FLI: Folding Lookup Instances

Albert Garreta, Nethermind Research Joint work with Ignacio Manzur

NETHERMIND RESEARCH

2

• Fix a relation R, consisting of pairs (x; w)

- Fix a relation R, consisting of pairs (x; w)
- *x* is a public instance, *w* is a witness

- Fix a relation R, consisting of pairs (x; w)
- *x* is a public instance, *w* is a witness

A folding scheme is an interactive protocol between P and V where:

- Fix a relation R, consisting of pairs (x; w)
- *x* is a public instance, *w* is a witness

- P and V have two instances x_1, x_2 .
- P also has witnesses w_1, w_2 such that $(x_1; w_1), (x_2; w_2) \in R.$

 $(x_1; w_1)$ $(x_2; w_2)$

- Fix a relation R, consisting of pairs (x; w)
- *x* is a public instance, *w* is a witness

- P and V have two instances x_1, x_2 .
- P also has witnesses w_1, w_2 such that $(x_1; w_1), (x_2; w_2) \in R.$
- P and V interact to create a new $(x_3; w_3)$ so that:

- Fix a relation R, consisting of pairs (x; w)
- *x* is a public instance, *w* is a witness

- P and V have two instances x_1, x_2 .
- P also has witnesses w_1, w_2 such that $(x_1; w_1), (x_2; w_2) \in R.$
- P and V interact to create a new $(x_3; w_3)$ so that:
- If $(x_3; w_3) \in R$, then $(x_1; w_1), (x_2; w_2) \in R$, e.w.n.p.

- Fix a relation R, consisting of pairs (x; w)
- *x* is a public instance, *w* is a witness

- P and V have two instances x_1, x_2 .
- P also has witnesses w_1, w_2 such that $(x_1; w_1), (x_2; w_2) \in R.$
- P and V interact to create a new $(x_3; w_3)$ so that:
- If $(x_3; w_3) \in \mathbb{R}$, then $(x_1; w_1), (x_2; w_2) \in R$, e.w.n.p.

$$(x_1; w_1) \in R$$

$$(x_2; w_2) \in R$$

Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

$$(x_1; w_1) \in R$$

$$(x_2; w_2) \in R$$

• Commitments play a crucial role in folding schemes.

Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

Fold $(x_3; w_3) \in R$

$$(x_1; w_1) \in R$$

$$(x_2; w_2) \in R$$

- Commitments play a crucial role in folding schemes.
- The instances x_1, x_2, x_3 all contain a commitment to w_1, w_2, w_3 , respectively. I.e.

Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

Fold

 $(x_3; w_3) \in R$

$$(x_1; w_1) \in R$$

$$(x_2; w_2) \in R$$

- Commitments play a crucial role in folding schemes.
- The instances x_1, x_2, x_3 all contain a commitment to w_1, w_2, w_3 , respectively. I.e.

Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

Fold

 $(x_3; w_3) \in R$

 $(x_i; w_i) = (x'_i, Com(w_i); w_i)$

$$(x_1; w_1) \in R$$

$$(x_2; w_2) \in R$$

- Commitments play a crucial role in folding schemes.
- The instances x_1, x_2, x_3 all contain a commitment to w_1, w_2, w_3 , respectively. I.e.

$$(x_i; w_i) = (x'_i,$$

$$(x_1, \operatorname{cm}_{w_1}; w_1) \in R$$

$$(x_2, cm_{w_2}; w_2) \in$$

Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

Fold

 $(x_3; w_3) \in R$

 $Com(w_i); w_i)$

 $\in R$

$$(x_3, \operatorname{cm}_{w_3}; w_3) \in R$$

$$(x_1; w_1) \in R$$

$$(x_2; w_2) \in R$$

- Commitments play a crucial role in folding schemes.
- The instances x_1, x_2, x_3 all contain a commitment to w_1, w_2, w_3 , respectively. I.e.

$$(x_i; w_i) = (x'_i,$$

$$(x_2, cm_{w_2}; w_2) \in$$

• Usually the commitment is homomorphic: $cm_{w_1+w_2} = cm_{w_1} + cm_{w_2}$

$$(x_1, \operatorname{cm}_{w_1}; w_1) \in R$$

Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

Fold

$$(x_3; w_3) \in R$$

 $Com(w_i); w_i)$

 $(x_1, \operatorname{cm}_{w_1}; w_1) \in R, \quad (x_2, \operatorname{cm}_{w_2}; w_2) \in R.$ • Fix

Exchange messages

 $(x_1, \operatorname{cm}_{w_1}; w_1) \in R, \quad (x_2, \operatorname{cm}_{w_2}; w_2) \in R.$ • Fix

Exchange messages

Uniformly sampled challenge $\alpha \in \mathbb{F}$

 $(x_1, \operatorname{cm}_{w_1})$ $(x_2, \operatorname{cm}_{w_2})$

 $(x_1, \operatorname{cm}_{w_1}; w_1) \in R, \quad (x_2, \operatorname{cm}_{w_2}; w_2) \in R.$ • Fix

Exchange messages

Uniformly sampled challenge $\alpha \in \mathbb{F}$

 $(x_3, cm_{w_3}; w_3)$

 (x_1, Cm_{w_1}) (x_2, Cm_{w_2})

• Fix $(x_1, cm_{w_1}; w_1) \in R$, (

• Where $x_3 = x_1 + \alpha x_2$ $w_3 = x_1 + \alpha x_2$

 $(x_2, \operatorname{cm}_{w_2}; w_2) \in R.$

Exchange messages

Uniformly sampled challenge $\alpha \in \mathbb{F}$

 \checkmark

 $(x_3, cm_{w_3}; w_3)$

 $w_3 = w_1 + \alpha w_2$

 $(x_1, \operatorname{cm}_{w_1}; w_1) \in R, \quad (x_2, \operatorname{cm}_{w_2}; w_2) \in R.$ • Fix

