

Relaxed Functional Bootstrapping: A New Perspective on BGV/BFV Bootstrapping

Zeyu Liu, Yunhao Wang Yale University

Yale University Fully Homomorphic Encryption & Bootstrapping Computer Science Fully Homomorphic Encryption & Bootstrapping

• Free function evaluation during bootstrapping

BGV/BFV FHE Scheme

• Ring-LWE based

Yale University

Computer Science

- Works over rings $R = \mathbb{Z}[X]/\phi_N(X)$ where $\phi_N(X)$ is the *N*-th cyclotomic polynomial
- Ciphertexts has form $(a, b) \in R_q^2$ for some large q
 - $b = as + e + \left\lceil \frac{q}{p^r} m \right\rfloor$
- Plaintext space R_{p^r} for some p^r
 - $m \in R_{p^r}$
 - If *N* is a power of 2 and *p* mod $2N \equiv 1$, plaintext space can be \mathbb{Z}_p^N (encode $\vec{m} \in \mathbb{Z}_p^N$ into $m \in R_p$)
- Allows addition & multiplication
 - For \mathbb{Z}_p^N , operations are done element-wise

Past Works in BGV/BFV Bootstrapping Computer Science

Temporarily enlarge plaintext space

Yale University

- From p^r to p^e for some e > r
- This restricts the choice of p٠

- Plaintext space \mathbb{Z}_p^N (operated element-wise)
 - Correctness only guaranteed for $X \subseteq \mathbb{Z}_p$
 - i.e., if $m \in X$, output is f(m) for some pre-defined $f: X \to \mathbb{Z}_n$
 - Output noise budget > input noise budget
 - If f is non-trivial, it can be interesting even if noise budget does not increase
 - Regular bootstrapping is a special case of ours
- Why reasonable?

Yale University

- For lots of applications, we know the input in advance.
- Example 1: after a comparison, the result is always 0/1
- Example 2: encode the data into X instead of \mathbb{Z}_p for applications like PIR/PSI

Definition 3.1 (Correctness). The bootstrapping procedure is correct, if it satisfies the following: let $(\mathsf{pp} = (N, t, \mathcal{B}_{\mathsf{in}}, \mathcal{B}_{\mathsf{out}}, \mathcal{F}, \mathsf{pp}_{\mathsf{aux}}), \mathsf{sk}, \mathsf{btk}) \leftarrow \mathsf{Setup}(1^{\lambda}), \text{ for any function } f : \mathcal{X} \to \mathcal{Y} \in \mathcal{F} \text{ (where } \mathcal{X}, \mathcal{Y} \subseteq \mathbb{Z}_t$ and $|\mathcal{X}| \geq |\mathcal{Y}| \geq 2$,⁸ any honest input ciphertext ct with $\mathcal{B}(\mathsf{sk},\mathsf{ct}) \geq \mathcal{B}_{\mathsf{in}}$, let $\mathsf{ct}' \leftarrow \mathsf{Boot}(\mathsf{pp},\mathsf{btk},f,\mathsf{ct})$, $\vec{m} \leftarrow \mathsf{Dec}(\mathsf{sk},\mathsf{ct}) \in \mathbb{Z}_t^N, \, \vec{m}' \leftarrow \mathsf{Dec}(\mathsf{sk},\mathsf{ct}') \in \mathbb{Z}_t^N, \, \text{it holds that:}$

$$\Pr\left[\begin{array}{c} \forall i \in [N], \text{ if } \vec{m}[i] \in \mathcal{X}, f(\vec{m}[i]) = \vec{m}'[i] \\ \land \quad \mathcal{B}(\mathsf{sk}, \mathsf{ct}') \geq \mathcal{B}_{\mathsf{out}} > \mathcal{B}_{\mathsf{in}} \end{array}\right] \geq 1 - \mathsf{negl}(\lambda)$$

Relaxed Functional Bootstrapping Definition

• What if $m \notin X$?

Yale University

Computer Science

- In general, we do not care. This is the core source of our efficiency improvement.
- However, we define ℓ -closeness
 - If $m \notin X$, output f(m') where $m' \in X$ is one of the ℓ closest elements to m
 - Some of our constructions achieve this for free, some does not achieve it, and some achieves with costs
 - Can be useful for some applications like privacy-preserving machine learning

Definition 3.2 (ℓ -closeness). The bootstrapping procedure is ℓ -close, if it satisfies the following: for the same quantifiers as correctness; for all $x \in \mathbb{Z}_t \setminus \mathcal{X}$, let $y_{x,1}, \ldots, y_{x,|\mathcal{Y}|}$ denote all the points in \mathcal{Y} satisfying $|f_x^{-1}(y_{x,1}) - x| \leq |f_x^{-1}(y_{x,2}) - x| \leq \cdots \leq |f_x^{-1}(y_{x,|\mathcal{Y}|}) - x||^{910}$ and $\mathcal{S}_x := \{y_{x,1}, \ldots, y_{x,\ell}\}$; it holds that for all $i \in [N]$, if $\vec{m}[i] \notin \mathcal{X}$:

$$\Pr\left[f(\vec{m}[i]) \in \mathcal{S}_{\vec{m}[i]}\right] > 1 - \mathsf{negl}(\lambda)^{11}$$

