
Yale University

Computer Science

Zeyu Liu, Yunhao Wang

Yale University

Relaxed Functional Bootstrapping:

A New Perspective on BGV/BFV Bootstrapping

Yale University

Computer Science

2

Fully Homomorphic Encryption & Bootstrapping

• Very inefficient

• Bootstrapping circuit is complicated

• Bootstrapping does nothing else

• Our work:

• Define and build relaxed functional bootstrapping

• Allows a more efficient bootstrapping circuit

• Free function evaluation during bootstrapping

Enc(𝑥)𝑥 Enc(𝑓(𝑥))

Enc(noise)
𝑓′

𝑓

Enc(𝑓(𝑥))
Boot

Enc(𝑓′(𝑓 𝑥))
𝑓′

Yale University

Computer Science

3

BGV/BFV FHE Scheme

• Ring-LWE based

• Works over rings 𝑅 = ℤ 𝑋 /𝜙𝑁(𝑋) where 𝜙𝑁(𝑋) is the 𝑁-th cyclotomic polynomial

• Ciphertexts has form 𝑎, 𝑏 ∈ 𝑅𝑞
2 for some large 𝑞

• 𝑏 = 𝑎𝑠 + 𝑒 + ⌈
𝑞

𝑝𝑟
𝑚⌋

• Plaintext space 𝑅𝑝𝑟 for some 𝑝𝑟

• 𝑚 ∈ 𝑅𝑝𝑟

• If 𝑁 is a power of 2 and 𝑝 mod 2𝑁 ≡ 1, plaintext space can be ℤ𝑝
𝑁 (encode 𝑚 ∈ ℤ𝑝

𝑁 into 𝑚 ∈ 𝑅𝑝)

• Allows addition & multiplication

• For ℤ𝑝
𝑁, operations are done element-wise

a b c ... z

a' b’ c’ ... z’

a b c ... z

a' b’ c’ ... z’

Yale University

Computer Science

4

Past Works in BGV/BFV Bootstrapping

• Temporarily enlarge plaintext space

• From 𝑝𝑟 to 𝑝𝑒 for some 𝑒 > 𝑟

• This restricts the choice of 𝑝

Yale University

Computer Science

5

Relaxed Functional Bootstrapping Definition

• Plaintext space ℤ𝑝
𝑁 (operated element-wise)

• Correctness only guaranteed for 𝑋 ⊆ ℤ𝑝
• i.e., if 𝑚 ∈ 𝑋, output is 𝑓(𝑚) for some pre-defined 𝑓: 𝑋 → ℤ𝑝

• Output noise budget > input noise budget

• If 𝑓 is non-trivial, it can be interesting even if noise budget does not increase

• Regular bootstrapping is a special case of ours

• Why reasonable?

• For lots of applications, we know the input in advance.

• Example 1: after a comparison, the result is always 0/1

• Example 2: encode the data into 𝑋 instead of ℤ𝑝 for applications like PIR/PSI

Yale University

Computer Science

6

Relaxed Functional Bootstrapping Definition

• What if 𝑚 ∉ 𝑋?

• In general, we do not care. This is the core source of our efficiency improvement.

• However, we define ℓ-closeness

• If 𝑚 ∉ 𝑋, output 𝑓(𝑚′) where 𝑚′ ∈ 𝑋 is one of the ℓ closest elements to 𝑚

• Some of our constructions achieve this for free, some does not achieve it, and some achieves with costs

• Can be useful for some applications like privacy-preserving machine learning

Yale University

Computer Science

7

Our starting point (part 1)

• Define 𝑋 ≔ [0, 𝑝 − 1 − 𝑟, 𝑟] (i.e., (0, 𝑟, 2𝑟, … , 𝑝 − 1 − 𝑟))

• 𝑟 to-be-defined

• Assume 𝑟 divides 𝑝
• Otherwise choose 𝑟 to be the nearest value that divides 𝑝

• Or let 𝑋 ≔ 0, 𝑝 − 𝑐 − 𝑟, 𝑟 for some integer 𝑐 such that 𝑟|𝑝 − 𝑐

• Define 𝑓 to be the identity function

• i.e., output 𝑚 if 𝑚 ∈ 𝑋

Yale University

Computer Science

8

Our starting point (part 1)

• Given ciphertext 𝑎, 𝑏 ∈ 𝑅𝑞 encrypting 𝑚 ∈ ℤ𝑝

• Modulus switching it to 𝑎′, 𝑏′ ∈ 𝑅𝑝encrypting 𝑚 ∈ ℤ𝑝

• If 𝑚 ∈ 𝑋, 𝑚′ ∈ (𝑚 −
𝑟

2
, 𝑚 +

𝑟

2
), where 𝑟 is the modulus switching error

Yale University

Computer Science

9

Our starting point (part 1)

