
FLI: Folding Lookup Instances
Albert Garreta, Nethermind Research

Joint work with Ignacio Manzur

2

Folding

2

Folding
• Fix a relation , consisting of pairs R (x; w)

2

Folding
• Fix a relation , consisting of pairs R (x; w)
• is a public instance, is a witnessx w

2

Folding

A folding scheme is an interactive protocol
between P and V where:

VP• Fix a relation , consisting of pairs R (x; w)
• is a public instance, is a witnessx w

2

Folding

A folding scheme is an interactive protocol
between P and V where:

(x1)
(x2)

(x1; w1)
(x2; w2)

VP

• P and V have two instances .x1, x2

• P also has witnesses such that
.
w1, w2

(x1; w1), (x2; w2) ∈ R

• Fix a relation , consisting of pairs R (x; w)
• is a public instance, is a witnessx w

2

Folding

A folding scheme is an interactive protocol
between P and V where:

(x1)
(x2)

(x1; w1)
(x2; w2)

VP

(x3; w3) (x3)

• P and V have two instances .x1, x2

• P also has witnesses such that
.
w1, w2

(x1; w1), (x2; w2) ∈ R
• P and V interact to create a new

so that:
(x3; w3)

• Fix a relation , consisting of pairs R (x; w)
• is a public instance, is a witnessx w

2

Folding

A folding scheme is an interactive protocol
between P and V where:

(x1)
(x2)

(x1; w1)
(x2; w2)

VP

(x3; w3) (x3)

• P and V have two instances .x1, x2

• P also has witnesses such that
.
w1, w2

(x1; w1), (x2; w2) ∈ R
• P and V interact to create a new

so that:
(x3; w3)

• If , then
, e.w.n.p.

(x3; w3) ∈ R
(x1; w1), (x2; w2) ∈ R

• Fix a relation , consisting of pairs R (x; w)
• is a public instance, is a witnessx w

2

Folding

A folding scheme is an interactive protocol
between P and V where:

(x1)
(x2)

(x1; w1)
(x2; w2)

VP

(x3; w3) (x3)

(x3; w3) ∈ R ⇔(e.w.n.p) {(x1; w1) ∈ R,
(x2; w2) ∈ R

• P and V have two instances .x1, x2

• P also has witnesses such that
.
w1, w2

(x1; w1), (x2; w2) ∈ R
• P and V interact to create a new

so that:
(x3; w3)

• If , then
, e.w.n.p.

(x3; w3) ∈ R
(x1; w1), (x2; w2) ∈ R

• Fix a relation , consisting of pairs R (x; w)
• is a public instance, is a witnessx w

3

Folding

3

Folding
• Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

 (x1; w1) ∈ R (x2; w2) ∈ R (x3; w3) ∈ RFold

3

Folding
• Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

 (x1; w1) ∈ R (x2; w2) ∈ R (x3; w3) ∈ RFold

• Commitments play a crucial role in folding schemes.

3

Folding
• Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

 (x1; w1) ∈ R (x2; w2) ∈ R (x3; w3) ∈ RFold

• Commitments play a crucial role in folding schemes.
• The instances all contain a commitment to , respectively. I.e. x1, x2, x3 w1, w2, w3

3

Folding
• Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

 (x1; w1) ∈ R (x2; w2) ∈ R (x3; w3) ∈ RFold

• Commitments play a crucial role in folding schemes.
• The instances all contain a commitment to , respectively. I.e. x1, x2, x3 w1, w2, w3

(xi; wi) = (x′ i, Com(wi); wi)

3

Folding
• Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

 (x1; w1) ∈ R (x2; w2) ∈ R (x3; w3) ∈ RFold

• Commitments play a crucial role in folding schemes.
• The instances all contain a commitment to , respectively. I.e. x1, x2, x3 w1, w2, w3

(xi; wi) = (x′ i, Com(wi); wi)

 (x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R (x3, cmw3; w3) ∈ R
Fold

3

Folding
• Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

 (x1; w1) ∈ R (x2; w2) ∈ R (x3; w3) ∈ RFold

• Commitments play a crucial role in folding schemes.
• The instances all contain a commitment to , respectively. I.e. x1, x2, x3 w1, w2, w3

(xi; wi) = (x′ i, Com(wi); wi)

 (x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R (x3, cmw3; w3) ∈ R
Fold

• Usually the commitment is homomorphic: cmw1+w2 = cmw1 + cmw2

4

Folding from 5000 km

4

Folding from 5000 km
• Fix , .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

4

Folding from 5000 km
• Fix , .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

VP

4

Folding from 5000 km
• Fix , .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

(x1, cmw1; w1)
(x2, cmw2; w2)

VP

4

Folding from 5000 km
• Fix , .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

(x1, cmw1)
(x2, cmw2)

(x1, cmw1; w1)
(x2, cmw2; w2)

VP

4

Folding from 5000 km
• Fix , .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

(x1, cmw1)
(x2, cmw2)

(x1, cmw1; w1)
(x2, cmw2; w2)

VP Exchange messages

4

Folding from 5000 km
• Fix , .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

(x1, cmw1)
(x2, cmw2)

(x1, cmw1; w1)
(x2, cmw2; w2)