- Where $x_3 = x_1 + \alpha x_2$ $w_3 = w_1 + \alpha w_2$
- V computes cm_{W_3} using that $\operatorname{cm}_{W_1} + \alpha \operatorname{cm}_{W_2} = cm_{W_1 + \alpha W_2}$

Exchange messages

Uniformly sampled challenge $\alpha \in \mathbb{F}$

 $(x_3, cm_{w_3}; w_3)$

 $(x_1, \operatorname{cm}_{w_1}; w_1) \in R, \quad (x_2, \operatorname{cm}_{w_2}; w_2) \in R.$ • Fix

- Where $x_3 = x_1 + \alpha x_2$ $w_3 = w_1 + \alpha w_2$
- V computes cm_{W_3} using that $\operatorname{cm}_{W_1} + \alpha \operatorname{cm}_{W_2} = cm_{W_1 + \alpha W_2}$
- (Disclaimer: this is an extremely simplified, technically incorrect, blueprint)

Exchange messages

Uniformly sampled challenge $\alpha \in \mathbb{F}$

 $(x_3, cm_{w_3}; w_3)$

 $(x_1, \operatorname{Cm}_{w_1})$

 (x_2, CM_{w_2})

Folding schemes have become very popular since Nova (2021)

- Folding schemes have become very popular since Nova (2021)
- In Nova, *R* are relaxed R1CS constraints of the form $A\mathbf{z} \circ B\mathbf{z} = uC\mathbf{z} + \mathbf{e}$. Here $A, B, C \in \mathbb{F}^{n \times n}$ are public matrices, $u \in \mathbb{F}$ is public, and $\mathbf{z}, \mathbf{e} \in \mathbb{F}^{n}$ is the witness.

- Folding schemes have become very popular since Nova (2021)
- In Nova, *R* are relaxed R1CS constraints of the form $A\mathbf{z} \circ B\mathbf{z} = uC\mathbf{z} + \mathbf{e}$. Here $A, B, C \in \mathbb{F}^{n \times n}$ are public matrices, $u \in \mathbb{F}$ is public, and $\mathbf{z}, \mathbf{e} \in \mathbb{F}^{n}$ is the witness.
- One can design folding schemes for many other relations: HyperNova, ProtoStar, ProtoGalaxy, NeutronNova, etc.

- Folding schemes have become very popular since Nova (2021)
- In Nova, *R* are relaxed R1CS constraints of the form $A\mathbf{z} \circ B\mathbf{z} = uC\mathbf{z} + \mathbf{e}$. Here $A, B, C \in \mathbb{F}^{n \times n}$ are public matrices, $u \in \mathbb{F}$ is public, and $\mathbf{z}, \mathbf{e} \in \mathbb{F}^{n}$ is the witness.
- One can design folding schemes for many other relations: HyperNova, ProtoStar, ProtoGalaxy, NeutronNova, etc.
- For example, for lookup relations.

- Folding schemes have become very popular since Nova (2021)
- In Nova, *R* are relaxed R1CS constraints of the form $A\mathbf{z} \circ B\mathbf{z} = uC\mathbf{z} + \mathbf{e}$. Here $A, B, C \in \mathbb{F}^{n \times n}$ are public matrices, $u \in \mathbb{F}$ is public, and $\mathbf{z}, \mathbf{e} \in \mathbb{F}^{n}$ is the witness.
- One can design folding schemes for many other relations: HyperNova, ProtoStar, ProtoGalaxy, NeutronNova, etc.
- For example, for lookup relations.
- A lookup relation *R* for a set *S* consists of pairs (Com(*v*); *v*) where

- Folding schemes have become very popular since Nova (2021)
- In Nova, *R* are relaxed R1CS constraints of the form $A\mathbf{z} \circ B\mathbf{z} = uC\mathbf{z} + \mathbf{e}$. Here $A, B, C \in \mathbb{F}^{n \times n}$ are public matrices, $u \in \mathbb{F}$ is public, and $\mathbf{z}, \mathbf{e} \in \mathbb{F}^{n}$ is the witness.
- One can design folding schemes for many other relations: HyperNova, ProtoStar, ProtoGalaxy, NeutronNova, etc.
- For example, for lookup relations.
- A lookup relation *R* for a set *S* consists of pairs (Com(*v*); *v*) where

•
$$v = (v_1, \dots, v_m) \in \mathbb{F}^m$$

- Folding schemes have become very popular since Nova (2021)
- In Nova, *R* are relaxed R1CS constraints of the form $A\mathbf{z} \circ B\mathbf{z} = uC\mathbf{z} + \mathbf{e}$. Here $A, B, C \in \mathbb{F}^{n \times n}$ are public matrices, $u \in \mathbb{F}$ is public, and $\mathbf{z}, \mathbf{e} \in \mathbb{F}^{n}$ is the witness.
- One can design folding schemes for many other relations: HyperNova, ProtoStar, ProtoGalaxy, NeutronNova, etc.
- For example, for lookup relations.
- A lookup relation *R* for a set *S* consists of pairs (Com(*v*); *v*) where

•
$$v = (v_1, \dots, v_m) \in \mathbb{F}^m$$

• $v_i \in S$ for all i = 1, ..., n.

Lookup argument
• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

- Examples:

• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

- Examples:

• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• When $S = [0,2^{128} - 1]$, the lookup proves all entries in v are between 0 and 2^{128} .

- Examples:

 - $S = \{(x | | y) | x \in \{0,1\}^n, y = SHA256(x)\}$

• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• When $S = [0, 2^{128} - 1]$, the lookup proves all entries in v are between 0 and 2^{128} .

