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* Very inefficient
* Bootstrapping circuit is complicated
* Bootstrapping does nothing else

®*  Qur work:

* Define and build relaxed functional bootstrapping
* Allows a more efficient bootstrapping circuit
*  Free function evaluation during bootstrapping 2
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* Ring-LWE based
* Works over rings R = Z[X]/¢pn(X) where ¢ (X) is the N-th cyclotomic polynomial
* Ciphertexts has form (a, b) € R for some large q
. b=as+e+[%mj
* Plaintext space R, for some p”
* MERy
* If Nisapowerof2andp mod2N = 1, plaintext space can be Zg (encode m € Zg intom € Ry)

* Allows addition & multiplication
* For Zy, operations are done element-wise
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Modulus

* Temporarily enlarge plaintext space (co,c1) € R; : » €0, C1 € Rpe
* From p” tope forsome e > r switch J’
* This restricts the choice of p

C) + €15 = Zﬁ?;Xi € Rpe
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* Plaintext space Z’,‘,’ (operated element-wise)

* Correctness only guaranteed for X € 7,

* e, ifm € X, outputis f(m) for some pre-defined f: X — Z,
* Qutput noise budget > input noise budget

* If fis non-trivial, it can be interesting even if noise budget does not increase
* Regular bootstrapping is a special case of ours

* Why reasonable?
* For lots of applications, we know the input in advance.
* Example 1: after a comparison, the result is always 0/1
* Example 2: encode the data into X instead of Z,, for applications like PIR/PSI

Definition 3.1 (Correctness). The bootstrapping procedure is correct, if it satisfies the following: let
(pp = (N, t, Bin, Bouts F PPauy)- 5k, btk) < Setup(1?), for any function f : X — Y € F (where X,) C 7
and |X| > |Y| > 2),* any honest input ciphertext ct with B(sk,ct) > Bi,, let ct’ + Boot(pp, btk, f,ct),
m < Dec(sk, ct) € ZN, m’ + Dec(sk, ct’) € ZY, it holds that:

Vie [N, [if mfi] € X, f(m]i]) = m/[i]

Pr A B(Sk, Ct,) > Bout > Bin

> 1 — negl(\) .
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What if m & X?
* In general, we do not care. This is the core source of our efficiency improvement.

* However, we define £-closeness
* Ifm ¢ X, output f(m") where m’ € X is one of the £ closest elements to m
* Some of our constructions achieve this for free, some does not achieve it, and some achieves with costs
*  Can be useful for some applications like privacy-preserving machine learning

Definition 3.2 (/-closeness). The bootstrapping procedure is ¢-close, if it satisfies the following: for the
same quantifiers as correctness: for all x € Z; \ X, let vy, 1,...,y, |y denote all the points in Y satisfying
fo (Yar) — 2] < |fit(ye2) — 2| <o < |fo (yey)) — 21710 and Sy := {yz1,- -, Ya,e}; it holds that for all
1€ [N|, if m[i] ¢ X

Pr [f(m[i]) € Smpp] > 1 — negl(A)'
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* DefineX =[0,p —1 —r,r](ie, (0,1,2r,..,p —1 —71))

* 71 to-be-defined 0 2r p-1-2r p-1-r
* Assume r divides p - v J
*  Otherwise choose r to be the nearest value that divides p CZ:

* OrletX :==[0,p —c—r,r] for some integer c such thatr|p — ¢
* Define f to be the identity function

* je,outputmifmeX
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* Given ciphertext (a,b) € R, encrypting m € Z,
* Modulus switching itto (a’,b") € Ryencrypting m € Z,
* IfmeX,m' €(m —~,m+), where r is the modulus switching error

/modh

switching
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* Homomorphically decrypt (a’,b") € R, to obtain m'
* Compute —as+ b € R,
* This can be done either via linear transformation or homomorphic NTT

* Homomorphically compute a function f,,;

* Maps(m —~,m+2)tomvmeX I L -

This can be done via a degree-(p — 1) function

* Correctness is achieved in a straightforward way ifpm/

e 2-closeness 0 T
* Ifm ¢ X, after modulus switching

m' € (my —g,mz +§) where m; <m <m,

andmy,m, € X
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* DefineX, =[u,vr](ie, wu+r,u+2r,..,v)) r A\
* Arbitrary 1’

p—-1
r u utr’ ut2r’ v-r’ow

- v -
* Require r—,” =

* Define f, to be an arbitrary function f,: X, — Z,
* je,output f/,(m)ifmeX,

10
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. . , A
Now it is possible that ' < r r e
e Direct modulus switching may cause error
First homomorphically evaluate f,,.. uowtr ut2r vr’

. preEXZ - X / J l \
) fp?‘e(x) =7 -(x —u) 1

* Only one level of plaintext multiplication
* Can be merged with SlotToCoeff, so essentially for free

Then performs modulus switching and homomorphic decryption
Needs a new post-processing function, since £, is no longer an identity function

frostz = fa(fpre(r - round(x/r)))