VP Exchange messages

Uniformly sampled challenge α ∈ 𝔽

4

Folding from 5000 km
• Fix , .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

(x1, cmw1)
(x2, cmw2)

(x1, cmw1; w1)
(x2, cmw2; w2)

VP Exchange messages

Uniformly sampled challenge α ∈ 𝔽

(x3, cmw3; w3)

4

Folding from 5000 km
• Fix , .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

(x1, cmw1)
(x2, cmw2)

(x1, cmw1; w1)
(x2, cmw2; w2)

VP Exchange messages

Uniformly sampled challenge α ∈ 𝔽

• Where x3 = x1 + αx2 w3 = w1 + αw2

(x3, cmw3; w3)

4

Folding from 5000 km
• Fix , .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

(x1, cmw1)
(x2, cmw2)

(x1, cmw1; w1)
(x2, cmw2; w2)

VP Exchange messages

Uniformly sampled challenge α ∈ 𝔽

• Where x3 = x1 + αx2 w3 = w1 + αw2

• computes using that V cmw3 cmw1 + αcmw2 = cmw1+αw2

(x3, cmw3; w3)

4

Folding from 5000 km
• Fix , .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

(x1, cmw1)
(x2, cmw2)

(x1, cmw1; w1)
(x2, cmw2; w2)

VP Exchange messages

Uniformly sampled challenge α ∈ 𝔽

• Where x3 = x1 + αx2 w3 = w1 + αw2

• computes using that V cmw3 cmw1 + αcmw2 = cmw1+αw2

• (Disclaimer: this is an extremely simplified, technically incorrect, blueprint)

(x3, cmw3; w3)

Nova, R1CS, and other relations

Nova, R1CS, and other relations
• Folding schemes have become very popular since Nova (2021)

Nova, R1CS, and other relations
• Folding schemes have become very popular since Nova (2021)

• In Nova, are relaxed R1CS constraints of the form . Here
 are public matrices, is public, and is the witness.

R Az ∘ Bz = uCz + e
A, B, C ∈ 𝔽n×n u ∈ 𝔽 z, e ∈ 𝔽n

Nova, R1CS, and other relations
• Folding schemes have become very popular since Nova (2021)

• In Nova, are relaxed R1CS constraints of the form . Here
 are public matrices, is public, and is the witness.

R Az ∘ Bz = uCz + e
A, B, C ∈ 𝔽n×n u ∈ 𝔽 z, e ∈ 𝔽n

• One can design folding schemes for many other relations: HyperNova,
ProtoStar, ProtoGalaxy, NeutronNova, etc.

Nova, R1CS, and other relations
• Folding schemes have become very popular since Nova (2021)

• In Nova, are relaxed R1CS constraints of the form . Here
 are public matrices, is public, and is the witness.

R Az ∘ Bz = uCz + e
A, B, C ∈ 𝔽n×n u ∈ 𝔽 z, e ∈ 𝔽n

• One can design folding schemes for many other relations: HyperNova,
ProtoStar, ProtoGalaxy, NeutronNova, etc.

• For example, for lookup relations.

Nova, R1CS, and other relations
• Folding schemes have become very popular since Nova (2021)

• In Nova, are relaxed R1CS constraints of the form . Here
 are public matrices, is public, and is the witness.

R Az ∘ Bz = uCz + e
A, B, C ∈ 𝔽n×n u ∈ 𝔽 z, e ∈ 𝔽n

• One can design folding schemes for many other relations: HyperNova,
ProtoStar, ProtoGalaxy, NeutronNova, etc.

• For example, for lookup relations.

• A lookup relation for a set consists of pairs whereR S (Com(v); v)

Nova, R1CS, and other relations
• Folding schemes have become very popular since Nova (2021)

• In Nova, are relaxed R1CS constraints of the form . Here
 are public matrices, is public, and is the witness.

R Az ∘ Bz = uCz + e
A, B, C ∈ 𝔽n×n u ∈ 𝔽 z, e ∈ 𝔽n

• One can design folding schemes for many other relations: HyperNova,
ProtoStar, ProtoGalaxy, NeutronNova, etc.

• For example, for lookup relations.

• A lookup relation for a set consists of pairs whereR S (Com(v); v)

• v = (v1, …, vm) ∈ 𝔽m

Nova, R1CS, and other relations
• Folding schemes have become very popular since Nova (2021)

• In Nova, are relaxed R1CS constraints of the form . Here
 are public matrices, is public, and is the witness.

R Az ∘ Bz = uCz + e
A, B, C ∈ 𝔽n×n u ∈ 𝔽 z, e ∈ 𝔽n

• One can design folding schemes for many other relations: HyperNova,
ProtoStar, ProtoGalaxy, NeutronNova, etc.

• For example, for lookup relations.

• A lookup relation for a set consists of pairs whereR S (Com(v); v)

• v = (v1, …, vm) ∈ 𝔽m

• for all vi ∈ S i = 1,…, n .