• Homomorphically decrypt 𝑎′, 𝑏′ ∈ 𝑅𝑝 to obtain 𝑚′

• Compute −𝑎𝑠 + 𝑏 ∈ 𝑅𝑝
• This can be done either via linear transformation or homomorphic NTT

• Homomorphically compute a function 𝑓𝑝𝑜𝑠𝑡

• Maps (𝑚 −
𝑟

2
, 𝑚 +

𝑟

2
) to 𝑚,∀𝑚 ∈ 𝑋

• This can be done via a degree-(𝑝 − 1) function

• Correctness is achieved in a straightforward way

• 2-closeness

• If 𝑚 ∉ 𝑋, after modulus switching

𝑚′ ∈ (𝑚1 −
𝑟

2
, 𝑚2 +

𝑟

2
) where 𝑚1 < 𝑚 < 𝑚2

and 𝑚1, 𝑚2 ∈ 𝑋

Yale University

Computer Science

10

Our starting point (part 2)

• Define 𝑋2 ≔ [𝑢, 𝑣, 𝑟′] (i.e., (𝑢, 𝑢 + 𝑟′, 𝑢 + 2𝑟′, … , 𝑣))

• Arbitrary 𝑟′

• Require
𝑣 −𝑢

𝑟′
=

𝑝 − 1

𝑟

• Define 𝑓2 to be an arbitrary function 𝑓2: 𝑋2 → ℤ𝑝
• i.e., output 𝑓2(𝑚) if 𝑚 ∈ 𝑋2

Yale University

Computer Science

11

Our starting point (part 2)

• Now it is possible that 𝑟′ ≤ 𝑟

• Direct modulus switching may cause error

• First homomorphically evaluate 𝑓𝑝𝑟𝑒
• 𝑓𝑝𝑟𝑒: 𝑋2 → 𝑋

• 𝑓𝑝𝑟𝑒 𝑥 ≔ 𝑟 ⋅ 𝑥 − 𝑢 ⋅ 𝑟′
−1

• Only one level of plaintext multiplication

• Can be merged with SlotToCoeff, so essentially for free

• Then performs modulus switching and homomorphic decryption

• Needs a new post-processing function, since 𝑓2 is no longer an identity function

• 𝑓𝑝𝑜𝑠𝑡,2 = 𝑓2(𝑓𝑝𝑟𝑒
−1(𝑟 ⋅ round(𝑥/𝑟)))

• Again, it can be interpolated as a degree 𝑝 − 1 function

Yale University

Computer Science

12

Our general framework

Yale University

Computer Science

13

More fine-grained constructions
-- multiple points

• Define 𝑋3 ≔ {𝑦1, … , 𝑦𝑧}

• Arbitrary points, but z <
𝑝 − 1

𝑟

• Define 𝑓3 to be an arbitrary function 𝑓3: 𝑋3 → ℤ𝑝

• Naturally, we can define 𝑓𝑝𝑟𝑒,3 to be a map from 𝑋3 to 𝑋1 (the first 𝑧 elements)

• However, if 𝑧 ≪
𝑝 − 1

𝑟
, a mapping 𝑓𝑝𝑟𝑒,3′(𝑥) ≔ 𝑤 ⋅ 𝑥 for some 𝑤 ∈ ℤ𝑝

∗ is already sufficient to obtain

a result 𝑋3
′ ≔ 𝑓𝑝𝑟𝑒,3′(𝑋3) such that every two points in 𝑋3

′ is separated by 𝑟

• 𝑓𝑝𝑜𝑠𝑡,3 is similar to 𝑓𝑝𝑜𝑠𝑡,2
• But only degree ≈ 𝑧 ⋅ 𝑟 instead of 𝑝 − 1

Yale University

Computer Science

14

More fine-grained constructions
-- multiple ranges

• Define 𝑋4 ≔ { 𝑢1, 𝑣1 , … , [𝑢𝑘 , 𝑣𝑘]}

• 𝑘 well-separated ranges

• i.e., 𝑢𝑖 − 𝑣𝑗 ≥ 𝑟, ∀ 𝑖, 𝑗 ∈ [𝑘]

• Define 𝑓4 to be an arbitrary function f4: 𝑋4 → ℤ𝑝 s.t.

• Mapping one range to one point

• i.e., 𝑓4 𝑥 = 𝑦𝑗 if 𝑥 ∈ 𝑢𝑗, 𝑣𝑗

• 𝑓𝑝𝑟𝑒,4 is simply an identity function

• 𝑓𝑝𝑜𝑠𝑡,4 is similar to 𝑓𝑝𝑜𝑠𝑡,3

• Except that it now maps [𝑢𝑖 +
𝑟

2
, 𝑣𝑖 +

𝑟

2
] to 𝑦𝑖

• It has degree ≈ 𝑋4 + 𝑘 ⋅ 𝑟

Yale University

Computer Science

15

More fine-grained constructions
-- unbalanced ranges

• Define 𝑋5 ≔ { 𝑢1, 𝑣1 , [𝑢2, 𝑣2]}

• 2 well-separated ranges

• One being much larger than the other, i.e. 𝑣2 − 𝑢2 ≫ 𝑣1 − 𝑢1
• Can be extended to 𝑘 ranges but preferably one range larger than the others combined

• Define 𝑓5 to be an arbitrary function f5: 𝑋5 → ℤ𝑝 s.t.