- Examples:

 - $S = \{(x | | y) | x \in \{0,1\}^n, y = SHA256(x)\}$
- Why do we need lookup arguments?

A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• When $S = [0, 2^{128} - 1]$, the lookup proves all entries in v are between 0 and 2^{128} .

- Examples:

 - $S = \{(x | | y) | x \in \{0,1\}^n, y = SHA256(x)\}$
- Why do we need lookup arguments?
 - The previous statements can be proved with a regular SNARK.

A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• When $S = [0,2^{128} - 1]$, the lookup proves all entries in v are between 0 and 2^{128} .

- Examples:

 - $S = \{(x | | y) | x \in \{0,1\}^n, y = SHA256(x)\}$
- Why do we need lookup arguments?
 - The previous statements can be proved with a regular SNARK.
 - However, arithmetizing it (i.e. writing it in Plonkish, R1CS, CCS, AIR constraints) is really expensive.

A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• When $S = [0, 2^{128} - 1]$, the lookup proves all entries in v are between 0 and 2^{128} .

- Examples:

 - $S = \{(x | | y) | x \in \{0,1\}^n, y = SHA256(x)\}$
- Why do we need lookup arguments?
 - The previous statements can be proved with a regular SNARK.
 - However, arithmetizing it (i.e. writing it in Plonkish, R1CS, CCS, AIR constraints) is really expensive.
 - $\approx 2^{20}$ constraints as R1CS.

• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• When $S = [0,2^{128} - 1]$, the lookup proves all entries in v are between 0 and 2^{128} .

• Here "expensive" means that a huge circuit is required. E.g. SHA-256 requires

• Let *R_S* be a lookup relation for a set *S*, so

• Let *R_S* be a lookup relation for a set *S*, so

 $R_S = \{ (\mathsf{Cm}_v; v) \mid v \in \mathbb{F}^m, v_i \in S \;\forall i \}$

- Let R_S be a lookup relation for a set S, so $R_S = \{(\mathsf{cm}_v; v) \mid v \in \mathbb{F}^m, v_i \in S \ \forall i\}$
- To simplify exposition, from now on we forget about commitments. We write $(cm_v; v) \in R_S$ as $v \subseteq S$.

- Let R_S be a lookup relation for a set S, so $R_S = \{(Cm_v; v) \mid v \in \mathbb{F}^m, v_i \in S \ \forall i\}$
- To simplify exposition, from now on we forget about commitments. We write $(cm_v; v) \in R_S$ as $v \subseteq S$.
- We have two lookup instances $v_1 \subseteq S$, $v_2 \subseteq S$.

- Let R_S be a lookup relation for a set S, so $R_S = \{(Cm_v; v) \mid v \in \mathbb{F}^m, v_i \in S \ \forall i\}$
- To simplify exposition, from now on we forget about commitments. We write $(cm_v; v) \in R_S$ as $v \subseteq S$.
- We have two lookup instances $v_1 \subseteq S$, $v_2 \subseteq S$.
- We want P and V to create a new instance $v_3 \subseteq S$ so that

- Let R_S be a lookup relation for a set S, so $R_{S} = \{ (Cm_{v}; v) \mid v \in \mathbb{F}^{m}, v_{i} \in S \forall i \}$
- To simplify exposition, from now on we forget about commitments. We write $(cm_v; v) \in R_S$ as $v \subseteq S$.
- We have two lookup instances $v_1 \subseteq S, v_2 \subseteq S$.
- We want P and V to create a new instance $v_3 \subseteq S$ so that

 $v_3 \subseteq S \Leftrightarrow_{(e.w.n.p)} v_1 \subseteq S, v_2 \subseteq S$

• Note $v \subseteq S$ if and only if:

- Note $v \subseteq S$ if and only if:

• There is a $|v| \times |S|$ matrix M such that all its rows are elementary vectors.

- Note $v \subseteq S$ if and only if:

- Note $v \subseteq S$ if and only if:

- Note $v \subseteq S$ if and only if:

•
$$M \cdot S^T = v^T$$

• Elementary vector = all entries are 0 except for one entry, which is 1.

- Note $v \subseteq S$ if and only if:

•
$$M \cdot S^T = v^T$$

- Elementary vector = all entries are 0 except for one entry, which is 1.
- Example: S = (1,2,3,4), v = (4,2), then

- Note $v \subseteq S$ if and only if:
 - There is a $|v| \times |S|$ matrix M such that all its rows are elementary vectors. Notation: $M \in R_{elem}$.

•
$$M \cdot S^T = v^T$$

- Elementary vector = all entries are 0 except for one entry, which is 1.
- Example: S = (1,2,3,4), v = (4,2), then

 $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$ 4

$$= \begin{pmatrix} 4 \\ 2 \end{pmatrix} \qquad \qquad M \cdot S^T = v^T$$

- Note $v \subseteq S$ if and only if:
 - There is a $|v| \times |S|$ matrix M such that all its rows are elementary vectors. Notation: $M \in R_{elem}$.

•
$$M \cdot S^T = v^T$$

- Elementary vector = all entries are 0 except for one entry, which is 1. • **Example:** S = (1,2,3,4), v = (4,2), then

 $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ 4

• Simply, the i - th row of M indicates a position of S that equals v_i

$$\begin{pmatrix} 4 \\ 2 \end{pmatrix} \qquad \qquad M \cdot S^T = v^T$$

$R_{elem} = \{ |v| \times |S| \text{ matrices all whose rows are elementary vectors} \}$

$R_{elem} = \{ |v| \times |S| \text{ matrices all whose rows are elementary vectors} \}$ • We can replace the claim $v \subseteq S$ by "there exists $M \in R_{elem}$ s.t. $M \cdot S^T = v^T$.

