

Relaxed Functional Bootstrapping: A New Perspective on BGV/BFV Bootstrapping

Zeyu Liu, Yunhao Wang Yale University

Computer Science Fully Homomorphic Encryption & Bootstrapping

Yale University

• Free function evaluation during bootstrapping

BGV/BFV FHE Scheme

• Ring-LWE based

Yale University Computer Science

- Works over rings $R = \mathbb{Z}[X]/\phi_N(X)$ where $\phi_N(X)$ is the N-th cyclotomic polynomial
- Ciphertexts has form $(a, b) \in R_q^2$ for some large q
	- $b = as + e + [\frac{q}{p^{r}}m]$
- Plaintext space R_{p^r} for some p^r
	- $m \in R_{p^r}$
	- If N is a power of 2 and p mod $2N \equiv 1$, plaintext space can be \mathbb{Z}_p^N (encode $\vec{m} \in \mathbb{Z}_p^N$ into $m \in R_p$)
- Allows addition & multiplication
	- For \mathbb{Z}_p^N , operations are done element-wise

Computer Science Past Works in BGV/BFV Bootstrapping

• Temporarily enlarge plaintext space

Yale University

- From p^r to p^e for some $e > r$
- This restricts the choice of p

- Plaintext space \mathbb{Z}_p^N (operated element-wise)
	- Correctness only guaranteed for $X \subseteq \mathbb{Z}_p$
		- i.e., if $m \in X$, output is $f(m)$ for some pre-defined $f: X \to \mathbb{Z}_n$
	- Output noise budget $>$ input noise budget
		- If f is non-trivial, it can be interesting even if noise budget does not increase
	- Regular bootstrapping is a special case of ours
- Why reasonable?

Yale University

- For lots of applications, we know the input in advance.
- Example 1: after a comparison, the result is always $0/1$
- Example 2: encode the data into *X* instead of \mathbb{Z}_p for applications like PIR/PSI

Definition 3.1 (Correctness). The bootstrapping procedure is correct, if it satisfies the following: let $(pp = (N, t, \mathcal{B}_{\text{in}}, \mathcal{B}_{\text{out}}, \mathcal{F}, pp_{\text{aux}}),$ sk, btk) \leftarrow Setup (1^{λ}) , for any function $f: \mathcal{X} \to \mathcal{Y} \in \mathcal{F}$ (where $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{Z}_t$ and $|\mathcal{X}| \geq |\mathcal{Y}| \geq 2$, any honest input ciphertext ct with $\mathcal{B}(\mathsf{sk}, \mathsf{ct}) \geq \mathcal{B}_{\mathsf{in}}$, let $\mathsf{ct}' \leftarrow \mathsf{Boot}(\mathsf{pp}, \mathsf{btk}, f, \mathsf{ct})$, $\vec{m} \leftarrow \text{Dec}(\textsf{sk}, \textsf{ct}) \in \mathbb{Z}_{t}^{N}, \, \vec{m}' \leftarrow \text{Dec}(\textsf{sk}, \textsf{ct}') \in \mathbb{Z}_{t}^{N},$ it holds that:

$$
\Pr\left[\begin{array}{c} \forall \ i \in [N], \left[\text{if } \vec{m}[i] \in \mathcal{X}, f(\vec{m}[i]) = \vec{m}'[i] \right] \\ \wedge \left[\mathcal{B}(\text{sk}, \text{ct}') \geq \mathcal{B}_{\text{out}} > \mathcal{B}_{\text{in}} \right] \end{array}\right] \geq 1 - \mathsf{negl}(\lambda)
$$

Relaxed Functional Bootstrapping Definition

What if $m \notin X$?

