.

.

.

.

d'Wallet Labs

Tiresias: Large Scale, UC-Secure Threshold Paillier

and a second and a second and a second se

and the second secon

Quick Reminders

AHE: Additively Homomorphic Encryption

· · · · · · · · · · · ·

and the second second

.

.

and the second secon

a a a a a a a a a a a a a

.

Quick Reminders

AHE: Additively Homomorphic Encryption

Threshold Encryption:

. . .

. . .

Enc(pt)

S₂

.

Output: pt

TAHE – Threshold Additively Homomorphic Encryption

DKG - Distributed Key Generation

.

na na santa Na

.

and the second second

.

What is it good for?

 Voting Systems [FPS01, DJN10, KLM20]
 Threshold Signatures Protocols [GGN16, FMM24+]
 General Purpose MPC [BDTZ16]
 Secret Maintenance On Blockchains

Wallet Labs

What is it good for?

Voting Systems [FPS01, DJN10, KLM20]
Threshold Signatures Protocols [GGN16, FMM24+]
General Purpose MPC [BDTZ16]
Secret Maintenance On Blockchains

· · · · · · · · · · · · · · · · · ·

The Paillier Cryptosystem

- pk: N=pq sk: $d \equiv 1 \mod N$, $d \equiv 0 \mod \phi(N)$
- Enc(m;r)=(1+N)^mr^N mod(N²)
-
- Dec(ct)=[ct^{sk} mod(N²)-1]/N

· · · · · · · · · · · · · · ·

Threshold Paillier Encryption Assuming a Trusted Dealer

Trusted Dealer

pk: N=pq. p and q are safe primes									
s _i : Shamir Secret Sharing over N∳(N)									
vk _i : v ^{s_i} v is a random quadratic residue									

Threshold Paillier Encryption Assuming a Trusted Dealer

So what is the problem

We don't know how to	practically
generate N which consists	of Safe Primes.

Can you have a scheme with practical DKG and efficient proofs?

What was Done up now?

	Key Generation	Proof Efficiency	Assumptions
[ACSO2] Safe Primes			
[DK01]-Ad Hoc Assumptions		No Batching :(X
[FSO1] B-Rough			
[HMR19] Cut-and-Choose		. X	
This Work			

*[BDTZ16]: r-recovery, 2 rounds decryption

- QR_N is cyclic.
- ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 ...
 ...
- and a second a second as a second second

- QR_Nis cyclic.
- Almost every element is a generator.

the second se

- QR_Nis cyclic.
 - Almost every element is a generator.
 - For a small e if $x^e = 1 \mod (N^2) \rightarrow x = 1 \mod (N^2)$.

- QR_N is cyclic.
 - Almost every element is a generator.
 - For a small e if $x^e = 1 \mod (N^2) \rightarrow x = 1 \mod (N^2)$.
- Denote log_v(ct) = a. Specifically in the soundness proof we get x=ds/vk^a if x=1 the statement is correct.

So what's So great about Safe Primes? Nothing...

- QR_N is cyclic. GCD(P-1,Q-1)=2 is enough for this.
- Almost every element is a generator. There are Enough "Almost Generators".
- For a small e if $x^e=1 \mod (N^2) \rightarrow x=1 \mod (N^2)$. $x^e \eta = 1 \mod (N^2)$ gives either $x=1 \mod (N^2)$ or allows for factorization of N
- **The Main Point:** There exists bad statement an adversary may be able to prove but finding them reduces to factoring.

Factoring N in case $x \neq 1$

Factoring N

Case - 1

- 1 Factor e
- 2 Remove powers of 2 from e (terminates in an odd number or a square root and thus factoring).
- 3 Exponentiate to the odd factors of e until you get 1. Denote the last non one value as y.
- 4 Calculating GCD(y-1,N) will give a non-trivial factor.

Case - 2

1 Factor using Pollard's P-1 method

Alert! Alert! Non-Polynomial Reduction!!! This is not a drill! I repeat this is not a drill!

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 ...
 ...

Alert! Alert! Non-Polynomial Reduction!!! This is not a drill! I repeat this is not a drill!

κ=128 σ=40

n de la companya de l

Alert! Alert! Non-Polynomial Reduction!!! This is not a drill! I repeat this is not a drill!

 $\sigma = 4C$

κ=128 _____T(factor(e))≅42

.

Alert! Alert! Non-Polynomial Reduction!!! This is not a drill! I repeat this is not a drill!

κ=128 σ=40 T(factor(e))≅42 P(g is 2^σ-almost generator)≅1-2^σ

T(Pollard's P-1)≅40

 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

Alert! Alert! Non-Polynomial Reduction!!! This is not a drill! I repeat this is not a drill! σ=40 к=128 T(factor(e))=42 P(g is 2^{σ} -almost generator)=1- 2^{σ} T(Pollard's P-1)≅40

Practically this means factoring in very realistic times.

Moving to a Polynomial Reduction

- When forking send e, e+1, e+2... , $e+2/\epsilon$.
- Sample multiple bases and prove for each one to increase statistical security.

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Supporting Batching

- Batching works via the small exponents method, i.e creating a random linear transformation from the proofs.
- We use similar reduction techniques to prove its security.
- We show "round-by-round soundness" to avoid security loss in the Fiat-Shamir transformation.
- Batch Verification works similarly.

Implementation

dWallet Labs

Thank you for listening!

n de la companya de l

Thank you for listening!

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Is Paillier Still Relevant when Class Groups Exists?

- Simplicity = Security*
- Implemented for cryptographic use
- Well established RSA adjacent assumption (DCR)
- Every group element is a valid ciphertext
- Efficient hash to group