

Tiresias: Large Scale, UC-Secure
Threshold Paillier

AHE: Additively Homomorphic Encryption

Quick Reminders

Enc(pt2)Enc(pt1)

⊕

Enc(pt1+pt2)

AHE: Additively Homomorphic Encryption

Quick Reminders

Enc(pt2)Enc(pt1)

⊕

Enc(pt1+pt2)

Threshold Encryption:

s1

s2

s3

s4

Enc(pt)

Output: pt

DKG

TAHE - Threshold Additively
Homomorphic Encryption

Public Output: pk, vkן

Private Output: sן

DKG - Distributed Key Generation

DKG

TAHE - Threshold Additively
Homomorphic Encryption

Public Output: pk, vkן

Private Output: sן

s1

s2

s3

s4

Enc(pt)
vk4

vk1

vk2

vk3

ds1+𝜋1

ds2+𝜋2

ds3+𝜋3

Output: pt

DKG - Distributed Key Generation Threshold Decryption

Voting Systems [FPS01, DJN10, KLM20]1

Threshold Signatures Protocols [GGN16,
FMM24+]

2

General Purpose MPC [BDTZ16]3

What is it good for?

Secret Maintenance On Blockchains4

Voting Systems [FPS01, DJN10, KLM20]1

Threshold Signatures Protocols [GGN16,
FMM24+]

2

General Purpose MPC [BDTZ16]3

What is it good for?

Secret Maintenance On Blockchains4

The Paillier Cryptosystem

pk: N=pq sk: d☰1 mod N, d☰0 mod ɸ(N)

Enc(m;r)=(1+N)mrN mod(N2)

Dec(ct)=[ctsk mod(N2)-1]/N

Threshold Paillier Encryption
Assuming a Trusted Dealer
Trusted Dealer

pk: N=pq.
p and q are safe

primes

si: Shamir Secret
Sharing over Nɸ(N)

vki: v
s_i

v is a random
quadratic residue

Threshold Paillier Encryption
Assuming a Trusted Dealer

s3

s4

ct

vk4

vk3

ds2=cts_2

𝜋2

Trusted Dealer Threshold Decryption

pk: N=pq.
p and q are safe

primes

si: Shamir Secret
Sharing over Nɸ(N)

vki: v
s_i

v is a random
quadratic residue

s1

vk1

s2

vk2

ds3=cts_3

𝜋3

ds4=cts_4

𝜋4

x=(ds2
c_2ds3

c_3ds4
c_4)2

pt=(x-1)/N∙(c)-1mod(N)

We don’t know how to practically
generate N which consists of Safe Primes.

Can you have a scheme with
practical DKG and efficient proofs?

So what is the problem

Key Generation Proof Efficiency Assumptions

[ACS02]
Safe Primes

[DK01]-Ad Hoc
Assumptions

 No Batching :(

[FS01]
B-Rough

[HMR19]
Cut-and-Choose

This Work

*[BDTZ16]: r-recovery, 2 rounds decryption

What was Done up now?

● QRN is cyclic.

So what’s So great about Safe Primes?

● QRN is cyclic.

● Almost every element is a generator.

So what’s So great about Safe Primes?

● QRN is cyclic.

● Almost every element is a generator.

● For a small e if xe=1 mod (N2)→x=1 mod (N2).

So what’s So great about Safe Primes?

● QRN is cyclic.

● Almost every element is a generator.

● For a small e if xe=1 mod (N2)→x=1 mod (N2).

● Denote logv(ct)=ɑ. Specifically in the soundness proof we get x=ds/vkɑ if x=1
the statement is correct.

So what’s So great about Safe Primes?

So what’s So great about Safe Primes?
Nothing…
● QRN is cyclic.

GCD(P-1,Q-1)=2 is enough for this.

● Almost every element is a generator.
There are Enough “Almost Generators”.

● For a small e if xe=1 mod (N2)→x=1 mod (N2).
xeη=1 mod(N2) gives either x=1 mod (N2) or allows for factorization of N

● The Main Point: There exists bad statement an adversary may be able to
prove but finding them reduces to factoring.

xeη=1 mod(N2) xeδ=1 mod(N2)

Factoring N

yδ=1 mod(N2)
xe=1

mod(N2)

Factoring N in case x ≠ 1

Factoring N
Case - 1

Factor e1

Remove powers of 2 from e (terminates in an odd number or a square root and thus factoring).2

Exponentiate to the odd factors of e until you get 1. Denote the last non one value as y.3

Calculating GCD(y-1,N) will give a non-trivial factor.4

Case - 2
Factor using Pollard’s P-1 method1

Alert! Alert! Non-Polynomial Reduction!!!
This is not a drill! I repeat this is not a drill!

Alert! Alert! Non-Polynomial Reduction!!!
This is not a drill! I repeat this is not a drill!

κ=128 σ=40

Alert! Alert! Non-Polynomial Reduction!!!
This is not a drill! I repeat this is not a drill!

κ=128 σ=40

T(factor(e))≅42

Alert! Alert! Non-Polynomial Reduction!!!
This is not a drill! I repeat this is not a drill!

κ=128 σ=40

T(factor(e))≅42 P(g is 2σ-almost generator)≅1-2σ

T(Pollard’s P-1)≅40

Alert! Alert! Non-Polynomial Reduction!!!
This is not a drill! I repeat this is not a drill!

κ=128 σ=40

T(factor(e))≅42 P(g is 2σ-almost generator)≅1-2σ

T(Pollard’s P-1)≅40

Practically this means factoring in very realistic times.

• When forking send e, e+1, e+2… , e+2/ε.

• Sample multiple bases and prove for each one to increase statistical security.

Moving to a Polynomial Reduction

Supporting Batching

• Batching works via the small exponents method, i.e creating a random linear transformation from

the proofs.

• We use similar reduction techniques to prove its security.

• We show “round-by-round soundness” to avoid security loss in the Fiat-Shamir transformation.

• Batch Verification works similarly.

Implementation

Thank you for listening!

Thank you for listening!

Questions?

● Simplicity = Security*

● Implemented for cryptographic use

● Well established RSA adjacent assumption (DCR)

● Every group element is a valid ciphertext

Is Paillier Still Relevant when
Class Groups Exists?

● Efficient hash to group