- Then to fold two claims

$R_{elem} = \{ |v| \times |S| \text{ matrices all whose rows are elementary vectors} \}$ • We can replace the claim $v \subseteq S$ by "there exists $M \in R_{elem}$ s.t. $M \cdot S^T = v^T$.

- Then to fold two claims

$$\begin{split} v_1 &\subseteq S, \, v_2 \subseteq S \\ & \left(\, \Leftrightarrow \ \exists M_1, M_2; \ M_1 \cdot S^T = v_1^T, \right. \end{split}$$

$R_{elem} = \{ |v| \times |S| \text{ matrices all whose rows are elementary vectors} \}$ • We can replace the claim $v \subseteq S$ by "there exists $M \in R_{elem}$ s.t. $M \cdot S^T = v^T$.

(*) $M_2 \cdot S^T = v_2^T, \quad M_1, M_2 \in R_{elem}$

- Then to fold two claims

$$\begin{split} v_1 &\subseteq S, \, v_2 \subseteq S \\ & \Big(\Leftrightarrow \ \exists M_1, M_2; \ M_1 \cdot S^T = v_1^T, \end{split}$$

• V sends a random element $\alpha \in \mathbb{F}$, and the claim (*) is reduced to

 $R_{elem} = \{ |v| \times |S| \text{ matrices all whose rows are elementary vectors} \}$ • We can replace the claim $v \subseteq S$ by "there exists $M \in R_{elem}$ s.t. $M \cdot S^T = v^T$.

> (*) $M_2 \cdot S^T = v_2^T, \quad M_1, M_2 \in R_{elem}$

- Then to fold two claims

$$v_{1} \subseteq S, v_{2} \subseteq S$$

$$(\Leftrightarrow \exists M_{1}, M_{2}; M_{1} \cdot S^{T} = v_{1}^{T}, M_{2} \cdot S^{T} = v_{2}^{T}, M_{1}, M_{2} \in R_{elem})$$
(*)
ends a random element $\alpha \in \mathbb{F}$, and the claim (*) is reduced to
$$(M_{1} + \alpha M_{2}) \cdot S^{T} = (v_{1} + \alpha v_{2})^{T}, M_{1}, M_{2} \in R_{elem} \quad (**)$$

• V se

 $R_{elem} = \{ |v| \times |S| \text{ matrices all whose rows are elementary vectors} \}$ • We can replace the claim $v \subseteq S$ by "there exists $M \in R_{elem}$ s.t. $M \cdot S^T = v^T$.

- Then to fold two claims

$$\begin{array}{l} v_1 \subseteq S, \ v_2 \subseteq S \\ \left(\Leftrightarrow \ \exists M_1, M_2; \ M_1 \cdot S^T = v_1^T, \quad M_2 \cdot S^T = v_2^T, \quad M_1, M_2 \in R_{elem} \right) \end{array}$$
(*)
• V sends a random element $\alpha \in \mathbb{F}$, and the claim (*) is reduced to
 $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad M_1, M_2 \in R_{elem} \quad (**)$
• It can be seen that, with high probability (over the choice of α), (*) holds if

V set

$$\exists M_1, M_2; \ M_1 \cdot S^T = v_1^T, \quad M_2 \cdot S^T = v_2^T, \quad M_1, M_2 \in R_{elem}$$
(*)
ndom element $\alpha \in \mathbb{F}$, and the claim (*) is reduced to
 $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad M_1, M_2 \in R_{elem}$ (**)
n that with high probability (over the choice of α) (*) hold

and only if (**) holds.

 $R_{elem} = \{ |v| \times |S| \text{ matrices all whose rows are elementary vectors} \}$ • We can replace the claim $v \subseteq S$ by "there exists $M \in R_{elem}$ s.t. $M \cdot S^T = v^T$.

$(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad M_1, M_2 \in R_{elem}$ (**)

 $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad M_1, M_2 \in R_{elem}$ (**) • (**) is barely better than our initial claim (*). The issue is that we have two hanging claims $M_1 \in R_{elem}$ and $M_2 \in R_{elem}$.

- $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad M_1, M_2 \in R_{elem}$ (**) • (**) is barely better than our initial claim (*). The issue is that we have two hanging claims $M_1 \in R_{elem}$ and $M_2 \in R_{elem}$.
- The next step consists in folding these two claims.
- (**) is barely better than our initial claim (*). The issue is that we have two hanging claims $M_1 \in R_{elem}$ and $M_2 \in R_{elem}$.
- The next step consists in folding these two claims.
- The idea is to define R_{elem} algebraically as follows: A matrix *M* belongs to *R*_{elem} if and only:

 $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad M_1, M_2 \in R_{elem}$ (**)

- (**) is barely better than our initial claim (*). The issue is that we have two hanging claims $M_1 \in R_{elem}$ and $M_2 \in R_{elem}$.
- The next step consists in folding these two claims.
- The idea is to define R_{elem} algebraically as follows: A matrix *M* belongs to *R*_{elem} if and only:
 - $M_{ii}^2 = M_{ii}$ for all entries M_{ii} of M. This ensures M contains only 0 or 1's.

 $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad M_1, M_2 \in R_{elem}$ (**)

- (**) is barely better than our initial claim (*). The issue is that we have two hanging claims $M_1 \in R_{elem}$ and $M_2 \in R_{elem}$.
- The next step consists in folding these two claims.
- The idea is to define R_{elem} algebraically as follows: A matrix *M* belongs to *R*_{elem} if and only:
 - $M_{ii}^2 = M_{ii}$ for all entries M_{ii} of M. This ensures M contains only 0 or 1's.
 - $M \cdot \mathbf{1}^T = \mathbf{1}^T$. With the above, this ensures each row contains exactly one 1.

