FLI: Folding Lookup Instances

Albert Garreta, Nethermind Research
Joint work with Ignacio Manzur

NETHERMIND

RESEARCH

C/\

Folding

2

NETHERMIND

¢’ RESEARCH

Folding

. Fix a relation R, consisting of pairs (x; w)

2

NETHERMIND

¢/ RESEARCH

Folding

. Fix a relation R, consisting of pairs (x; w)
X IS a public instance, w Is a withess

2

(\ NETHERMIND

&~ RESEARCH

Folding

. Fix a relation R, consisting of pairs (x; w) P V
X IS a public instance, w Is a withess

A folding scheme is an interactive protocol
between P and V where:

2

NETHERMIND

¢/ RESEARCH

Folding

. Fix a relation R, consisting of pairs (x; w)
X IS a public instance, w Is a withess

A folding scheme is an interactive protocol
between P and V where:

- P and V have two instances X, X,.

- P also has witnesses w;, w, such that
(x5 wy), (X; w,) € R.

c\

(x1)
(X)

2

NETHERMIND

RESEARCH

Folding

. Fix a relation R, consisting of pairs (x; w)
X IS a public instance, w Is a withess

A folding scheme is an interactive protocol
between P and V where:

- P and V have two instances X, X,.

- P also has witnesses w;, w, such that
(x5 wy), (X; w,) € R.

. P and V interact to create a new (x3; w;)
SO that:

(X35 W3)

d

2

NETHERMIND

RESEARCH

Folding

. Fix a relation R, consisting of pairs (x; w)
X IS a public instance, w Is a withess

A folding scheme is an interactive protocol
between P and V where:

- P and V have two instances X, X,.
- P also has witnesses w;, w, such that
(x5 wy), (X; w,) € R.

. P and V interact to create a new (x3; w;)
SO that:

. |f (Xg; W3) = R, then
(x5 wy), (63 wy) € R, e.w.n.p.

(X35 W3)

~
C

2

NETHERMIND

RESEARCH

Folding

. Fix a relation R, consisting of pairs (x; w)
X IS a public instance, w Is a withess

A folding scheme is an interactive protocol
between P and V where:

- P and V have two instances X, X,.
- P also has witnesses w;, w, such that
(x5 wy), (X; w,) € R.

. P and V interact to create a new (x3; w;)
SO that:

. |f (Xg; W3) = R, then
(x5 wy), (63 wy) € R, e.w.n.p.

(X35 W3)

(XB; W3) ER <:}’(e.w.n.p) {

(x;;wy)) €ER,

(X;w,) ER

NETHERMIND

RESEARCH

Folding

3

NETHERMIND

¢’ RESEARCH

Folding

* Foldi | |
ding reduces the task of proving 2 instance-witness to proving 1 instance-witness

(x;;w)) € R - Fold

3

/) RESEARCH

Folding

» Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

- Commitments play a crucial role in folding schemes.

3

(\% NETHERMIND

¢~ RESEARCH

Folding

» Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

- Commitments play a crucial role in folding schemes.
- The instances x;, x,, x5 all contain a commitment to w{, w,, w5, respectively. |.e.

3

(‘\ NETHERMIND

¢~ RESEARCH

Folding

» Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

- Commitments play a crucial role in folding schemes.
- The instances x;, x,, x5 all contain a commitment to w{, w,, w5, respectively. |.e.

(x;w) = (x;, Com(w,); w;)

(\ NETHERMIND

&~ RESEARCH

Folding

» Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

- Commitments play a crucial role in folding schemes.
- The instances x;, x,, x5 all contain a commitment to w{, w,, w5, respectively. |.e.

(x;w) = (x;, Com(w,); w;)

~~ NETHERMIND

¢~ RESEARCH

Folding

» Folding reduces the task of proving 2 instance-witness to proving 1 instance-witness.

- Commitments play a crucial role in folding schemes.
- The instances x;, x,, x5 all contain a commitment to w{, w,, w5, respectively. |.e.

(x;w) = (x;, Com(w,); w;)

- Usually the commitment is homomorphic: cm,, 4,, = cm,, + cm,, 3

('\ NETHERMIND

¢ RESEARCH

Folding from 5000 km

4

NETHERMIND

/Y RESEARCH

Folding from 5000 km

. Fix (X, cmy, ;W) € R, (Xp, cmy, s Wy) € R,

4

J NETHERMIND

¢"Y RESEARCH

Folding from 5000 km

. Fix (X, cmy, ;W) € R, (Xp, cmy, s Wy) € R,

P |4

4

NETHERMIND

&~ RESEARCH

Folding from 5000 km

. Fix (X, cmy, ;W) € R, (Xp, cmy, s Wy) € R,

4

NETHERMIND

&~ RESEARCH

Folding from 5000 km

. Fix (X, cmy, ;W) € R, (Xp, cmy, s Wy) € R,

4

NETHERMIND

&~ RESEARCH

Folding from 5000 km

. Fix (X, cmy, ;W) € R, (Xp, cmy, s Wy) € R,

Exchange messages

4

NETHERMIND

&~ RESEARCH

Folding from 5000 km

. Fix (X, cmy, ;W) € R, (Xp, cmy, s Wy) € R,

Exchange messages

Uniformly sampled challenge a € [

4

NETHERMIND

&~ RESEARCH

Folding from 5000 km

. Fix (X, cmy, ;W) € R, (Xp, cmy, s Wy) € R,

Exchange messages

Uniformly sampled challenge a € [

\%

(x39 me3; W3)