Lookup argument

Lookup argument
• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

Lookup argument
• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• Examples:

Lookup argument
• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• Examples:

• When , the lookup proves all entries in are between and .S = [0,2128 − 1] v 0 2128

Lookup argument
• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• Examples:

• When , the lookup proves all entries in are between and .S = [0,2128 − 1] v 0 2128

• S = {(x | |y) ∣ x ∈ {0,1}n, y = SHA256(x)}

Lookup argument
• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• Examples:

• When , the lookup proves all entries in are between and .S = [0,2128 − 1] v 0 2128

• S = {(x | |y) ∣ x ∈ {0,1}n, y = SHA256(x)}

• Why do we need lookup arguments?

Lookup argument
• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• Examples:

• When , the lookup proves all entries in are between and .S = [0,2128 − 1] v 0 2128

• S = {(x | |y) ∣ x ∈ {0,1}n, y = SHA256(x)}

• Why do we need lookup arguments?

• The previous statements can be proved with a regular SNARK.

Lookup argument
• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• Examples:

• When , the lookup proves all entries in are between and .S = [0,2128 − 1] v 0 2128

• S = {(x | |y) ∣ x ∈ {0,1}n, y = SHA256(x)}

• Why do we need lookup arguments?

• The previous statements can be proved with a regular SNARK.

• However, arithmetizing it (i.e. writing it in Plonkish, R1CS, CCS, AIR
constraints) is really expensive.

Lookup argument
• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• Examples:

• When , the lookup proves all entries in are between and .S = [0,2128 − 1] v 0 2128

• S = {(x | |y) ∣ x ∈ {0,1}n, y = SHA256(x)}

• Why do we need lookup arguments?

• The previous statements can be proved with a regular SNARK.

• However, arithmetizing it (i.e. writing it in Plonkish, R1CS, CCS, AIR
constraints) is really expensive.

• Here “expensive" means that a huge circuit is required. E.g. SHA-256 requires
 constraints as R1CS.≈ 220

The FLI scheme

The FLI scheme
• Let be a lookup relation for a set , so RS S

The FLI scheme
• Let be a lookup relation for a set , so RS S

 RS = {(cmv; v) ∣ v ∈ 𝔽m, vi ∈ S ∀i}

The FLI scheme
• Let be a lookup relation for a set , so RS S

 RS = {(cmv; v) ∣ v ∈ 𝔽m, vi ∈ S ∀i}

• To simplify exposition, from now on we forget about commitments. We
write as .(cmv; v) ∈ RS v ⊆ S

The FLI scheme
• Let be a lookup relation for a set , so RS S

 RS = {(cmv; v) ∣ v ∈ 𝔽m, vi ∈ S ∀i}

• To simplify exposition, from now on we forget about commitments. We
write as .(cmv; v) ∈ RS v ⊆ S

• We have two lookup instances v1 ⊆ S, v2 ⊆ S .

The FLI scheme
• Let be a lookup relation for a set , so RS S

 RS = {(cmv; v) ∣ v ∈ 𝔽m, vi ∈ S ∀i}

• To simplify exposition, from now on we forget about commitments. We
write as .(cmv; v) ∈ RS v ⊆ S

• We have two lookup instances v1 ⊆ S, v2 ⊆ S .

• We want P and V to create a new instance so that v3 ⊆ S

The FLI scheme
• Let be a lookup relation for a set , so RS S

 RS = {(cmv; v) ∣ v ∈ 𝔽m, vi ∈ S ∀i}

• To simplify exposition, from now on we forget about commitments. We
write as .(cmv; v) ∈ RS v ⊆ S

• We have two lookup instances v1 ⊆ S, v2 ⊆ S .

• We want P and V to create a new instance so that v3 ⊆ S

v3 ⊆ S ⇔(e.w.n.p) v1 ⊆ S, v2 ⊆ S

The FLI scheme

The FLI scheme
• Note if and only if:v ⊆ S

The FLI scheme
• Note if and only if:v ⊆ S

• There is a matrix such that all its rows are elementary vectors.|v | × |S | M

The FLI scheme
• Note if and only if:v ⊆ S

• There is a matrix such that all its rows are elementary vectors.|v | × |S | M

Notation: .M ∈ Relem

The FLI scheme
• Note if and only if:v ⊆ S

• There is a matrix such that all its rows are elementary vectors.|v | × |S | M

Notation: .M ∈ Relem

• M ⋅ ST = vT

The FLI scheme
• Note if and only if:v ⊆ S

• There is a matrix such that all its rows are elementary vectors.|v | × |S | M

Notation: .M ∈ Relem

• M ⋅ ST = vT

• Elementary vector = all entries are 0 except for one entry, which is 1.

The FLI scheme
• Note if and only if:v ⊆ S

• There is a matrix such that all its rows are elementary vectors.|v | × |S | M

Notation: .M ∈ Relem

• M ⋅ ST = vT

• Elementary vector = all entries are 0 except for one entry, which is 1.

• Example: , , then S = (1,2,3,4) v = (4,2)

The FLI scheme
• Note if and only if:v ⊆ S

• There is a matrix such that all its rows are elementary vectors.|v | × |S | M

Notation: .M ∈ Relem

• M ⋅ ST = vT

• Elementary vector = all entries are 0 except for one entry, which is 1.

