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• Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

  (x1; w1) ∈ R   (x2; w2) ∈ R   (x3; w3) ∈ RFold

• Commitments play a crucial role in folding schemes.
• The instances  all contain a commitment to , respectively. I.e. x1, x2, x3 w1, w2, w3

(xi; wi) = (x′ i, Com(wi); wi)

  (x1, cmw1; w1) ∈ R   (x2, cmw2; w2) ∈ R   (x3, cmw3; w3) ∈ R
Fold

• Usually the commitment is homomorphic: cmw1+w2 = cmw1 + cmw2
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• Fix                ,        .(x1, cmw1; w1) ∈ R (x2, cmw2; w2) ∈ R

(x1, cmw1)
(x2, cmw2)

(x1, cmw1; w1)
(x2, cmw2; w2)

VP Exchange messages

Uniformly sampled challenge α ∈ 𝔽

• Where                    x3 = x1 + αx2 w3 = w1 + αw2

•  computes  using that V cmw3 cmw1 + αcmw2 = cmw1+αw2

• (Disclaimer: this is an extremely simplified, technically incorrect, blueprint)

(x3, cmw3; w3)
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• In Nova,  are relaxed R1CS constraints of the form . Here 
 are public matrices,  is public, and  is the witness. 

R Az ∘ Bz = uCz + e
A, B, C ∈ 𝔽n×n u ∈ 𝔽 z, e ∈ 𝔽n

• One can design folding schemes for many other relations: HyperNova, 
ProtoStar, ProtoGalaxy, NeutronNova, etc.

• For example, for lookup relations. 

• A lookup relation  for a set  consists of pairs  whereR S (Com(v); v)

• v = (v1, …, vm) ∈ 𝔽m

•  for all vi ∈ S i = 1,…, n .
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• A lookup argument is a special proof system (e.g. a SNARK) for lookup relations.

• Examples: 

• When , the lookup proves all entries in  are between  and .S = [0,2128 − 1] v 0 2128

•  S = {(x | |y) ∣ x ∈ {0,1}n, y = SHA256(x)}

• Why do we need lookup arguments?

• The previous statements can be proved with a regular SNARK.

• However, arithmetizing it (i.e. writing it in Plonkish, R1CS, CCS, AIR 
constraints) is really expensive.

• Here “expensive" means that a huge circuit is required. E.g. SHA-256 requires 
 constraints as R1CS.≈ 220
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• Let  be a lookup relation for a set , so RS S

 RS = {(cmv; v) ∣ v ∈ 𝔽m, vi ∈ S ∀i}

• To simplify exposition, from now on we forget about commitments. We 
write  as .(cmv; v) ∈ RS v ⊆ S

• We have two lookup instances v1 ⊆ S, v2 ⊆ S .

• We want P and V to create a new instance  so that v3 ⊆ S

v3 ⊆ S ⇔(e.w.n.p) v1 ⊆ S, v2 ⊆ S
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• Note  if and only if:v ⊆ S

• There is a  matrix  such that all its rows are elementary vectors.|v | × |S | M

Notation: .M ∈ Relem

• M ⋅ ST = vT

• Elementary vector = all entries are 0 except for one entry, which is 1.

• Example: , , then S = (1,2,3,4) v = (4,2)

                  (0 0 0 1
0 1 0 0)

1
2
3
4

= (4
2) M ⋅ ST = vT

• Simply, the  row of  indicates a position of  that equals i − th M S vi
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• We can replace the claim  by “there exists  s.t. .v ⊆ S M ∈ Relem M ⋅ ST = vT

• Then to fold two claims

       (*)
v1 ⊆ S, v2 ⊆ S

( ⇔ ∃M1, M2; M1 ⋅ ST = vT
1 , M2 ⋅ ST = vT

2 , M1, M2 ∈ Relem)
• V sends a random element , and the claim (*) is reduced to α ∈ 𝔽

     (**)(M1 + αM2) ⋅ ST = (v1 + αv2)T, M1, M2 ∈ Relem

• It can be seen that, with high probability (over the choice of ), (*) holds if 
and only if (**) holds.