4

NETHERMIND

¢’ RESEARCH

Folding from 5000 km

. Fix (X, cmy, ;W) € R, (Xp, cmy, s Wy) € R,

Exchange messages

Uniformly sampled challenge a € [

\%

(x39 me3; WB)

- Where X3 = X + X, W3 = W + aw,

4

NETHERMIND

/Y RESEARCH

Folding from 5000 km

. Fix (X, cmy, ;W) € R, (Xp, cmy, s Wy) € R,

Exchange messages

Uniformly sampled challenge a € [

\%

(x39 me3; WB)

- Where X3 = X + X, W3 = W + aw,

. V computes cm,,, using that cm,, + acm,, = CMyy 4o,

NETHERMIND

/Y RESEARCH

Folding from 5000 km

. Fix (X, cmy, ;W) € R, (Xp, cmy, s Wy) € R,

Exchange messages

Uniformly sampled challenge a € [

\%

(X3, me3; W3)

- Where X3 = X + X, W3 = W + aw,

. V computes cm,,, using that cm,, + acm,, = CMyy 4o,

» (Disclaimer: this is an extremely simplified, technically incorrect, blueprint)
NETHERMIND

/) RESEARCH

Nova, R1CS, and other relations

Nova, R1CS, and other relations

* Folding schemes have become very popular since Nova (2021)

Nova, R1CS, and other relations

* Folding schemes have become very popular since Nova (2021)

* In Nova, R are relaxed R1CS constraints of the form Az o Bz = uCz + e. Here
A, B, C € F*"* are public matrices, u € Fis public, and z,e € " is the witness.

Nova, R1CS, and other relations

* Folding schemes have become very popular since Nova (2021)

* In Nova, R are relaxed R1CS constraints of the form Az o Bz = uCz + e. Here
A, B, C € F*"* are public matrices, u € Fis public, and z,e € " is the witness.

One can design folding schemes for many other relations: HyperNova,
ProtoStar, ProtoGalaxy, NeutronNova, etc.

Nova, R1CS, and other relations

* Folding schemes have become very popular since Nova (2021)

* In Nova, R are relaxed R1CS constraints of the form Az o Bz = uCz + e. Here
A, B, C € F*"* are public matrices, u € Fis public, and z,e € " is the witness.

* One can design folding schemes for many other relations: HyperNova,
ProtoStar, ProtoGalaxy, NeutronNova, etc.

» For example, for lookup relations.

Nova, R1CS, and other relations

Folding schemes have become very popular since Nova (2021)

In Nova, R are relaxed R1CS constraints of the form Az o Bz = uCz + e. Here
A, B, C € F*"* are public matrices, u € Fis public, and z,e € " is the witness.

One can design folding schemes for many other relations: HyperNova,
ProtoStar, ProtoGalaxy, NeutronNova, etc.

For example, for lookup relations.

A lookup relation R for a set S consists of pairs (Com(v); v) where

Nova, R1CS, and other relations

* Folding schemes have become very popular since Nova (2021)

* In Nova, R are relaxed R1CS constraints of the form Az o Bz = uCz + e. Here
A, B, C € F*"* are public matrices, u € Fis public, and z,e € " is the witness.

* One can design folding schemes for many other relations: HyperNova,
ProtoStar, ProtoGalaxy, NeutronNova, etc.

» For example, for lookup relations.
» Alookup relation R for a set S consists of pairs (Com(v); v) where

*v=(...,v,) €F"

Nova, R1CS, and other relations

Folding schemes have become very popular since Nova (2021)

In Nova, R are relaxed R1CS constraints of the form Az o Bz = uCz + e. Here
A, B, C € F*"* are public matrices, u € Fis public, and z,e € " is the witness.

One can design folding schemes for many other relations: HyperNova,
ProtoStar, ProtoGalaxy, NeutronNova, etc.

For example, for lookup relations.
A lookup relation R for a set S consists of pairs (Com(v); v) where
*v=(y,...,v,) €F"

» veSforalli=1,...,n.

Lookup argument

Lookup argument

 Alookup argument is a special proof system (e.g. a SNARK) for lookup relations.

Lookup argument

 Alookup argument is a special proof system (e.g. a SNARK) for lookup relations.