• Example: , , then S = (1,2,3,4) v = (4,2)

 (0 0 0 1
0 1 0 0)

1
2
3
4

= (4
2) M ⋅ ST = vT

The FLI scheme
• Note if and only if:v ⊆ S

• There is a matrix such that all its rows are elementary vectors.|v | × |S | M

Notation: .M ∈ Relem

• M ⋅ ST = vT

• Elementary vector = all entries are 0 except for one entry, which is 1.

• Example: , , then S = (1,2,3,4) v = (4,2)

 (0 0 0 1
0 1 0 0)

1
2
3
4

= (4
2) M ⋅ ST = vT

• Simply, the row of indicates a position of that equals i − th M S vi

The FLI scheme 🛫

The FLI scheme 🛫
 Relem = { |v | × |S | matrices all whose rows are elementary vectors}

The FLI scheme 🛫
 Relem = { |v | × |S | matrices all whose rows are elementary vectors}

• We can replace the claim by “there exists s.t. .v ⊆ S M ∈ Relem M ⋅ ST = vT

The FLI scheme 🛫
 Relem = { |v | × |S | matrices all whose rows are elementary vectors}

• We can replace the claim by “there exists s.t. .v ⊆ S M ∈ Relem M ⋅ ST = vT

• Then to fold two claims

The FLI scheme 🛫
 Relem = { |v | × |S | matrices all whose rows are elementary vectors}

• We can replace the claim by “there exists s.t. .v ⊆ S M ∈ Relem M ⋅ ST = vT

• Then to fold two claims

 (*)
v1 ⊆ S, v2 ⊆ S

(⇔ ∃M1, M2; M1 ⋅ ST = vT
1 , M2 ⋅ ST = vT

2 , M1, M2 ∈ Relem)

The FLI scheme 🛫
 Relem = { |v | × |S | matrices all whose rows are elementary vectors}

• We can replace the claim by “there exists s.t. .v ⊆ S M ∈ Relem M ⋅ ST = vT

• Then to fold two claims

 (*)
v1 ⊆ S, v2 ⊆ S

(⇔ ∃M1, M2; M1 ⋅ ST = vT
1 , M2 ⋅ ST = vT

2 , M1, M2 ∈ Relem)
• V sends a random element , and the claim (*) is reduced to α ∈ 𝔽

The FLI scheme 🛫
 Relem = { |v | × |S | matrices all whose rows are elementary vectors}

• We can replace the claim by “there exists s.t. .v ⊆ S M ∈ Relem M ⋅ ST = vT

• Then to fold two claims

 (*)
v1 ⊆ S, v2 ⊆ S

(⇔ ∃M1, M2; M1 ⋅ ST = vT
1 , M2 ⋅ ST = vT

2 , M1, M2 ∈ Relem)
• V sends a random element , and the claim (*) is reduced to α ∈ 𝔽

 (**)(M1 + αM2) ⋅ ST = (v1 + αv2)T, M1, M2 ∈ Relem

The FLI scheme 🛫
 Relem = { |v | × |S | matrices all whose rows are elementary vectors}

• We can replace the claim by “there exists s.t. .v ⊆ S M ∈ Relem M ⋅ ST = vT

• Then to fold two claims

 (*)
v1 ⊆ S, v2 ⊆ S

(⇔ ∃M1, M2; M1 ⋅ ST = vT
1 , M2 ⋅ ST = vT

2 , M1, M2 ∈ Relem)
• V sends a random element , and the claim (*) is reduced to α ∈ 𝔽

 (**)(M1 + αM2) ⋅ ST = (v1 + αv2)T, M1, M2 ∈ Relem

• It can be seen that, with high probability (over the choice of), (*) holds if
and only if (**) holds.

α

The FLI scheme 🛫

The FLI scheme 🛫
 (**)(M1 + αM2) ⋅ ST = (v1 + αv2)T, M1, M2 ∈ Relem

The FLI scheme 🛫
 (**)(M1 + αM2) ⋅ ST = (v1 + αv2)T, M1, M2 ∈ Relem

• (**) is barely better than our initial claim (*). The issue is that we have two
hanging claims and . M1 ∈ Relem M2 ∈ Relem

The FLI scheme 🛫
 (**)(M1 + αM2) ⋅ ST = (v1 + αv2)T, M1, M2 ∈ Relem

• (**) is barely better than our initial claim (*). The issue is that we have two
hanging claims and . M1 ∈ Relem M2 ∈ Relem

• The next step consists in folding these two claims.

The FLI scheme 🛫
 (**)(M1 + αM2) ⋅ ST = (v1 + αv2)T, M1, M2 ∈ Relem

• (**) is barely better than our initial claim (*). The issue is that we have two
hanging claims and . M1 ∈ Relem M2 ∈ Relem

• The next step consists in folding these two claims.

• The idea is to define algebraically as follows:
A matrix belongs to if and only:

Relem
M Relem

The FLI scheme 🛫
 (**)(M1 + αM2) ⋅ ST = (v1 + αv2)T, M1, M2 ∈ Relem

• (**) is barely better than our initial claim (*). The issue is that we have two
hanging claims and . M1 ∈ Relem M2 ∈ Relem

• The next step consists in folding these two claims.