Our starting point (part 1)

- Define $X \coloneqq [0, p 1 r, r]$ (i.e., (0, r, 2r, ..., p 1 r))
 - *r* to-be-defined
 - Assume *r* divides *p*
 - Otherwise choose r to be the nearest value that divides p
 - Or let X := [0, p c r, r] for some integer c such that r|p c
 - Define *f* to be the identity function
 - i.e., output m if $m \in X$

Our starting point (part 1)

- Given ciphertext $(a, b) \in R_q$ encrypting $m \in \mathbb{Z}_p$
- Modulus switching it to $(a', b') \in R_p$ encrypting $m \in \mathbb{Z}_p$
 - If $m \in X$, $m' \in (m \frac{r}{2}, m + \frac{r}{2})$, where r is the modulus switching error

Our starting point (part 1)

- Homomorphically decrypt $(a', b') \in R_p$ to obtain m'
 - Compute $-as + b \in R_p$
 - This can be done either via linear transformation or homomorphic NTT
- Homomorphically compute a function f_{post}
 - Maps $(m \frac{r}{2}, m + \frac{r}{2})$ to $m, \forall m \in X$
 - This can be done via a degree-(p-1) function
- Correctness is achieved in a straightforward way
- 2-closeness
 - If $m \notin X$, after modulus switching $m' \in (m_1 - \frac{r}{2}, m_2 + \frac{r}{2})$ where $m_1 < m < m_2$ and $m_1, m_2 \in X$

Our starting point (part 2)

- Define $X_2 := [u, v, r']$ (i.e., (u, u + r', u + 2r', ..., v))
 - Arbitrary *r*′
 - Require $\frac{v-u}{r'} = \frac{p-1}{r}$
- Define f_2 to be an arbitrary function $f_2: X_2 \to \mathbb{Z}_p$
 - i.e., output $f_2(m)$ if $m \in X_2$

Our starting point (part 2)

- Now it is possible that $r' \leq r$
 - Direct modulus switching may cause error
- First homomorphically evaluate f_{pre}
 - $f_{pre}: X_2 \to X$
 - $f_{pre}(x) \coloneqq r \cdot (x u) \cdot {r'}^{-1}$
 - Only one level of plaintext multiplication
 - Can be merged with SlotToCoeff, so essentially for free
- Then performs modulus switching and homomorphic decryption
- Needs a new post-processing function, since f_2 is no longer an identity function
 - $f_{post,2} = f_2(f_{pre}^{-1}(r \cdot \operatorname{round}(x/r)))$
 - Again, it can be interpolated as a degree p 1 function

More fine-grained constructions -- multiple points

- Define $X_3 \coloneqq \{y_1, \dots, y_z\}$
 - Arbitrary points, but $z < \frac{p-1}{r}$
- Define f_3 to be an arbitrary function $f_3: X_3 \to \mathbb{Z}_p$
- Naturally, we can define $f_{pre,3}$ to be a map from X_3 to X_1 (the first *z* elements)
 - However, if $z \ll \frac{p-1}{r}$, a mapping $f_{pre,3'}(x) \coloneqq w \cdot x$ for some $w \in \mathbb{Z}_p^*$ is already sufficient to obtain a result $X'_3 \coloneqq f_{pre,3'}(X_3)$ such that every two points in X'_3 is separated by r
- $f_{post,3}$ is similar to $f_{post,2}$
 - But only degree $\approx z \cdot r$ instead of p 1

More fine-grained constructions -- multiple ranges

- Define $X_4 := \{ [u_1, v_1], \dots, [u_k, v_k] \}$
 - *k* well-separated ranges
 - i.e., $|u_i v_j| \ge r, \forall i, j \in [k]$
- Define f_4 to be an arbitrary function $f_4: X_4 \to \mathbb{Z}_p$ s.t.
 - Mapping one range to one point
 - i.e., $f_4(x) = y_j$ if $x \in [u_j, v_j]$
- $f_{pre,4}$ is simply an identity function
- $f_{post,4}$ is similar to $f_{post,3}$
 - Except that it now maps $[u_i + \frac{r}{2}, v_i + \frac{r}{2}]$ to y_i
 - It has degree $\approx |X_4| + k \cdot r$

- Define $X_5 \coloneqq \{[u_1, v_1], [u_2, v_2]\}$
 - 2 well-separated ranges
 - One being much larger than the other, i.e. $v_2 u_2 \gg v_1 u_1$
 - Can be extended to k ranges but preferably one range larger than the others combined
- Define f_5 to be an arbitrary function $f_5: X_5 \to \mathbb{Z}_p$ s.t.
 - Mapping one range to one point
- $f_{pre,5}$ is again simply an identity function
- $f_{post,5}$ first checks if $x \in [u_1, v_1]$
 - If so, maps to y_1 , o.w., maps to y_2
 - $f_{post,5}(x) \coloneqq (\prod_{i \in \left[u_1 \frac{r}{2}, v_1 + \frac{r}{2}\right]} (x i)^{p-1} \cdot (y_2 y_1) + y_1)$
 - This can be done in $\approx v_1 u_1 + \log(p) + r$