 $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad M_1, M_2 \in R_{elem}$ (**)

• $M \in R_{elem}$ iff $M_{ij}^2 = M_{ij}, M \cdot \mathbf{1}^T = \mathbf{1}^T$.

- $M \in R_{elem}$ iff $M_{ij}^2 = M_{ij}, M \cdot \mathbf{1}^T = \mathbf{1}^T$.
- matrix M.

• The RHS above is roughly a R1CS constraint where the witness vector is the

- $M \in R_{elem}$ iff $M_{ij}^2 = M_{ij}$, $M \cdot \mathbf{1}^T = \mathbf{1}^T$.
- matrix M.
- type approach.

• The RHS above is roughly a R1CS constraint where the witness vector is the

• Accordingly, we can fold the statements $M_1 \in R_{elem}, M_2 \in R_{elem}$ using a Nova-

- $M \in R_{elem}$ iff $M_{ij}^2 = M_{ij}$, $M \cdot \mathbf{1}^T = \mathbf{1}^T$.
- matrix M.
- type approach.
- The final folded instance has the form :

• The RHS above is roughly a R1CS constraint where the witness vector is the

• Accordingly, we can fold the statements $M_1 \in R_{elem}, M_2 \in R_{elem}$ using a Nova-

- $M \in R_{elem}$ iff $M_{ii}^2 = M_{ij}$, $M \cdot \mathbf{1}^T = \mathbf{1}^T$.
- matrix M.
- type approach.
- The final folded instance has the form :

 $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad (M_1 + \alpha M_2) \in R_{elem-relaxed}$

The RHS above is roughly a R1CS constraint where the witness vector is the

• Accordingly, we can fold the statements $M_1 \in R_{elem}, M_2 \in R_{elem}$ using a Nova-

- $M \in R_{elem}$ iff $M_{ij}^2 = M_{ij}$, $M \cdot \mathbf{1}^T = \mathbf{1}^T$.
- matrix M.
- type approach.
- The final folded instance has the form :

$$(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha M_2)$$

• $R_{elem-relaxed}$ is a "relaxed version" of R_{elem} , similar to a relaxed R1CS.

• The RHS above is roughly a R1CS constraint where the witness vector is the

• Accordingly, we can fold the statements $M_1 \in R_{elem}, M_2 \in R_{elem}$ using a Nova-

 $(\alpha v_2)^T$, $(M_1 + \alpha M_2) \in R_{elem-relaxed}$

- $M \in R_{elem}$ iff $M_{ii}^2 = M_{ij}$, $M \cdot \mathbf{1}^T = \mathbf{1}^T$.
- matrix M.
- type approach.
- The final folded instance has the form :

$$(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha M_2)$$

- $R_{elem-relaxed}$ is a "relaxed version" of R_{elem} , similar to a relaxed R1CS.
- Nova on witnesses of size $|v_i|$

The RHS above is roughly a R1CS constraint where the witness vector is the

• Accordingly, we can fold the statements $M_1 \in R_{elem}, M_2 \in R_{elem}$ using a Nova-

 $(\alpha v_2)^T$, $(M_1 + \alpha M_2) \in R_{elem-relaxed}$

• Leveraging the sparseness of M_i the overall cost for P and V is similar to

• We reduced from $M_1 \cdot S^T = v_1^T$, $M_2 \cdot S^T = v_2^T$, $M_1, M_2 \in R_{elem}$ to

• We reduced from $M_1 \cdot S^T = v_1^T$, $M_2 \cdot S^T = v_2^T$, $M_1, M_2 \in R_{elem}$ to

$(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad (M_1 + \alpha M_2) \in R_{elem}$

- We reduced from $M_1 \cdot S^T = v_1^T$, $M_2 \cdot S^T = v_2^T$, $M_1, M_2 \in R_{elem}$ to $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad (M_1 + \alpha M_2) \in R_{elem}$
- While M_1, M_2 are highly sparse matrices, $M_1 + \alpha M_2$ loses a bit of sparsity. Iterating this folding procedure can lead to a folded statement of the form

- We reduced from $M_1 \cdot S^T = v_1^T$, $M_2 \cdot S^T = v_2^T$, $M_1, M_2 \in R_{elem}$ to
- While M_1, M_2 are highly sparse matrices, $M_1 + \alpha M_2$ loses a bit of sparsity. Iterating this folding procedure can lead to a folded statement of the form

$$M_{fold} \cdot S^T = v_{fold}^T, \quad M_{fold} \in R_{elem}$$

 $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad (M_1 + \alpha M_2) \in R_{elem}$

- We reduced from $M_1 \cdot S^T = v_1^T$, $M_2 \cdot S^T = v_2^T$, $M_1, M_2 \in R_{elem}$ to
- While M_1, M_2 are highly sparse matrices, $M_1 + \alpha M_2$ loses a bit of sparsity. Iterating this folding procedure can lead to a folded statement of the form

$$M_{fold} \cdot S^T = v_{fold}^T, \quad M_{fold} \in R_{elem}$$

for M_{fold} a dense $|v| \cdot |S|$ matrix.

 $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha v_2)^T, \quad (M_1 + \alpha M_2) \in R_{elem}$

- We reduced from $M_1 \cdot S^T = v_1^T$, $M_2 \cdot S^T = v_1^T$ $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha M_2)$
- While M_1, M_2 are highly sparse matrices, $M_1 + \alpha M_2$ loses a bit of sparsity. Iterating this folding procedure can lead to a folded statement of the form

$$M_{fold} \cdot S^T = v_{fold}^T, \quad M_{fold} \in R_{elem}$$

for M_{fold} a dense $|v| \cdot |S|$ matrix.

