root and thus factoring).

3 Exponentiate to the odd factors of e until you get 1. Denote the last non one value as y.

4 Calculating GCD(y-1,N) will give a non-trivial factor.

Case -2

1 Factor using Pollard’s P-1 method

k=128 0=40

k=128 0=40
T(factor(e))=42

k=128 0=40

T(factor(e))=42 P(gis 2°-almost generator)=1-2°
T(Pollard’s P-1)=40

k=128 0=40

T(factor(e))=42 P(gis 2°-almost generator)=1-2°
T(Pollard’s P-1)=40

Practically this means factoring in very realistic times.

Moving to a Polynomial Reduction

« When forking send e, e+, e+2..., e+2/¢.

« Sample multiple bases and prove for each one to increase statistical security.

Supporting Batching

« Batching works via the small exponents method, i.e creating a random linear transformation from

the proofs.
« We use similar reduction techniques to prove its security.

* We show “round-by-round soundness” to avoid security loss in the Fiat-Shamir transformation.

» Batch Verification works similarly.

Implementation

—&— 10 parties, malicious adv. —8— 100 parties, malicious adv. —®— 1000 parties, malicious adv.
-@®- 10 parties, semi-honest adv. —-®- 100 parties, semi-honest adv. —-®- 1000 parties, semi-honest adv.

AWS machine C6i (96 vCPU's) MBP M1 (10 cores)

Runtime (ms)

102 102
Batch size Batch size

Thank you for listening!

Thank you for listening!

Questions?

Is Paillier Still Relevant when
Class Groups Exists?

Simplicity = Security*
Implemented for cryptographic use

Well established RSA adjacent assumption (DCR)

Every group element is a valid ciphertext

Efficient hash to group