» Examples:

Lookup argument

 Alookup argument is a special proof system (e.g. a SNARK) for lookup relations.
» Examples:

* When S =[0,2!%® — 1], the lookup proves all entries in v are between 0 and 248,

Lookup argument

 Alookup argument is a special proof system (e.g. a SNARK) for lookup relations.
» Examples:
* When S =[0,2!%® — 1], the lookup proves all entries in v are between 0 and 248,

* S={(x]||y) | x€ {0,1}", y=SHA256(x)}

Lookup argument

 Alookup argument is a special proof system (e.g. a SNARK) for lookup relations.
» Examples:
* When S =[0,2!%® — 1], the lookup proves all entries in v are between 0 and 248,
* S={x][|y) | x € {0,1}", y=5HA256(x)}

» Why do we need lookup arguments?

Lookup argument

 Alookup argument is a special proof system (e.g. a SNARK) for lookup relations.
» Examples:
* When S =[0,2!%® — 1], the lookup proves all entries in v are between 0 and 248,
* S={x][|y) | x € {0,1}", y=5HA256(x)}
» Why do we need lookup arguments?

» The previous statements can be proved with a regular SNARK.

Lookup argument

 Alookup argument is a special proof system (e.g. a SNARK) for lookup relations.
» Examples:
* When S =[0,2!%® — 1], the lookup proves all entries in v are between 0 and 248,
* S={x][|y) | x € {0,1}", y=5HA256(x)}
» Why do we need lookup arguments?
» The previous statements can be proved with a regular SNARK.

» However, arithmetizing it (i.e. writing it in Plonkish, R1CS, CCS, AIR
constraints) is really expensive.

Lookup argument

 Alookup argument is a special proof system (e.g. a SNARK) for lookup relations.
» Examples:
* When S =[0,2!%® — 1], the lookup proves all entries in v are between 0 and 248,
* S={x][|y) | x € {0,1}", y=5HA256(x)}
» Why do we need lookup arguments?
» The previous statements can be proved with a regular SNARK.

» However, arithmetizing it (i.e. writing it in Plonkish, R1CS, CCS, AIR
constraints) is really expensive.

» Here "expensive" means that a huge circuit is required. E.g. SHA-256 requires
~ 2%V constraints as R1CS.

The FLI scheme

The FLI scheme

» Let R; be a lookup relation for a set §, so

The FLI scheme

» Let R; be a lookup relation for a set §, so

R¢={(cmyv) |velF" v,el Vij}

The FLI scheme

» Let R; be a lookup relation for a set §, so
R¢={(cmyv) |velF" v,el Vij}

» To simplify exposition, from now on we forget about commitments. We
write (cm,;v) € R¢as v C S.

The FLI scheme

» Let R; be a lookup relation for a set §, so
R¢={(cmyv) |velF" v,el Vij}

» To simplify exposition, from now on we forget about commitments. We
write (cm,;v) € R¢as v C S.

» We have two lookup instancesv, C S, v, C S.

The FLI scheme

» Let R; be a lookup relation for a set §, so
R¢={(cmyv) |velF" v,el Vij}

» To simplify exposition, from now on we forget about commitments. We
write (cm,;v) € R¢as v C S.

» We have two lookup instancesv, C S, v, C S.

» We want P and V to create a new instance v, C § so that

The FLI scheme

» Let R; be a lookup relation for a set §, so
R¢={(cmyv) |velF" v,el Vij}

» To simplify exposition, from now on we forget about commitments. We
write (cm,;v) € R¢as v C S.

» We have two lookup instancesv, C S, v, C S.
» We want P and V to create a new instance v, C § so that

V3 CS ¢>(e.w.n.p) Vi C 5, %) CS5

The FLI scheme

The FLI scheme

* Notev C Sif and only if:

The FLI scheme

* Notev C Sif and only if:

» Thereisa |v| x |S| matrix M such that all its rows are elementary vectors.

The FLI scheme

* Notev C Sif and only if:
» Thereisa |v| x |S| matrix M such that all its rows are elementary vectors.

Notation: M € R

elem®

The FLI scheme

* Notev C Sif and only if:
» Thereisa |v| x |S| matrix M such that all its rows are elementary vectors.

Notation: M € R

elem®

o M-St ="

The FLI scheme

* Notev C Sif and only if:

» Thereisa |v| x |S| matrix M such that all its rows are elementary vectors.

Notation: M € R

elem*
o M-St ="

» Elementary vector = all entries are 0 except for one entry, which is 1.

The FLI scheme

* Notev C Sif and only if:
» Thereisa |v| x |S| matrix M such that all its rows are elementary vectors.
Notation: M € R, .
« M. ST =y!
» Elementary vector = all entries are 0 except for one entry, which is 1.