Benchmarks

Function Family	Input Domain	# of slots	Ciphertext Modulus	Output Noise Budget	Total Runtime (sec)	Runtime per slot (ms)	Runtime per bit (ms)	
Identity function f_1 over $[0, t-1-r, r]$, Algorithm 1	[0, 65536, 128]		830	181	142.5	4.35	0.48	
$ \begin{array}{c} f_2: [u, v, r'] \to \mathcal{Y} \ u, v, r' \in \mathbb{Z}_t, \\ \mathcal{Y} \subset \mathbb{Z}_t, \ Algorithm \ 2 \end{array} $	[0, 1022, 2]	32768			142.4	4.34	0.48	
$\begin{array}{c} f_{pts_1} : \mathcal{X} \to \mathcal{Y}, \mathcal{X}, \mathcal{Y} \subset \mathbb{Z}_t, \\ \mathcal{X} = \mathcal{Y} = 2, Algorithm \ 4 \end{array}$	$\{0, 32768\}$		590	198	18.7	0.57	0.57	
$\begin{array}{c} f_{pts_2} : \mathcal{X} \to \mathcal{Y}, \mathcal{X}, \mathcal{Y} \subset \mathbb{Z}_t, \mathcal{X} = \mathcal{Y} = 8, \\ Algorithm 4, \text{ without pre-scale on } \mathcal{X} \end{array}$	{57004, 46969, 21931,		650	194	24.8	0.76	0.25	
$\begin{array}{c}f_{pts_3}: \mathcal{X} \to \mathcal{Y}, \mathcal{X}, \mathcal{Y} \subset \mathbb{Z}_t, \mathcal{X} = \mathcal{Y} = 8,\\ Algorithm \ 4 \ \text{with pre-scale on } \mathcal{X}\end{array}$	30013, 58301			181	26.3	0.80	0.27	
$ \begin{array}{c} f_{ranges}(m) = y_i \text{ if } m \in [u_i, v_i], \\ u_i, v_i, y_i \in \mathbb{Z}_t, i \in [k], k \geq 2, Algorithm \\ \end{array} $	Two ranges: [-63, 63] & [32704, 32831]		630	205	22.5	0.69	0.09	
$ \begin{array}{c} f_{ub}(m) = y_i \text{ if } m \in [u_i, v_i], \\ u_i, v_i, y_i \in \mathbb{Z}_t, i \in [2], Algorithm 6 \end{array} $	Two ranges: $[-63, 63]$ & $\mathbb{Z}_{65537} \setminus [-127, 127]$		1070	180	34.3	1.04	0.07	
Regular BFV bootstrapping 59 128-bit security	\mathbb{Z}_{257}	128	881	507	22.0	173.0	21.62	
Regular BFV bootstrapping [25] 66-bit security	\mathbb{Z}_{127^2}	2268	1134	330	95.0	42.0	3.00	
Regular BFV bootstrapping 14 126-bit security	\mathbb{Z}_{257^2}	128	806	245	42.0	328.0	20.50	

Benchmarks

Applications

- Oblivious Permutation
 - [FLLP24] proposed a way to do homomorphic permutation
 - Given a database of N bits, the server randomly permutes it without knowing the exact permutation
 - The server performs Thorp shuffle homomorphically, using random bits encrypted under FHE

1	2	3	4	5	6	7	8

1 2 3 4				
	1	2	3	4

5	6	7	8

			-	-		
		1	2	3	4	
		5	6	7	8	
1	5	6	2			

- This gives a permutation, but not yet random
- Repeat this process $k = O(\lambda)$ times
 - Gives a random permutation except with $1 \operatorname{negl}(\lambda)$ probability
 - Concretely, $k \cong 400$
- For simplicity, assume these bits are easily samplable under FHE
 - [FLLP] achieves this by building an FHE-friendly PRG, ~0.3ms/bit

- Suitable application for our relaxed bootstrapping
 - ~400 levels
 - Fix some valid input set X, encode every log(|X|) bits into X
 - The permutation circuit only involves swapping between elements (i.e., input output both in *X*)
- Using our bootstrapping, the runtime is $> 100 \times$ faster than prior works for the bootstrapping part
 - It has extra benefit of allowing more slots, thus in general more efficient

- Oblivious Permutation
- PIR/PSI/Fuzzy PSI (with computation)
- Secure machine learning
 - Closeness can be preferred
- Of independent interest, our techniques can be used to improve batched FHEW/TFHE bootstrapping

- Open questions
 - Additional function families
 - Other more efficient constructions
 - More applications
- Paper: https://eprint.iacr.org/2024/172.pdf