• The idea is to define algebraically as follows:
A matrix belongs to if and only:

Relem
M Relem

• for all entries of . This ensures contains only or ’s.M2
ij = Mij Mij M M 0 1

The FLI scheme 🛫
 (**)(M1 + αM2) ⋅ ST = (v1 + αv2)T, M1, M2 ∈ Relem

• (**) is barely better than our initial claim (*). The issue is that we have two
hanging claims and . M1 ∈ Relem M2 ∈ Relem

• The next step consists in folding these two claims.

• The idea is to define algebraically as follows:
A matrix belongs to if and only:

Relem
M Relem

• for all entries of . This ensures contains only or ’s.M2
ij = Mij Mij M M 0 1

• . With the above, this ensures each row contains exactly one .M ⋅ 1T = 1T 1

The FLI scheme 🛫

The FLI scheme 🛫
• M ∈ Relem iff M2

ij = Mij, M ⋅ 1T = 1T .

The FLI scheme 🛫
• M ∈ Relem iff M2

ij = Mij, M ⋅ 1T = 1T .

• The RHS above is roughly a R1CS constraint where the witness vector is the
matrix .M

The FLI scheme 🛫
• M ∈ Relem iff M2

ij = Mij, M ⋅ 1T = 1T .

• The RHS above is roughly a R1CS constraint where the witness vector is the
matrix .M

• Accordingly, we can fold the statements using a Nova-
type approach.

M1 ∈ Relem, M2 ∈ Relem

The FLI scheme 🛫
• M ∈ Relem iff M2

ij = Mij, M ⋅ 1T = 1T .

• The RHS above is roughly a R1CS constraint where the witness vector is the
matrix .M

• Accordingly, we can fold the statements using a Nova-
type approach.

M1 ∈ Relem, M2 ∈ Relem

• The final folded instance has the form :

The FLI scheme 🛫
• M ∈ Relem iff M2

ij = Mij, M ⋅ 1T = 1T .

• The RHS above is roughly a R1CS constraint where the witness vector is the
matrix .M

• Accordingly, we can fold the statements using a Nova-
type approach.

M1 ∈ Relem, M2 ∈ Relem

• The final folded instance has the form :

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem−relaxed

The FLI scheme 🛫
• M ∈ Relem iff M2

ij = Mij, M ⋅ 1T = 1T .

• The RHS above is roughly a R1CS constraint where the witness vector is the
matrix .M

• Accordingly, we can fold the statements using a Nova-
type approach.

M1 ∈ Relem, M2 ∈ Relem

• The final folded instance has the form :

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem−relaxed

• is a “relaxed version” of , similar to a relaxed R1CS.Relem−relaxed Relem

The FLI scheme 🛫
• M ∈ Relem iff M2

ij = Mij, M ⋅ 1T = 1T .

• The RHS above is roughly a R1CS constraint where the witness vector is the
matrix .M

• Accordingly, we can fold the statements using a Nova-
type approach.

M1 ∈ Relem, M2 ∈ Relem

• The final folded instance has the form :

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem−relaxed

• is a “relaxed version” of , similar to a relaxed R1CS.Relem−relaxed Relem

• Leveraging the sparseness of the overall cost for P and V is similar to
Nova on witnesses of size

Mi
|vi |

A caveat

A caveat
• We reduced from toM1 ⋅ ST = vT

1 , M2 ⋅ ST = vT
2 , M1, M2 ∈ Relem

A caveat
• We reduced from toM1 ⋅ ST = vT

1 , M2 ⋅ ST = vT
2 , M1, M2 ∈ Relem

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem

A caveat
• We reduced from toM1 ⋅ ST = vT

1 , M2 ⋅ ST = vT
2 , M1, M2 ∈ Relem

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem

• While are highly sparse matrices, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

M1, M2 M1 + αM2

A caveat
• We reduced from toM1 ⋅ ST = vT

1 , M2 ⋅ ST = vT
2 , M1, M2 ∈ Relem

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem

• While are highly sparse matrices, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

M1, M2 M1 + αM2

Mfold ⋅ ST = vT
fold, Mfold ∈ Relem

A caveat
• We reduced from toM1 ⋅ ST = vT

1 , M2 ⋅ ST = vT
2 , M1, M2 ∈ Relem

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem

• While are highly sparse matrices, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

M1, M2 M1 + αM2

Mfold ⋅ ST = vT
fold, Mfold ∈ Relem

for a dense matrix.Mfold |v | ⋅ |S |

A caveat
• We reduced from toM1 ⋅ ST = vT

1 , M2 ⋅ ST = vT
2 , M1, M2 ∈ Relem

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem

• While are highly sparse matrices, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

M1, M2 M1 + αM2

Mfold ⋅ ST = vT
fold, Mfold ∈ Relem

for a dense matrix.Mfold |v | ⋅ |S |

• Hence, proving the folded statement could be very expensive.

A caveat
• We reduced from toM1 ⋅ ST = vT

1 , M2 ⋅ ST = vT
2 , M1, M2 ∈ Relem

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem

• While are highly sparse matrices, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

M1, M2 M1 + αM2

Mfold ⋅ ST = vT
fold, Mfold ∈ Relem

for a dense matrix.Mfold |v | ⋅ |S |

• Hence, proving the folded statement could be very expensive.