» Example: §=(1,2,3,4), v=(4,2), then

The FLI scheme

* Notev C Sif and only if:
» Thereisa |v| x |S| matrix M such that all its rows are elementary vectors.
Notation: M € R, .
« M. ST =y!
» Elementary vector = all entries are 0 except for one entry, which is 1.

» Example: §=(1,2,3,4), v=(4,2), then

1
0O 0 0 1\]|2] (4 T _ T
(0100)3‘(2) M3t =y
4

The FLI scheme

* Notev C Sif and only if:
» Thereisa |v| x |S| matrix M such that all its rows are elementary vectors.
Notation: M € R, .
o M-St ="
» Elementary vector = all entries are 0 except for one entry, which is 1.
» Example: §=(1,2,3,4), v=(4,2), then
1
GUS L) e
4

» Simply, the i — th row of M indicates a position of S that equals v,

The FLI scheme >

The FLI scheme ==

R, ={]|v|X|S| matrices all whose rows are elementary vectors}

elem

The FLI scheme

R

7

= {|v| X |S| matrices all whose rows are elementary vectors}

elem

+ We can replace the claimv C S by “there exists M e R,,, st.M-S! =TI,

elem

The FLI scheme ==

R, ={]|v|X|S| matrices all whose rows are elementary vectors}

elem

+ We can replace the claimv C S by “there exists M e R,,, st.M-S! =TI,

elem

* Then to fold two claims

The FLI scheme ==

R, ={]|v|X|S| matrices all whose rows are elementary vectors}

elem

+ We can replace the claimv C S by “there exists M e R,,, st.M-S! =TI,

elem

* Then to fold two claims
V€S, v CS

*
<<=}’ HMI’MZ’ Ml y ST= VIT, M2 ‘ ST= V2Ta M19M2 S R€l€M> ()

The FLI scheme >

R, ={]|v|X|S| matrices all whose rows are elementary vectors}

elem

+ We can replace the claimv C S by “there exists M e R,,, st.M-S! =TI,

elem

» Then to fold two claims
V€S, v CS .
(@ My, M; M1‘5T=V1T» M2'5T=V2T» MI’MZERelem> o

* Vsends arandom element a € F, and the claim (*) is reduced to

The FLI scheme >

R, ={]|v|X|S| matrices all whose rows are elementary vectors}

elem

+ We can replace the claimv C S by “there exists M e R,,, st.M-S! =TI,

elem

» Then to fold two claims
V€S, v CS .
(‘i’ My, M; M1‘5T=V1T» M2'5T=V2T» MI’MZERelem> o

* Vsends arandom element a € F, and the claim (*) is reduced to

(M, + aM,) - ST = (v; + avz)T, M, M, € R (*%)

elem

The FLI scheme >

R, ={]|v|X|S| matrices all whose rows are elementary vectors}

elem

+ We can replace the claimv C S by “there exists M e R,,, st.M-S! =TI,

elem

» Then to fold two claims
V€S, v CS .
(‘i’ My, M; M1‘5T=V1T» M2'5T=V2T» MI’MZERelem> o

* Vsends arandom element a € F, and the claim (*) is reduced to

(M, + aM,) - ST = (v; + avz)T, M, M, € R (*%)

elem

* |t can be seen that, with high probability (over the choice of), (*) holds it
and only if (**) holds.

The FLI scheme >

(Ml -+ Ole) . ST — (Vl + aV2)T, Ml’MZ - R (**)

elem

(Ml -+ Ole) . ST — (Vl + aV2)T, Ml’MZ - R (**)

elem

* (**)is barely better than our initial claim (*). The issue is that we have two
hanging claims M, € R,,,, and M, € R

elem elem®

(Ml -+ Ole) . ST — (Vl + aV2)T, Ml’MZ - R (**)

elem

* (**)is barely better than our initial claim (*). The issue is that we have two
hanging claims M, € R,,,, and M, € R

elem elem®

* The next step consists in folding these two claims.

(Ml —+ Ole) ° ST —_ (Vl —+ aV2)T, Ml’MZ = Relem (**)

* (**)is barely better than our initial claim (*). The issue is that we have two
hanging claims M, e R,,, . and M, €R,,, .

* The next step consists in folding these two claims.

» The ideais to define R, algebraically as follows:
A matrix M belongs to R, if and only:

(Ml —+ Ole) ° ST —_ (Vl —+ aV2)T, Ml’MZ = Relem (**)

* (**)is barely better than our initial claim (*). The issue is that we have two
hanging claims M, e R,,, . and M, €R,,, .

* The next step consists in folding these two claims.

» The ideais to define R, algebraically as follows:
A matrix M belongs to R, if and only:

+ M: = M for all entries M;; of M. This ensures M contains only 0 or 1's.

(Ml —+ Ole) ° ST —_ (Vl —+ aV2)T, Ml’MZ = Relem (**)

* (**)is barely better than our initial claim (*). The issue is that we have two
hanging claims M, e R,,, . and M, €R,,, .