Hence, proving the folded statement could be very expensive.

$$= v_2^T, \quad M_1, M_2 \in R_{elem} \text{ to}$$
$$\alpha v_2)^T, \quad (M_1 + \alpha M_2) \in R_{elem}$$

- We reduced from $M_1 \cdot S^T = v_1^T$, $M_2 \cdot S^T =$ $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha M_2)$
- While M_1, M_2 are highly sparse matrices, $M_1 + \alpha M_2$ loses a bit of sparsity. Iterating this folding procedure can lead to a folded statement of the form

$$M_{fold} \cdot S^T = v_{fold}^T, \quad M_{fold} \in R_{elem}$$

for M_{fold} a dense $|v| \cdot |S|$ matrix.

- Hence, proving the folded statement could be very expensive.
- We use the concept of SOS-decomposability (Lasso) to reduce |S| to $|S|^{1/c}$ in exchange for doing "c small folds per folding step".

$$= v_2^T, \quad M_1, M_2 \in R_{elem} \text{ to}$$
$$\alpha v_2)^T, \quad (M_1 + \alpha M_2) \in R_{elem}$$

- We reduced from $M_1 \cdot S^T = v_1^T$, $M_2 \cdot S^T =$ $(M_1 + \alpha M_2) \cdot S^T = (v_1 + \alpha M_2)$
- While M_1, M_2 are highly sparse matrices, $M_1 + \alpha M_2$ loses a bit of sparsity. Iterating this folding procedure can lead to a folded statement of the form

$$M_{fold} \cdot S^T = v_{fold}^T, \quad M_{fold} \in R_{elem}$$

for M_{fold} a dense $|v| \cdot |S|$ matrix.

- Hence, proving the folded statement could be very expensive.
- We use the concept of SOS-decomposability (Lasso) to reduce |S| to $|S|^{1/c}$ in exchange for doing "c small folds per folding step".
- this step with less commitment costs.

$$= v_2^T, \quad M_1, M_2 \in R_{elem} \text{ to}$$
$$\alpha v_2)^T, \quad (M_1 + \alpha M_2) \in R_{elem}$$

 Note: Any other scheme working with huge SOS-dec. tables needs also to increase the number of folds per step by c (though c can be taken smaller), and FLI can make

smaller sets.

- smaller sets.
- Example: $S = \{0, 1, ..., 2^{128} 1\}$. Note we can't even store S in memory.

- smaller sets.
- Example: $S = \{0, 1, ..., 2^{128} 1\}$. Note we can't even store S in memory.
- An element x belongs to S if and only if

- smaller sets.
- Example: $S = \{0, 1, ..., 2^{128} 1\}$. Note we can't even store S in memory.
- An element x belongs to S if and only if

• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS decomposable if its elements can be written as algebraic expressions involving

 $x = x_1 + 2^{32}x_2 + 2^{64}x_3 + 2^{96}x_4$ (*)

- smaller sets.
- Example: $S = \{0, 1, ..., 2^{128} 1\}$. Note we can't even store S in memory.
- An element x belongs to S if and only if

And $x_i \in S'$ for all *i*, where $S' = \{0, ..., 2^{32} - 1\}$.

• From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS decomposable if its elements can be written as algebraic expressions involving

 $x = x_1 + 2^{32}x_2 + 2^{64}x_3 + 2^{96}x_4$ (*)

- smaller sets.
- Example: $S = \{0, 1, ..., 2^{128} 1\}$. Note we can't even store S in memory.
- An element x belongs to S if and only if

 $x = x_1 + 2^{32}x_2 + 2^{64}x_3 + 2^{96}x_4$ (*) And $x_i \in S'$ for all *i*, where $S' = \{0, ..., 2^{32} - 1\}$.

• Hence, to prove $x \in S$, one can prove (*) and then prove $x_i \in S'$, i = 1, 2, 3, 4

- smaller sets.
- Example: $S = \{0, 1, ..., 2^{128} 1\}$. Note we can't even store S in memory.
- An element x belongs to S if and only if

 $x = x_1 + 2^{32}x_2 + 2^{64}x_3 + 2^{96}x_4$ (*) And $x_i \in S'$ for all *i*, where $S' = \{0, ..., 2^{32} - 1\}$.

- Hence, to prove $x \in S$, one can prove (*) and then prove $x_i \in S'$, i = 1, 2, 3, 4
- This is good because: (*) is very simple; and S' is small: $|S'| = 2^{32}$

- smaller sets.
- Example: $S = \{0, 1, ..., 2^{128} 1\}$. Note we can't even store S in memory.
- An element x belongs to S if and only if

 $x = x_1 + 2^{32}x_2 + 2^{64}x_3 + 2^{96}x_4 \quad (*)$ And $x_i \in S'$ for all *i*, where $S' = \{0, ..., 2^{32} - 1\}$.

- Hence, to prove $x \in S$, one can prove (*) and then prove $x_i \in S'$, i = 1, 2, 3, 4
- This is good because: (*) is very simple; and S' is small: $|S'| = 2^{32}$
- We can actually make the S' as small as wanted by making (*) longer.

- smaller sets.
- Example: $S = \{0, 1, ..., 2^{128} 1\}$. Note we can't even store S in memory.
- An element x belongs to S if and only if $x = x_1 + 2^{32}x_2 + 2^{64}x_3 + 2^{96}x_4 \quad (*)$

And $x_i \in S'$ for all *i*, where $S' = \{0, ..., 2^{32} - 1\}$.