Yale University Computer Science

- In general, we do not care. This is the core source of our efficiency improvement.
- However, we define ℓ -closeness
	- If $m \notin X$, output $f(m')$ where $m' \in X$ is one of the ℓ closest elements to m
	- Some of our constructions achieve this for free, some does not achieve it, and some achieves with costs
	- Can be useful for some applications like privacy-preserving machine learning

Definition 3.2 (ℓ -closeness). The bootstrapping procedure is ℓ -close, if it satisfies the following: for the same quantifiers as correctness; for all $x \in \mathbb{Z}_t \setminus \mathcal{X}$, let $y_{x,1}, \ldots, y_{x,|\mathcal{Y}|}$ denote all the points in \mathcal{Y} satisfying $|f_x^{-1}(y_{x,1}) - x| \leq |f_x^{-1}(y_{x,2}) - x| \leq \cdots \leq |f_x^{-1}(y_{x,|\mathcal{Y}|}) - x| \Big|^{910}$ and $\mathcal{S}_$ $i \in [N]$, if $\vec{m}[i] \notin \mathcal{X}$: $\Pr\left[f(\vec{m}[i]) \in \mathcal{S}_{\vec{m}[i]}\right] > 1 - \mathsf{negl}(\lambda)^{11}$

Our starting point (part 1)

- Define $X := [0, p 1 r, r]$ (i.e., $(0, r, 2r, ..., p 1 r)$)
	- r to-be-defined
	- Assume r divides p
		- Otherwise choose r to be the nearest value that divides p
		- Or let $X := [0, p c r, r]$ for some integer c such that $r|p c$
		- Define f to be the identity function
	- i.e., output *m* if $m \in X$

Our starting point (part 1)

- Given ciphertext $(a, b) \in R_q$ encrypting $m \in \mathbb{Z}_p$
- Modulus switching it to $(a', b') \in R_p$ encrypting $m \in \mathbb{Z}_p$
	- If $m \in X$, $m' \in (m \frac{r}{2})$ $\frac{r}{2}$, $m + \frac{r}{2}$ $\frac{1}{2}$), where r is the modulus switching error

Our starting point (part 1)

- Homomorphically decrypt $(a', b') \in R_p$ to obtain m'
	- Compute $-as + b \in R_n$
	- This can be done either via linear transformation or homomorphic NTT
- Homomorphically compute a function f_{post}
	- Maps $(m \frac{r}{2})$ $\frac{r}{2}$, $m + \frac{r}{2}$ $\frac{1}{2}$) to m, $\forall m \in X$
	- This can be done via a degree- $(p 1)$ function
- Correctness is achieved in a straightforward way
- 2-closeness
	- If $m \notin X$, after modulus switching $m' \in (m_1 - \frac{r}{2})$ $\frac{r}{2}$, $m_2 + \frac{r}{2}$ $\frac{1}{2}$) where $m_1 < m < m_2$ and $m_1, m_2 \in X$

Our starting point (part 2)

- Define $X_2 := [u, v, r']$ (i.e., $(u, u + r', u + 2r', ..., v))$)
	- Arbitrary r'
	- Require $\frac{v-u}{r'} = \frac{p-1}{r}$ r
- Define f_2 to be an arbitrary function $f_2: X_2 \to \mathbb{Z}_n$
	- i.e., output $f_2(m)$ if $m \in X_2$

Our starting point (part 2)

- Now it is possible that $r' \leq r$
	- Direct modulus switching may cause error
- First homomorphically evaluate f_{pre}
	- $f_{pre}: X_2 \to X$
	- $f_{pre}(x) \coloneqq r \cdot (x u) \cdot r'^{-1}$
	- Only one level of plaintext multiplication
	- Can be merged with SlotToCoeff, so essentially for free
- Then performs modulus switching and homomorphic decryption
- Needs a new post-processing function, since f_2 is no longer an identity function
	- $f_{post,2} = f_2(f_{pre}^{-1}(r \cdot \text{round}(x/r)))$
	- Again, it can be interpolated as a degree $p 1$ function