* The next step consists in folding these two claims.

» The ideais to define R, algebraically as follows:
A matrix M belongs to R, if and only:

+ M: = M for all entries M;; of M. This ensures M contains only 0 or 1's.

+ M -1' =1'. With the above, this ensures each row contains exactly one 1.

The FLI scheme >

c M eR

iff M:=M; M-1"=1".

elem

The FLI scheme >

+ MER iff M:=M; M-1"=1".

elem

» The RHS above is roughly a R1CS constraint where the witness vector is the
matrix M.

c M eR

elem

iff M:=M; M-1"=1".

» The RHS above is roughly a R1CS constraint where the witness vector is the
matrix M.

» Accordingly, we can fold the statements M, € R
type approach.

M, € R, using a Nova-

elem? elem

The FLI scheme >

+ MER iff M:=M; M-1"=1".

elem

» The RHS above is roughly a R1CS constraint where the witness vector is the
matrix M.

» Accordingly, we can fold the statements M, € R
type approach.

M, € R, using a Nova-

elem? elem

* The final folded instance has the form :

c M eR

iff M:=M; M-1"=1".

elem

» The RHS above is roughly a R1CS constraint where the witness vector is the
matrix M.

» Accordingly, we can fold the statements M, € R
type approach.

M, € R, using a Nova-

elem? elem

* The final folded instance has the form :

(M, + aM,) - S* = (vi + av,)’, (M, +aM,) € R

elem—relaxed

c M eR

elem

iff M:=M; M-1"=1".

» The RHS above is roughly a R1CS constraint where the witness vector is the
matrix M.

» Accordingly, we can fold the statements M, € R
type approach.

M, € R, using a Nova-

elem? elem

* The final folded instance has the form :

(M, + aM,) - S* = (vi + av,)’, (M, +aM,) € R

elem—relaxed

* R, _..ueq 1S @ relaxed version” of R, Similar to a relaxed R1CS.

elem!

M e R

iff M:=M; M-1"=1".

elem

The RHS above is roughly a R1CS constraint where the witness vector is the
matrix M.

Accordingly, we can fold the statements M, € R
type approach.

M, € R, using a Nova-

elem? elem

The final folded instance has the form :

(M, + aM,) - S* = (vi + av,)’, (M, +aM,) € R

elem—relaxed

R, _.....q1Sa " relaxedversion” of R, , similar to a relaxed R1CS.

elem!

Leveraging the sparseness of M. the overall cost for P and V is similar to
Nova on witnesses of size | v

A caveat

A caveat

+ Wereduced from M, -S" =v/, M,-S"=v), M,M,E€R,,, tO

elem

A caveat

+ Wereduced from M, -S" =v/, M,-S"=v), M,M,E€R,,, tO

elem

(M, + aM,) - S" = (v; + av,)’, (M, + aM,) € R

elem

A caveat

+ Wereduced from M, -S" =v/, M,-S"=v), M,M,E€R,,, tO

elem

(M, + aM,) - S" = (v; + av,)’, (M, + aM,) € R

elem

» While M,, M, are highly sparse matrices, M, + aM, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

A caveat

+ Wereduced from M, -S" =v/, M,-S"=v), M,M,E€R,,, tO

elem

(M, + aM,) - S" = (v; + av,)’, (M, + aM,) € R

elem

» While M,, M, are highly sparse matrices, M, + aM, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

T _ T
M- S" = Veold» Ma € R

elem

A caveat

+ Wereduced from M, -S" =v/, M,-S"=v), M,M,E€R,,, tO

elem

(M, + aM,) - S" = (v; + av,)’, (M, + aM,) € R

elem

» While M,, M, are highly sparse matrices, M, + aM, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

T _ T
M- S" = Veold» Ma € R

elem

for M,,a dense |v]-|S| matrix.

A caveat

+ Wereduced from M, -S" =v/, M,-S"=v), M,M,E€R,,, tO

elem

(M, + aM,) - S" = (v; + av,)’, (M, + aM,) € R

elem

» While M,, M, are highly sparse matrices, M, + aM, loses a bit of sparsity. Iterating

this folding procedure can lead to a folded statement of the form
Mg+ S = Vfgld’ Ma € R

elem

for M,,a dense |v]-|S| matrix.

* Hence, proving the folded statement could be very expensive.

A caveat

+ Wereduced from M, -S" =v/, M,-S"=v), M,M,E€R,,, tO

elem

(M, + aM,) - S" = (v; + av,)’, (M, + aM,) € R

elem

» While M,, M, are highly sparse matrices, M, + aM, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

elem

T .. T
M- S" = Veold» Ma € R
for M,,a dense |v]-|S| matrix.

* Hence, proving the folded statement could be very expensive.