• We use the concept of SOS-decomposability (Lasso) to reduce to in
exchange for doing “ small folds per folding step”.

|S | |S |1/c

c

A caveat
• We reduced from toM1 ⋅ ST = vT

1 , M2 ⋅ ST = vT
2 , M1, M2 ∈ Relem

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem

• While are highly sparse matrices, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

M1, M2 M1 + αM2

Mfold ⋅ ST = vT
fold, Mfold ∈ Relem

for a dense matrix.Mfold |v | ⋅ |S |

• Hence, proving the folded statement could be very expensive.

• We use the concept of SOS-decomposability (Lasso) to reduce to in
exchange for doing “ small folds per folding step”.

|S | |S |1/c

c

• Note: Any other scheme working with huge SOS-dec. tables needs also to increase
the number of folds per step by (though can be taken smaller), and FLI can make
this step with less commitment costs.

c c

Large tables and SOS decomposability

Large tables and SOS decomposability
• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements is SOS

decomposable if its elements can be written as algebraic expressions involving
smaller sets.

S

Large tables and SOS decomposability
• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements is SOS

decomposable if its elements can be written as algebraic expressions involving
smaller sets.

S

• Example: . Note we can’t even store in memory.S = {0,1,…,2128 − 1} S

Large tables and SOS decomposability
• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements is SOS

decomposable if its elements can be written as algebraic expressions involving
smaller sets.

S

• Example: . Note we can’t even store in memory.S = {0,1,…,2128 − 1} S

• An element belongs to if and only ifx S

Large tables and SOS decomposability
• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements is SOS

decomposable if its elements can be written as algebraic expressions involving
smaller sets.

S

• Example: . Note we can’t even store in memory.S = {0,1,…,2128 − 1} S

• An element belongs to if and only ifx S

 (*)x = x1 + 232x2 + 264x3 + 296x4

Large tables and SOS decomposability
• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements is SOS

decomposable if its elements can be written as algebraic expressions involving
smaller sets.

S

• Example: . Note we can’t even store in memory.S = {0,1,…,2128 − 1} S

• An element belongs to if and only ifx S

 (*)x = x1 + 232x2 + 264x3 + 296x4

 And for all , where .xi ∈ S′ i S′ = {0,…,232 − 1}

Large tables and SOS decomposability
• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements is SOS

decomposable if its elements can be written as algebraic expressions involving
smaller sets.

S

• Example: . Note we can’t even store in memory.S = {0,1,…,2128 − 1} S

• An element belongs to if and only ifx S

 (*)x = x1 + 232x2 + 264x3 + 296x4

 And for all , where .xi ∈ S′ i S′ = {0,…,232 − 1}

• Hence, to prove , one can prove (*) and then prove , x ∈ S xi ∈ S′ i = 1,2,3,4

Large tables and SOS decomposability
• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements is SOS

decomposable if its elements can be written as algebraic expressions involving
smaller sets.

S

• Example: . Note we can’t even store in memory.S = {0,1,…,2128 − 1} S

• An element belongs to if and only ifx S

 (*)x = x1 + 232x2 + 264x3 + 296x4

 And for all , where .xi ∈ S′ i S′ = {0,…,232 − 1}

• Hence, to prove , one can prove (*) and then prove , x ∈ S xi ∈ S′ i = 1,2,3,4

• This is good because: (*) is very simple; and is small: S′ |S′ | = 232

Large tables and SOS decomposability
• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements is SOS

decomposable if its elements can be written as algebraic expressions involving
smaller sets.

S

• Example: . Note we can’t even store in memory.S = {0,1,…,2128 − 1} S

• An element belongs to if and only ifx S

 (*)x = x1 + 232x2 + 264x3 + 296x4

 And for all , where .xi ∈ S′ i S′ = {0,…,232 − 1}

• Hence, to prove , one can prove (*) and then prove , x ∈ S xi ∈ S′ i = 1,2,3,4

• This is good because: (*) is very simple; and is small: S′ |S′ | = 232

• We can actually make the as small as wanted by making (*) longer.S′

Large tables and SOS decomposability
• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements is SOS

decomposable if its elements can be written as algebraic expressions involving
smaller sets.

S

• Example: . Note we can’t even store in memory.S = {0,1,…,2128 − 1} S

• An element belongs to if and only ifx S

 (*)x = x1 + 232x2 + 264x3 + 296x4

 And for all , where .xi ∈ S′ i S′ = {0,…,232 − 1}

• Hence, to prove , one can prove (*) and then prove , x ∈ S xi ∈ S′ i = 1,2,3,4

• This is good because: (*) is very simple; and is small: S′ |S′ | = 232

• We can actually make the as small as wanted by making (*) longer.S′

• Jolt (Arun et al. 2023): Many ’s of interest are SOS-dec. E.g. RISC-V instructionsS

Thanks!