- Hence, to prove $x \in S$, one can prove (*) and then prove $x_i \in S'$, i = 1, 2, 3, 4
- This is good because: (*) is very simple; and S' is small: $|S'| = 2^{32}$
- We can actually make the S' as small as wanted by making (*) longer.
- Jolt (Arun et al. 2023): Many S's of interest are SOS-dec. E.g. RISC-V instructions

• Let's take $S = \{0, 1, \dots, 2^{32} - 1\}$

- Let's take $S = \{0, 1, \dots, 2^{32} 1\}$
- An element x belongs to S if and only if $x = x_1 + 2^{16}x_2$ (*)

- Let's take $S = \{0, 1, \dots, 2^{32} 1\}$
- An element x belongs to S if and only if $x = x_1 + 2^{16}x_2$ (*) And $x_i \in S'$ for all *i*, where $S' = \{0, ..., 2^{16} - 1\}$.

- Let's take $S = \{0, 1, \dots, 2^{32} 1\}$
- An element x belongs to S if and only if $x = x_1 + 2^{16}x_2$ (*) And $x_i \in S'$ for all i, where $S' = \{0, ..., 2^{16} - 1\}$.
- Say we want to prove $v \subseteq S$. Equivalenty that $M \cdot S^T = v^T$ for some $M \in R_{elem}$.
- Let's take $S = \{0, 1, \dots, 2^{32} 1\}$
- An element x belongs to S if and only if $x = x_1 + 2^{16}x_2$ (*) And $x_i \in S'$ for all i, where $S' = \{0, ..., 2^{16} - 1\}$.
- Say we want to prove $v \subseteq S$. Equivalenty that $M \cdot S^T = v^T$ for some $M \in R_{elem}$.
- Following (*), we can write $v \subseteq S$ as

- Let's take $S = \{0, 1, \dots, 2^{32} 1\}$
- An element x belongs to S if and only if $x = x_1 + 2^{16}x_2$ (*) And $x_i \in S'$ for all i, where $S' = \{0, ..., 2^{16} - 1\}$.
- Say we want to prove $v \subseteq S$. Equivalenty that $M \cdot S^T = v^T$ for some $M \in R_{elem}$.
- Following (*), we can write $v \subseteq S$ as
 - $v = v^{(1)} + 2^{16}v^{(2)}$ for vectors $v^{(1)}, v^{(2)}$.

- Let's take $S = \{0, 1, \dots, 2^{32} 1\}$
- An element x belongs to S if and only if $x = x_1 + 2^{16}x_2$ (*) And $x_i \in S'$ for all i, where $S' = \{0, ..., 2^{16} - 1\}$.
- Say we want to prove $v \subseteq S$. Equivalenty that $M \cdot S^T = v^T$ for some $M \in R_{elem}$.
- Following (*), we can write $v \subseteq S$ as
 - $v = v^{(1)} + 2^{16}v^{(2)}$ for vectors $v^{(1)}, v^{(2)}$.
 - $v^{(i)} \subseteq S' \Leftrightarrow M_i \cdot S'^T = v^{(i)T}, M_i \in R_{elem}$, for i = 1, 2.

- Let's take $S = \{0, 1, \dots, 2^{32} 1\}$
- An element x belongs to S if and only if $x = x_1 + 2^{16}x_2$ (*) And $x_i \in S'$ for all i, where $S' = \{0, ..., 2^{16} - 1\}$.
- Say we want to prove $v \subseteq S$. Equivalenty that $M \cdot S^T = v^T$ for some $M \in R_{elem}$.
- Following (*), we can write $v \subseteq S$ as
 - $v = v^{(1)} + 2^{16}v^{(2)}$ for vectors $v^{(1)}, v^{(2)}$.
 - $v^{(i)} \subseteq S' \Leftrightarrow M_i \cdot S'^T = v^{(i)T}, M_i \in R_{elem}$, for i = 1, 2.
- These conditions are equivalent to $v = (M_1 \cdot S') + 2^{16}(M_2 \cdot S')$ and $M_1, M_2 \in R_{elem}$

- Let's take $S = \{0, 1, \dots, 2^{32} 1\}$
- An element x belongs to S if and only if $x = x_1 + 2^{16}x_2$ (*) And $x_i \in S'$ for all i, where $S' = \{0, ..., 2^{16} - 1\}$.
- Say we want to prove $v \subseteq S$. Equivalenty that $M \cdot S^T = v^T$ for some $M \in R_{elem}$.
- Following (*), we can write $v \subseteq S$ as
 - $v = v^{(1)} + 2^{16}v^{(2)}$ for vectors $v^{(1)}, v^{(2)}$.
 - $v^{(i)} \subseteq S' \Leftrightarrow M_i \cdot S'^T = v^{(i)T}, M_i \in R_{elem}$, for i = 1, 2.
- These conditions are equivalent to $v = (M_1 \cdot S') + 2^{16}(M_2 \cdot S')$ and $M_1, M_2 \in R_{elem}$
- We now use a Hypernova-style sumcheck to reduce the equality to two linear equalities, plus $M_1, M_2 \in R_{elem}$. Then we perform folding similarly as before.

• Overall, FLI has the cheapest folding Prover and Verfier we are aware of.

Overall, FLI has the cheapest folding Prover and Verfier we are aware of.

• However, when doing many foldings, it works with a dense $|v| \cdot |S|$ witness.

- If *S* is SOS decomposable, roughly:

• Overall, FLI has the cheapest folding Prover and Verfier we are aware of.

• However, when doing many foldings, it works with a dense $|v| \cdot |S|$ witness.

- Overall, FLI has the cheapest folding Prover and Verfier we are aware of.
- However, when doing many foldings, it works with a dense $|v| \cdot |S|$ witness.
- If *S* is SOS decomposable, roughly:
 - We turn each folding step into *c* folding steps.