+ We use the concept of SOS-decomposability (Lasso) to reduce | S| to | S| in
exchange for doing “c small folds per folding step”.

A caveat

+ Wereduced from M, -S" =v/, M,-S"=v), M,M,E€R,,, tO

elem

(M, + aM,) - S" = (v; + av,)’, (M, + aM,) € R

elem

» While M,, M, are highly sparse matrices, M, + aM, loses a bit of sparsity. Iterating
this folding procedure can lead to a folded statement of the form

T .. T
Mfald -5 = Vfold’ Mfold = Relem
for M,,a dense |v]-|S| matrix.

* Hence, proving the folded statement could be very expensive.

+ We use the concept of SOS-decomposability (Lasso) to reduce | S| to | S| in
exchange for doing “c small folds per folding step”.

» Note: Any other scheme working with huge SOS-dec. tables needs also to increase
the number of folds per step by ¢ (though ¢ can be taken smaller), and FLI can make
this step with less commitment costs.

Large tables and SOS decomposability

Large tables and SOS decomposability

* From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS
decomposable if its elements can be written as algebraic expressions involving
smaller sets.

Large tables and SOS decomposability

* From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS
decomposable if its elements can be written as algebraic expressions involving

smaller sets.
+ Example: § = {0,1,...,21° — 1}. Note we can't even store S in memory.

Large tables and SOS decomposability

* From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS
decomposable if its elements can be written as algebraic expressions involving

smaller sets.
+ Example: § = {0,1,...,21° — 1}. Note we can't even store S in memory.

» An element x belongs to S if and only if

Large tables and SOS decomposability

* From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS
decomposable if its elements can be written as algebraic expressions involving

smaller sets.
+ Example: § = {0,1,...,21° — 1}. Note we can't even store S in memory.

» An element x belongs to S if and only if

X = xl + 232)(:2 + 264X3 + 296X4 (*)

Large tables and SOS decomposability

* From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS
decomposable if its elements can be written as algebraic expressions involving

smaller sets.
+ Example: § = {0,1,...,21° — 1}. Note we can't even store S in memory.

» An element x belongs to S if and only if

x = x; + 29%x, + 2%%x; + 2%%x, (*)

And x; € S’ for all i, where S’ = {0,...,2°* — 1}.

Large tables and SOS decomposability

* From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS
decomposable if its elements can be written as algebraic expressions involving

smaller sets.
+ Example: § = {0,1,...,21° — 1}. Note we can't even store S in memory.

» An element x belongs to S if and only if
X = xl + 232)(:2 + 264X3 + 296X4 (*)
And x. € S’ for all i, where §’ = {0,...,2°2 - 1}.

* Hence, to prove x € §, one can prove (*) and then provex, € §',i = 1,2,3,4

Large tables and SOS decomposability

* From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS
decomposable if its elements can be written as algebraic expressions involving

smaller sets.
+ Example: § = {0,1,...,21° — 1}. Note we can't even store S in memory.

» An element x belongs to S if and only if
x = x; + 29%x, + 2%%x; + 2%%x, (*)
And x. € S’ for all i, where §’ = {0,...,2°2 - 1}.
* Hence, to prove x € §, one can prove (*) and then provex, € §',i = 1,2,3,4

* This is good because: (*) is very simple; and S’is small: | §'| = 2%

Large tables and SOS decomposability

* From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS
decomposable if its elements can be written as algebraic expressions involving

smaller sets.
+ Example: § = {0,1,...,21° — 1}. Note we can't even store S in memory.

» An element x belongs to S if and only if
x = x; + 29%x, + 2%%x; + 2%%x, (*)
And x. € S’ for all i, where §’ = {0,...,2°2 - 1}.
* Hence, to prove x € §, one can prove (*) and then provex, € §',i = 1,2,3,4
* This is good because: (*) is very simple; and S’is small: | §'| = 2%

» We can actually make the S’ as small as wanted by making (*) longer.

Large tables and SOS decomposability

* From the Lasso paper (Setty, Thaler, 2023): A set/table of elements S is SOS
decomposable if its elements can be written as algebraic expressions involving
smaller sets.

+ Example: § = {0,1,...,21° — 1}. Note we can't even store S in memory.
» An element x belongs to S if and only if
x = x; + 29%x, + 2%%x; + 2%%x, (*)
And x. € S’ for all i, where §’ = {0,...,2°2 - 1}.
* Hence, to prove x € §, one can prove (*) and then provex, € §',i = 1,2,3,4
* This is good because: (*) is very simple; and S’is small: | §'| = 2%
» We can actually make the S’ as small as wanted by making (*) longer.