Our general framework

More fine-grained constructions -- multiple points

- Define $X_3 := \{y_1, ..., y_z\}$
	- Arbitrary points, but $z < \frac{p-1}{n}$ r
- Define f_3 to be an arbitrary function $f_3: X_3 \to \mathbb{Z}_n$
- Naturally, we can define $f_{\text{pre},3}$ to be a map from X_3 to X_1 (the first z elements)
	- However, if $z \ll \frac{p-1}{n}$ $\frac{-1}{r}$, a mapping $f_{pre,3'}(x) \coloneqq w \cdot x$ for some $w \in \mathbb{Z}_p^*$ is already sufficient to obtain a result $X'_3 := f_{pre,3'}(X_3)$ such that every two points in X'_3 is separated by r
- $f_{\text{post.3}}$ is similar to $f_{\text{post.2}}$
	- But only degree \approx z \cdot r instead of $p 1$

More fine-grained constructions -- multiple ranges

- Define $X_4 := \{ [u_1, v_1], ..., [u_k, v_k] \}$
	- k well-separated ranges
	- i.e., $|u_i v_i| \ge r, \forall i, j \in [k]$
- Define f_4 to be an arbitrary function $f_4: X_4 \to \mathbb{Z}_n$ s.t.
	- Mapping one range to one point
	- i.e., $f_4(x) = y_j$ if $x \in [u_j, v_j]$
- $f_{pre,4}$ is simply an identity function
- $f_{\text{post.4}}$ is similar to $f_{\text{post.3}}$
	- Except that it now maps $[u_i + \frac{r}{2}]$ $\frac{r}{2}$, $v_i + \frac{r}{2}$ $\frac{1}{2}$ to y_i
	- It has degree $\approx |X_A| + k \cdot r$

- Define $X_5 := \{ [u_1, v_1], [u_2, v_2] \}$
	- 2 well-separated ranges
	- One being much larger than the other, i.e. $v_2 u_2 \gg v_1 u_1$
	- Can be extended to k ranges but preferably one range larger than the others combined
- Define f_5 to be an arbitrary function $f_5: X_5 \to \mathbb{Z}_p$ s.t.
	- Mapping one range to one point
- $f_{pre,5}$ is again simply an identity function
- $f_{post,5}$ first checks if $x \in [u_1, v_1]$
	- If so, maps to y_1 , o.w., maps to y_2
	- $f_{post,5}(x) := (\prod_{i \in [u_1 \dots v_n]} f_{i})$ r $\frac{r}{2}v_1+\frac{r}{2}$ 2 $(x - i)^{p-1} \cdot (y_2 - y_1) + y_1$
	- This can be done in $\approx v_1 u_1 + \log(p) + r$

Benchmarks

Benchmarks

Applications

- Oblivious Permutation
	- [FLLP24] proposed a way to do homomorphic permutation
	- Given a database of N bits, the server randomly permutes it without knowing the exact permutation
		- The server performs Thorp shuffle homomorphically, using random bits encrypted under FHE

- This gives a permutation, but not yet random
- Repeat this process $k = O(\lambda)$ times
	- Gives a random permutation except with $1 \text{negl}(\lambda)$ probability
	- Concretely, $k \approx 400$
- For simplicity, assume these bits are easily samplable under FHE
	- [FLLP] achieves this by building an FHE-friendly PRG, ~0.3ms/bit

- Suitable application for our relaxed bootstrapping
	- \sim 400 levels
	- Fix some valid input set X, encode every $log(|X|)$ bits into X
	- The permutation circuit only involves swapping between elements (i.e., input output both in X)
- Using our bootstrapping, the runtime is $> 100 \times$ faster than prior works for the bootstrapping part
	- It has extra benefit of allowing more slots, thus in general more efficient

- Oblivious Permutation
- PIR/PSI/Fuzzy PSI (with computation)
- Secure machine learning
	- Closeness can be preferred
- Of independent interest, our techniques can be used to improve batched FHEW/TFHE bootstrapping

Thank you!

- Open questions
	- Additional function families
	- Other more efficient constructions
	- More applications
- Paper: https://eprint.iacr.org/2024/172.pdf