- Overall, FLI has the cheapest folding Prover and Verfier we are aware of.
- However, when doing many foldings, it works with a dense $|v| \cdot |S|$ witness.
- If *S* is SOS decomposable, roughly:
 - We turn each folding step into *c* folding steps.
 - Then when proving a folded instance, we work with $|v| \cdot |S|^{1/c}$ -sized witness.

- Overall, FLI has the cheapest folding Prover and Verfier we are aware of.
- However, when doing many foldings, it works with a dense $|v| \cdot |S|$ witness.
- If *S* is SOS decomposable, roughly:
 - We turn each folding step into *c* folding steps.
 - Then when proving a folded instance, we work with $|v| \cdot |S|^{1/c}$ -sized witness.
- FLI can leverage SOS decomposability of *S* with much less field operations and commitments than other schemes: Protostar (Bünz, Biny Chen, 2023), Proofs for Deep Thougth (Bünz, Jessica Chen, 2024), NeutronNova (Kothapally, Setty, 2024)

 In Jolt (Arun, Setty, Thaler, 2023) it SOS decomposable.

• In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are

- SOS decomposable.
- Namely, those capturing the RISC-V instructions.

• In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are

- In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are SOS decomposable.
- Namely, those capturing the RISC-V instructions.
- They propose building a zkVM that proves computations using the Lasso lookup, exploiting the SOS-decomposability of the RISC-V tables.

- In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are SOS decomposable.
- Namely, those capturing the RISC-V instructions.
- They propose building a zkVM that proves computations using the Lasso lookup, exploiting the SOS-decomposability of the RISC-V tables.
- Roughly, a RISC-V table has the form

- In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are SOS decomposable.
- Namely, those capturing the RISC-V instructions.
- They propose building a zkVM that proves computations using the Lasso lookup, exploiting the SOS-decomposability of the RISC-V tables.
- Roughly, a RISC-V table has the form

 $S = \{(x | |y| | z) | (x, y) \text{ input to an instruction, } z \text{ output} \}$

- In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are SOS decomposable.
- Namely, those capturing the RISC-V instructions.
- They propose building a zkVM that proves computations using the Lasso lookup, exploiting the SOS-decomposability of the RISC-V tables.
- Roughly, a RISC-V table has the form
 - $S = \{(x | |y| | z) | (x, y) \text{ input to an instruction, } z \text{ output} \}$
- Example: An instruction could be bitwise XOR of 64-bit strings. Then $|S| = 2^{3 \cdot 64} = 2^{192}$.

• Jolt targets proving computations with 2²⁴ instructions.

- Jolt targets proving computations with 2²⁴ instructions.
- This means Jolt must prove a lookup instance $v \subseteq S$ where *S* is gigantic (concatenation of all instruction tables) and SOS decomposable.

- Jolt targets proving computations with 2²⁴ instructions.
- This means Jolt must prove a lookup instance $v \subseteq S$ where *S* is gigantic (concatenation of all instruction tables) and SOS decomposable.
- It's currently unfeasible to do that in a single shot, due to memory constraints.

- Jolt targets proving computations with 2²⁴ instructions.
- This means Jolt must prove a lookup instance $v \subseteq S$ where *S* is gigantic (concatenation of all instruction tables) and SOS decomposable.
- It's currently unfeasible to do that in a single shot, due to memory constraints.
- Because of this, the Jolt team proposes to:

- Jolt targets proving computations with 2²⁴ instructions.
- This means Jolt must prove a lookup instance $v \subseteq S$ where *S* is gigantic (concatenation of all instruction tables) and SOS decomposable.
- It's currently unfeasible to do that in a single shot, due to memory constraints.
- Because of this, the Jolt team proposes to:
 - 1. Split the lookup into, say, 2^5 lookups $v_1 \subseteq S, ..., v_{2^5} \subseteq S$, where $|v_i| = 2^{19}$

- Jolt targets proving computations with 2²⁴ instructions.
- This means Jolt must prove a lookup instance $v \subseteq S$ where *S* is gigantic (concatenation of all instruction tables) and SOS decomposable.
- It's currently unfeasible to do that in a single shot, due to memory constraints.
- Because of this, the Jolt team proposes to:
 - 1. Split the lookup into, say, 2^5 lookups $v_1 \subseteq S, ..., v_{2^5} \subseteq S$, where $|v_i| = 2^{19}$
 - 2. Either:

- Jolt targets proving computations with 2²⁴ instructions.
- This means Jolt must prove a lookup instance $v \subseteq S$ where *S* is gigantic (concatenation of all instruction tables) and SOS decomposable.
- It's currently unfeasible to do that in a single shot, due to memory constraints.
- Because of this, the Jolt team proposes to:
 - 1. Split the lookup into, say, 2^5 lookups $v_1 \subseteq S, ..., v_{2^5} \subseteq S$, where $|v_i| = 2^{19}$
 - 2. Either:
 - Prove each lookup and then create a recursive proof.

- Jolt targets proving computations with 2²⁴ instructions.
- This means Jolt must prove a lookup instance $v \subseteq S$ where *S* is gigantic (concatenation of all instruction tables) and SOS decomposable.
- It's currently unfeasible to do that in a single shot, due to memory constraints.
- Because of this, the Jolt team proposes to:
 - 1. Split the lookup into, say, 2^5 lookups $v_1 \subseteq S, ..., v_{2^5} \subseteq S$, where $|v_i| = 2^{19}$
 - 2. Either:
 - Prove each lookup and then create a recursive proof.
 - Fold the 2⁵ lookups and then prove the folded claim.