FLI and SOS decomposition

FLI and SOS decomposition
• Let’s take S = {0,1,…,232 − 1}

FLI and SOS decomposition
• Let’s take S = {0,1,…,232 − 1}

• An element belongs to if and only if (*)x S x = x1 + 216x2

FLI and SOS decomposition
• Let’s take S = {0,1,…,232 − 1}

• An element belongs to if and only if (*)x S x = x1 + 216x2

 And for all , where .xi ∈ S′ i S′ = {0,…,216 − 1}

FLI and SOS decomposition
• Let’s take S = {0,1,…,232 − 1}

• An element belongs to if and only if (*)x S x = x1 + 216x2

 And for all , where .xi ∈ S′ i S′ = {0,…,216 − 1}

• Say we want to prove . Equivalenty that for some .v ⊆ S M ⋅ ST = vT M ∈ Relem

FLI and SOS decomposition
• Let’s take S = {0,1,…,232 − 1}

• An element belongs to if and only if (*)x S x = x1 + 216x2

 And for all , where .xi ∈ S′ i S′ = {0,…,216 − 1}

• Say we want to prove . Equivalenty that for some .v ⊆ S M ⋅ ST = vT M ∈ Relem

• Following (*), we can write as v ⊆ S

FLI and SOS decomposition
• Let’s take S = {0,1,…,232 − 1}

• An element belongs to if and only if (*)x S x = x1 + 216x2

 And for all , where .xi ∈ S′ i S′ = {0,…,216 − 1}

• Say we want to prove . Equivalenty that for some .v ⊆ S M ⋅ ST = vT M ∈ Relem

• Following (*), we can write as v ⊆ S

• for vectors . v = v(1) + 216v(2) v(1), v(2)

FLI and SOS decomposition
• Let’s take S = {0,1,…,232 − 1}

• An element belongs to if and only if (*)x S x = x1 + 216x2

 And for all , where .xi ∈ S′ i S′ = {0,…,216 − 1}

• Say we want to prove . Equivalenty that for some .v ⊆ S M ⋅ ST = vT M ∈ Relem

• Following (*), we can write as v ⊆ S

• for vectors . v = v(1) + 216v(2) v(1), v(2)

• , for v(i) ⊆ S′ ⇔ Mi ⋅ S′
T = v(i)T, Mi ∈ Relem i = 1,2.

FLI and SOS decomposition
• Let’s take S = {0,1,…,232 − 1}

• An element belongs to if and only if (*)x S x = x1 + 216x2

 And for all , where .xi ∈ S′ i S′ = {0,…,216 − 1}

• Say we want to prove . Equivalenty that for some .v ⊆ S M ⋅ ST = vT M ∈ Relem

• Following (*), we can write as v ⊆ S

• for vectors . v = v(1) + 216v(2) v(1), v(2)

• , for v(i) ⊆ S′ ⇔ Mi ⋅ S′
T = v(i)T, Mi ∈ Relem i = 1,2.

• These conditions are equivalent to and v = (M1 ⋅ S′) + 216(M2 ⋅ S′) M1, M2 ∈ Relem

FLI and SOS decomposition
• Let’s take S = {0,1,…,232 − 1}

• An element belongs to if and only if (*)x S x = x1 + 216x2

 And for all , where .xi ∈ S′ i S′ = {0,…,216 − 1}

• Say we want to prove . Equivalenty that for some .v ⊆ S M ⋅ ST = vT M ∈ Relem

• Following (*), we can write as v ⊆ S

• for vectors . v = v(1) + 216v(2) v(1), v(2)

• , for v(i) ⊆ S′ ⇔ Mi ⋅ S′
T = v(i)T, Mi ∈ Relem i = 1,2.

• These conditions are equivalent to and v = (M1 ⋅ S′) + 216(M2 ⋅ S′) M1, M2 ∈ Relem

• We now use a Hypernova-style sumcheck to reduce the equality to two linear
equalities, plus . Then we perform folding similarly as before.M1, M2 ∈ Relem

FLI and other folding schemes

FLI and other folding schemes
• Overall, FLI has the cheapest folding Prover and Verfier we are aware of.

FLI and other folding schemes
• Overall, FLI has the cheapest folding Prover and Verfier we are aware of.

• However, when doing many foldings, it works with a dense witness.|v | ⋅ |S |

FLI and other folding schemes
• Overall, FLI has the cheapest folding Prover and Verfier we are aware of.

• However, when doing many foldings, it works with a dense witness.|v | ⋅ |S |

• If is SOS decomposable, roughly: S

FLI and other folding schemes
• Overall, FLI has the cheapest folding Prover and Verfier we are aware of.

• However, when doing many foldings, it works with a dense witness.|v | ⋅ |S |

• If is SOS decomposable, roughly: S

• We turn each folding step into folding steps.c

FLI and other folding schemes
• Overall, FLI has the cheapest folding Prover and Verfier we are aware of.

• However, when doing many foldings, it works with a dense witness.|v | ⋅ |S |

• If is SOS decomposable, roughly: S

• We turn each folding step into folding steps.c

• Then when proving a folded instance, we work with -sized
witness.

|v | ⋅ |S |1/c

FLI and other folding schemes
• Overall, FLI has the cheapest folding Prover and Verfier we are aware of.