» Jolt (Arun et al. 2023): Many S's of interest are SOS-dec. E.g. RISC-V instructions

FLI and SOS decomposition

FLI and SOS decomposition

» Let's take S = {0,1,....2%2 — 1)

FLI and SOS decomposition

» Let's take S = {0,1,....2%2 — 1)

+ An element x belongs to S if and only if x = x, + 2'%x, (%)

FLI and SOS decomposition

» Let's take S = {0,1,....2%2 — 1)
+ An element x belongs to S if and only if x = x, + 2'%x, (%)

And x; € S’ for all i, where §’ = {0,...,21° - 1}.

FLI and SOS decomposition

» Let's take S = {0,1,....2%2 — 1)
+ An element x belongs to S if and only if x = x, + 2'%x, (%)
And x; € S’ for all i, where §’ = {0,...,21° - 1}.

+ Say we want to prove v C S. Equivalenty that M - ST = v! for some M € R

elem®

FLI and SOS decomposition

Let's take S = {0.1,...,.2%2 — 1)

An element x belongs to S if and only if x = x; + 2%, (¥)

And x; € S’ for all i, where §’ = {0,...,21° - 1}.

Say we want to prove v C S. Equivalenty that M - S* = v! for some M € R

elem®

Following (*), we can write v C § as

FLI and SOS decomposition

Let's take S = {0.1,...,.2%2 — 1)

An element x belongs to S if and only if x = x; + 2%, (¥)

And x; € S’ for all i, where §’ = {0,...,21° - 1}.

Say we want to prove v C S. Equivalenty that M - S* =v! forsomeM eR,, .

Following (*), we can write v C § as

o v =y 4219 for vectors vV, v,

FLI and SOS decomposition

Let's take S = {0.1,...,.2%2 — 1)

An element x belongs to S if and only if x = x; + 2%, (¥)

And x; € S’ for all i, where §’ = {0,...,21° - 1}.

Say we want to prove v C S. Equivalenty that M - S* = v! for some M € R

elem®

Following (*), we can write v C § as
o v =y 4219 for vectors vV, v,

. V(i) cCS & Mi : S’T — V(i)T, Mi ER fori = 1,2

elem!

FLI and SOS decomposition

Let's take S = {0.1,...,.2%2 — 1)
An element x belongs to S if and only if x = x; + 2%, (¥)
And x; € S’ for all i, where §’ = {0,...,21° - 1}.

Say we want to prove v C S. Equivalenty that M - S* = v! for some M € R

elem®

Following (*), we can write v C § as
o v =y 4219 for vectors vV, v,

. V(i) cCS & Mi : S’T — V(i)T, Mi ER fori = 1,2

elem!

These conditions are equivalenttov = (M, - §) +2'°(M, - Sy and M;,M, € R

elem

FLI and SOS decomposition

Let's take S = {0.1,...,.2%2 — 1)
An element x belongs to S if and only if x = x; + 2%, (¥)
And x; € S’ for all i, where §’ = {0,...,21° - 1}.

Say we want to prove v C S. Equivalenty that M - S* = v! for some M € R

elem®

Following (*), we can write v C § as
o v =y 4219 for vectors vV, v,

. V(i) cCS & Mi : S’T — V(i)T, Mi ER fori = 1,2

elem!

These conditions are equivalenttov = (M, - §) +2'°(M, - Sy and M;,M, € R

elem

We now use a Hypernova-style sumcheck to reduce the equality to two linear
equalities, plus M,,M, € R,,, . Then we perform folding similarly as before.

elem’

FLI and other folding schemes

FLI and other folding schemes

» Overall, FLI has the cheapest folding Prover and Vertfier we are aware of.

FLI and other folding schemes

» Overall, FLI has the cheapest folding Prover and Vertfier we are aware of.

» However, when doing many foldings, it works with a dense |v| - |S| witnhess.

FLI and other folding schemes

» Overall, FLI has the cheapest folding Prover and Vertfier we are aware of.
» However, when doing many foldings, it works with a dense |v| - |S| witnhess.

» If S'is SOS decomposable, roughly:

FLI and other folding schemes

» Overall, FLI has the cheapest folding Prover and Vertfier we are aware of.
» However, when doing many foldings, it works with a dense |v| - |S| witnhess.
» If S'is SOS decomposable, roughly:

» We turn each folding step into ¢ folding steps.

FLI and other folding schemes

» Overall, FLI has the cheapest folding Prover and Vertfier we are aware of.
» However, when doing many foldings, it works with a dense |v| - |S| witnhess.
» If S'is SOS decomposable, roughly:

» We turn each folding step into ¢ folding steps.

1/c

» Then when proving a folded instance, we work with |v]|-|S]|"“-sized

withess.

FLI and other folding schemes

» Overall, FLI has the cheapest folding Prover and Vertfier we are aware of.
» However, when doing many foldings, it works with a dense |v| - |S| witnhess.
» If S'is SOS decomposable, roughly:

» We turn each folding step into ¢ folding steps.

» Then when proving a folded instance, we work with |v|-|S|"-sized
witness.