α
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     (**)(M1 + αM2) ⋅ ST = (v1 + αv2)T, M1, M2 ∈ Relem

• (**) is barely better than our initial claim (*). The issue is that we have two 
hanging claims  and . M1 ∈ Relem M2 ∈ Relem

• The next step consists in folding these two claims.

• The idea is to define  algebraically as follows: 
A matrix  belongs to  if and only:

Relem
M Relem

•  for all entries  of . This ensures  contains only  or ’s.M2
ij = Mij Mij M M 0 1

• . With the above, this ensures each row contains exactly one .M ⋅ 1T = 1T 1
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type approach.

M1 ∈ Relem, M2 ∈ Relem

• The final folded instance has the form :

(M1 + αM2) ⋅ ST = (v1 + αv2)T, (M1 + αM2) ∈ Relem−relaxed

•  is a “relaxed version” of , similar to a relaxed R1CS.Relem−relaxed Relem

• Leveraging the sparseness of  the overall cost for P and V is similar to 
Nova on witnesses of size 

Mi
|vi |
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for  a dense  matrix.Mfold |v | ⋅ |S |

• Hence, proving the folded statement could be very expensive.

• We use the concept of SOS-decomposability (Lasso) to reduce  to  in 
exchange for doing “  small folds per folding step”.

|S | |S |1/c

c

• Note: Any other scheme working with huge SOS-dec. tables needs also to increase 
the number of folds per step by  (though  can be taken smaller), and FLI can make 
this step with less commitment costs.

c c
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• We can actually make the  as small as wanted by making (*) longer.S′ 

• Jolt (Arun et al. 2023): Many ’s of interest are SOS-dec. E.g. RISC-V instructionsS
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• Let’s take S = {0,1,…,232 − 1}

• An element  belongs to  if and only if    (*)x S x = x1 + 216x2

    And  for all , where .xi ∈ S′ i S′ = {0,…,216 − 1}

• Say we want to prove . Equivalenty that  for some .v ⊆ S M ⋅ ST = vT M ∈ Relem

• Following (*), we can write  as v ⊆ S

•  for vectors . v = v(1) + 216v(2) v(1), v(2)

• , for v(i) ⊆ S′ ⇔ Mi ⋅ S′ 
T = v(i)T, Mi ∈ Relem i = 1,2.

• These conditions are equivalent to  and v = (M1 ⋅ S′ ) + 216(M2 ⋅ S′ ) M1, M2 ∈ Relem

• We now use a Hypernova-style sumcheck to reduce the equality to two linear 
equalities, plus . Then we perform folding similarly as before.M1, M2 ∈ Relem
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• Overall, FLI has the cheapest folding Prover and Verfier we are aware of.

• However, when doing many foldings, it works with a dense  witness.|v | ⋅ |S |

• If  is SOS decomposable, roughly: S

• We turn each folding step into  folding steps.c

• Then when proving a folded instance, we work with -sized 
witness.

|v | ⋅ |S |1/c

• FLI can leverage SOS decomposability of  with much less field operations 
and commitments than other schemes: Protostar (Bünz, Biny Chen, 2023) , 
Proofs for Deep Thougth (Bünz, Jessica Chen, 2024), NeutronNova 
(Kothapally, Setty, 2024)

S
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• In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are 

SOS decomposable.

• Namely, those capturing the RISC-V instructions.

• They propose building a zkVM that proves computations using the Lasso 
lookup, exploiting the SOS-decomposability of the RISC-V tables.

• Roughly, a RISC-V table has the form

S = {(x | |y | |z) ∣ (x, y) input to an instruction, z output}

• Example: An instruction could be bitwise XOR of 64-bit strings. Then 
.|S | = 23⋅64 = 2192
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• Jolt targets proving computations with  instructions.224

• This means Jolt must prove a lookup instance  where  is gigantic 
(concatenation of all instruction tables) and SOS decomposable.

v ⊆ S S

• It’s currently unfeasible to do that in a single shot, due to memory constraints.

• Because of this, the Jolt team proposes to:

1. Split the lookup into, say,  lookups , where 25 v1 ⊆ S, …, v25 ⊆ S |vi | = 219

2. Either:

• Prove each lookup and then create a recursive proof.

• Fold the  lookups and then prove the folded claim.25