• However, when doing many foldings, it works with a dense witness.|v | ⋅ |S |

• If is SOS decomposable, roughly: S

• We turn each folding step into folding steps.c

• Then when proving a folded instance, we work with -sized
witness.

|v | ⋅ |S |1/c

• FLI can leverage SOS decomposability of with much less field operations
and commitments than other schemes: Protostar (Bünz, Biny Chen, 2023) ,
Proofs for Deep Thougth (Bünz, Jessica Chen, 2024), NeutronNova
(Kothapally, Setty, 2024)

S

New trends in the zk world: SOS decomposition

New trends in the zk world: SOS decomposition
• In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are

SOS decomposable.

New trends in the zk world: SOS decomposition
• In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are

SOS decomposable.

• Namely, those capturing the RISC-V instructions.

New trends in the zk world: SOS decomposition
• In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are

SOS decomposable.

• Namely, those capturing the RISC-V instructions.

• They propose building a zkVM that proves computations using the Lasso
lookup, exploiting the SOS-decomposability of the RISC-V tables.

New trends in the zk world: SOS decomposition
• In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are

SOS decomposable.

• Namely, those capturing the RISC-V instructions.

• They propose building a zkVM that proves computations using the Lasso
lookup, exploiting the SOS-decomposability of the RISC-V tables.

• Roughly, a RISC-V table has the form

New trends in the zk world: SOS decomposition
• In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are

SOS decomposable.

• Namely, those capturing the RISC-V instructions.

• They propose building a zkVM that proves computations using the Lasso
lookup, exploiting the SOS-decomposability of the RISC-V tables.

• Roughly, a RISC-V table has the form

S = {(x | |y | |z) ∣ (x, y) input to an instruction, z output}

New trends in the zk world: SOS decomposition
• In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are

SOS decomposable.

• Namely, those capturing the RISC-V instructions.

• They propose building a zkVM that proves computations using the Lasso
lookup, exploiting the SOS-decomposability of the RISC-V tables.

• Roughly, a RISC-V table has the form

S = {(x | |y | |z) ∣ (x, y) input to an instruction, z output}

• Example: An instruction could be bitwise XOR of 64-bit strings. Then
.|S | = 23⋅64 = 2192

Handling very large computations in Jolt ⚡

Handling very large computations in Jolt ⚡
• Jolt targets proving computations with instructions.224

Handling very large computations in Jolt ⚡
• Jolt targets proving computations with instructions.224

• This means Jolt must prove a lookup instance where is gigantic
(concatenation of all instruction tables) and SOS decomposable.

v ⊆ S S

Handling very large computations in Jolt ⚡
• Jolt targets proving computations with instructions.224

• This means Jolt must prove a lookup instance where is gigantic
(concatenation of all instruction tables) and SOS decomposable.

v ⊆ S S

• It’s currently unfeasible to do that in a single shot, due to memory constraints.

Handling very large computations in Jolt ⚡
• Jolt targets proving computations with instructions.224

• This means Jolt must prove a lookup instance where is gigantic
(concatenation of all instruction tables) and SOS decomposable.

v ⊆ S S

• It’s currently unfeasible to do that in a single shot, due to memory constraints.

• Because of this, the Jolt team proposes to:

Handling very large computations in Jolt ⚡
• Jolt targets proving computations with instructions.224

• This means Jolt must prove a lookup instance where is gigantic
(concatenation of all instruction tables) and SOS decomposable.

v ⊆ S S

• It’s currently unfeasible to do that in a single shot, due to memory constraints.

• Because of this, the Jolt team proposes to:

1. Split the lookup into, say, lookups , where 25 v1 ⊆ S, …, v25 ⊆ S |vi | = 219

Handling very large computations in Jolt ⚡
• Jolt targets proving computations with instructions.224

• This means Jolt must prove a lookup instance where is gigantic
(concatenation of all instruction tables) and SOS decomposable.

v ⊆ S S

• It’s currently unfeasible to do that in a single shot, due to memory constraints.

• Because of this, the Jolt team proposes to:

1. Split the lookup into, say, lookups , where 25 v1 ⊆ S, …, v25 ⊆ S |vi | = 219

2. Either:

Handling very large computations in Jolt ⚡
• Jolt targets proving computations with instructions.224

• This means Jolt must prove a lookup instance where is gigantic
(concatenation of all instruction tables) and SOS decomposable.

v ⊆ S S

• It’s currently unfeasible to do that in a single shot, due to memory constraints.

• Because of this, the Jolt team proposes to:

1. Split the lookup into, say, lookups , where 25 v1 ⊆ S, …, v25 ⊆ S |vi | = 219

2. Either:

• Prove each lookup and then create a recursive proof.

Handling very large computations in Jolt ⚡
• Jolt targets proving computations with instructions.224

• This means Jolt must prove a lookup instance where is gigantic
(concatenation of all instruction tables) and SOS decomposable.

v ⊆ S S

• It’s currently unfeasible to do that in a single shot, due to memory constraints.

• Because of this, the Jolt team proposes to:

1. Split the lookup into, say, lookups , where 25 v1 ⊆ S, …, v25 ⊆ S |vi | = 219

2. Either:

• Prove each lookup and then create a recursive proof.

• Fold the lookups and then prove the folded claim.25