• Mapping one range to one point

• 𝑓𝑝𝑟𝑒,5 is again simply an identity function

• 𝑓𝑝𝑜𝑠𝑡,5 first checks if 𝑥 ∈ 𝑢1, 𝑣1
• If so, maps to 𝑦1, o.w., maps to 𝑦2
• 𝑓𝑝𝑜𝑠𝑡,5(𝑥) ≔ (ς

𝑖∈ 𝑢1−
𝑟

2
,𝑣1+

𝑟

2

𝑥 − 𝑖 𝑝 −1 ⋅ 𝑦2 − 𝑦1 + 𝑦1)

• This can be done in ≈ 𝑣1 − 𝑢1 + log 𝑝 + 𝑟

Yale University

Computer Science

16

Benchmarks

Yale University

Computer Science

17

Benchmarks

Yale University

Computer Science

18

Applications

• Oblivious Permutation

• [FLLP24] proposed a way to do homomorphic permutation

• Given a database of N bits, the server randomly permutes it without knowing the exact
permutation

• The server performs Thorp shuffle homomorphically, using random bits encrypted under FHE

Yale University

Computer Science

19

Oblivious Permutation

1 2 3 4 5 6 7 8

Yale University

Computer Science

20

Oblivious Permutation

1 2 3 4 5 6 7 8

Yale University

Computer Science

21

Oblivious Permutation

1 5

1 2 3 4

5 6 7 8

Yale University

Computer Science

22

Oblivious Permutation

1 2 3 4

5 6 7 8

1 5 6 2

Yale University

Computer Science

23

Oblivious Permutation

1 2 3 4

5 6 7 8

1 5 6 2

• This gives a permutation, but not yet random

• Repeat this process 𝑘 = 𝑂(𝜆) times

• Gives a random permutation except with 1 − negl(𝜆) probability

• Concretely, 𝑘 ≅ 400

• For simplicity, assume these bits are easily samplable under FHE

• [FLLP] achieves this by building an FHE-friendly PRG, ~0.3ms/bit

5 6 7 8

Yale University

Computer Science

24

Oblivious Permutation

• Suitable application for our relaxed bootstrapping

• ~400 levels

• Fix some valid input set 𝑋, encode every log(|𝑋|) bits into 𝑋

• The permutation circuit only involves swapping between elements (i.e., input output both in 𝑋)

• Using our bootstrapping, the runtime is > 100 × faster than prior works for the bootstrapping
part

• It has extra benefit of allowing more slots, thus in general more efficient

Yale University

Computer Science

25

Applications

• Oblivious Permutation

• PIR/PSI/Fuzzy PSI (with computation)

• Secure machine learning

• Closeness can be preferred

• Of independent interest, our techniques can be used to improve batched FHEW/TFHE
bootstrapping

Yale University

Computer Science

26

Thank you!

• Open questions

• Additional function families

• Other more efficient constructions

• More applications

• Paper: https://eprint.iacr.org/2024/172.pdf

	Slide 1: Relaxed Functional Bootstrapping: A New Perspective on BGV/BFV Bootstrapping
	Slide 2: Fully Homomorphic Encryption & Bootstrapping
	Slide 3: BGV/BFV FHE Scheme
	Slide 4: Past Works in BGV/BFV Bootstrapping
	Slide 5: Relaxed Functional Bootstrapping Definition
	Slide 6: Relaxed Functional Bootstrapping Definition
	Slide 7: Our starting point (part 1)
	Slide 8: Our starting point (part 1)
	Slide 9: Our starting point (part 1)
	Slide 10: Our starting point (part 2)
	Slide 11: Our starting point (part 2)
	Slide 12: Our general framework
	Slide 13: More fine-grained constructions -- multiple points
	Slide 14: More fine-grained constructions -- multiple ranges
	Slide 15: More fine-grained constructions -- unbalanced ranges
	Slide 16: Benchmarks
	Slide 17: Benchmarks
	Slide 18: Applications
	Slide 19: Oblivious Permutation
	Slide 20: Oblivious Permutation
	Slide 21: Oblivious Permutation
	Slide 22: Oblivious Permutation
	Slide 23: Oblivious Permutation
	Slide 24: Oblivious Permutation
	Slide 25: Applications
	Slide 26: Thank you!