* FLI can leverage SOS decomposability of S with much less field operations
and commitments than other schemes: Protostar (Bunz, Biny Chen, 2023),

Proofs for Deep Thougth (Bunz, Jessica Chen, 2024), NeutronNova
(Kothapally, Setty, 2024)

New trends in the zk world: SOS decomposition

New trends in the zk world: SOS decomposition

* In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are
SOS decomposable.

New trends in the zk world: SOS decomposition

* In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are
SOS decomposable.

* Namely, those capturing the RISC-V instructions.

New trends in the zk world: SOS decomposition

* In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are
SOS decomposable.

* Namely, those capturing the RISC-V instructions.

» They propose building a zkVM that proves computations using the Lasso
lookup, exploiting the SOS-decomposability of the RISC-V tables.

New trends in the zk world: SOS decomposition

* In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are
SOS decomposable.

* Namely, those capturing the RISC-V instructions.

» They propose building a zkVM that proves computations using the Lasso
lookup, exploiting the SOS-decomposability of the RISC-V tables.

» Roughly, a RISC-V table has the form

New trends in the zk world: SOS decomposition

* In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are
SOS decomposable.

* Namely, those capturing the RISC-V instructions.

» They propose building a zkVM that proves computations using the Lasso
lookup, exploiting the SOS-decomposability of the RISC-V tables.

» Roughly, a RISC-V table has the form

S={(x]||y|lz) | (x,y) Input to an instruction, z output}

New trends in the zk world: SOS decomposition

* In Jolt (Arun, Setty, Thaler, 2023) it is observed that many natural sets are
SOS decomposable.

* Namely, those capturing the RISC-V instructions.

» They propose building a zkVM that proves computations using the Lasso
lookup, exploiting the SOS-decomposability of the RISC-V tables.

» Roughly, a RISC-V table has the form
S={(x]||y|lz) | (x,y) Input to an instruction, z output}

» Example: An instruction could be bitwise XOR of 64-bit strings. Then
‘Sl — 23-64 — 2192.

Handling very large computations in jolt

Handling very large computations in jolt

+ Jolt targets proving computations with 2* instructions.

Handling very large computations in jolt

+ Jolt targets proving computations with 2* instructions.

* This means Jolt must prove a lookup instance v C S where S is gigantic
(concatenation of all instruction tables) and SOS decomposable.

Handling very large computations in jolt

+ Jolt targets proving computations with 2* instructions.

* This means Jolt must prove a lookup instance v C S where S is gigantic
(concatenation of all instruction tables) and SOS decomposable.

» It's currently unfeasible to do that in a single shot, due to memory constraints.

Handling very large computations in jolt

+ Jolt targets proving computations with 2* instructions.

* This means Jolt must prove a lookup instance v C S where S is gigantic
(concatenation of all instruction tables) and SOS decomposable.

» It's currently unfeasible to do that in a single shot, due to memory constraints.

» Because of this, the Jolt team proposes to:

Handling very large computations in jolt

+ Jolt targets proving computations with 2* instructions.

* This means Jolt must prove a lookup instance v C S where S is gigantic
(concatenation of all instruction tables) and SOS decomposable.

» It's currently unfeasible to do that in a single shot, due to memory constraints.
» Because of this, the Jolt team proposes to:

1. Split the lookup into, say, 2° lookups v, C S, ...,v,s C S, where |v,| = 2P

Handling very large computations in jolt

+ Jolt targets proving computations with 2* instructions.

* This means Jolt must prove a lookup instance v C S where S is gigantic
(concatenation of all instruction tables) and SOS decomposable.

» It's currently unfeasible to do that in a single shot, due to memory constraints.
» Because of this, the Jolt team proposes to:
1. Split the lookup into, say, 2° lookups v, C S, ...,v,s C S, where |v,| = 2P

2. Either:

Handling very large computations in jolt

+ Jolt targets proving computations with 2* instructions.

* This means Jolt must prove a lookup instance v C S where S is gigantic
(concatenation of all instruction tables) and SOS decomposable.

» It's currently unfeasible to do that in a single shot, due to memory constraints.
» Because of this, the Jolt team proposes to:
1. Split the lookup into, say, 2° lookups v, C S, ...,v,s C S, where |v,| = 2P
2. Either:

* Prove each lookup and then create a recursive proof.

Handling very large computations in jolt

+ Jolt targets proving computations with 2* instructions.

* This means Jolt must prove a lookup instance v C S where S is gigantic
(concatenation of all instruction tables) and SOS decomposable.

» It's currently unfeasible to do that in a single shot, due to memory constraints.
» Because of this, the Jolt team proposes to:
1. Split the lookup into, say, 2° lookups v, C S, ...,v,s C S, where |v,| = 2P
2. Either:
* Prove each lookup and then create a recursive proof.

» Fold the 2° lookups and then prove the folded claim.