* Again, it can be interpolated as a degree p — 1 function

11



vale University Our general framework

Computer Science

[ ct, = Enc(sk, f () eR, | [ ct = Enc(sk, m) ER_ ]
L B f
pre
I ct, = Enc(sk, sk)
6 | ot,=Enc(sk,m_)€R_ | ct, = Enc(sk, m_+e’) €R |
(m () =3 f. miX" | M (m _+e=m(X)=ymx"|
pre i € [N] pre OduluS pre i
SlotToCoeff — — — — — — > R — — — — — 4+ HomDec
Switching |
I
[ Ctout= Enc(sk, f(m)) eR, ] | [ ct,=Enc(sk,(m’) _JER, ] I
| post itainiininininie
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Define X5 = {yq, ..., V;}
* Arbitrary points, butz < p7—1
Define f; to be an arbitrary function f5: X5 — Z,

Naturally, we can define f,,.. 3 to be a map from X3 to X; (the first z elements)

* However, if z < pT_l, amapping f .. 37 (x) = w - x for some w € Z, is already sufficient to obtain
aresult X3 = f,,., 3r(X3) such that every two points in X3 is separated by r

fpost,3 18 similar to fp,os¢ 2
* Butonlydegree = z-rinsteadofp — 1

13
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u,, v [u,, v.] [u, v] u,,. v, [y, vJ

i+17, i+

* Define X, = {[uy, v1], ., [Wp, Vi 1} C = 4+

* k well-separated ranges w2 v
* e, |w — vj| >r,Vi,jE€E k] “ 7

* Define f, to be an arbitrary function f,: X, — Z,, s.t.
* Mapping one range to one point

* e, falx) =y;ifx € [uj, vj]

®  fprea is simply an identity function

®  fposta 1S similar to fyost 3
*  Except that it now maps [u; +~,v; + ] to y;
* Ithasdegree = |X,| + k-7
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* Define X5 = {[u1; vl]» [uZI UZ]}
e 2 well-separated ranges
* One being much larger than the other, i.e. v, —u, » v; —uy
* Can be extended to k ranges but preferably one range larger than the others combined

* Define f5 to be an arbitrary function f5: X5 - Z, s.t.
* Mapping one range to one point

®  fores is again simply an identity function

®  fposts first checks if x € [uy, v]
* If so, maps to y;, 0.w., maps to y,
fpost,5(X) = (Hie[ul_g’vﬁﬂ(x )P (yy —y1) +y1)

* Thiscanbedonein~ v; —u; +log(p) +r

15
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. Output . . .
. . R Input Ciphertext . Total Runtime | Runtime per | Runtime per
Function Family Domain # of slots Modulus Noise (sec) slot (ms) bit (ms)
Budget
Identity functi e
entity function Jy over [0, 65536, 128 1425 4.35 0.48
[O,l,flfr.r],Algmz[/hmm 830 181
Fai v, > Vu,v.r" €L, [0,1022, 2] ' 142.4 4.34 0.48
Y C Zy, Algoril,hmm ’ ’ ’ : )
fptslzx_)y: X:YCZt- < £
1x[= [y =2 Algor“’h_mm {0, 32768} 590 198 18.7 0.57 0.57
Josy : X2 Y, XY C Ly, (X[ =TV =8, [ o000 46069 21931, | 22708 194 24.8 0.76 0.25
Al,qm'zthmm without pre-scale on X’ aanon = - -
ey T TA = [y =5 | 3998059092, 9965, 650
ptsg | X, , . 19 Fa
Arrithom A with precscale on 30013, 58301} 181 2.3 0.80 0.27
Jranges(m) = w5 if m € [u;, vy, Two ranges: [—63,63) ) one -
i, v,y € Zai € K]k > 2, Algorithm[5]| & [32704,32831] 630 205 25 0.69 0.09
Ju(m) = y; il m € [u;, vy, Two ranges: [—63, 63]
i, Vs, Yi € Ly, i € [2], A[_qoril,hmm & Zessar \ [—127,127) 1070 180 34.3 1.04 0.07
n . . i
Regular ?Qix)}:(f:;tir;pmg [59] Ziogz 128 881 507 22.0 173.0 21.62
Regular %g};}’:{‘;’ﬁi‘é‘f‘sp‘n’{ [25] - 2268 1134 330 95.0 42.0 3.00
Regular ?iﬁ)}:ﬁfl‘;:‘;’,pmg 14 Zosr 128 806 245 42.0 328.0 20.50
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25.0 1 Total Runtime »Q
22.51 MM Look-up Table Evaluation Runtime v

Runtime per

51 f2 fptsl fpt52 fpts3 franges fub [54] [22]
Function Family
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*  Oblivious Permutation
e [FLLP24] proposed a way to do homomorphic permutation

* Given a database of N bits, the server randomly permutes it without knowing the exact
permutation

*  The server performs Thorp shuffle homomorphically, using random bits encrypted under FHE

18
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1 2 3 4
5 6 7 8
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Oblivious Permutation

* This gives a permutation, but not yet random

* Repeat this process k = 0(A) times
*  Gives a random permutation except with 1 — negl(4) probability
* Concretely, k = 400

* For simplicity, assume these bits are easily samplable under FHE
* [FLLP] achieves this by building an FHE-friendly PRG, ~0.3ms/bit

1 2 3 4
5 6 7 8
1 5 6 2 > °

23
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* Suitable application for our relaxed bootstrapping
* ~400 levels
* Fix some valid input set X, encode every log(|X|) bits into X
*  The permutation circuit only involves swapping between elements (i.e., input output both in X)
* Using our bootstrapping, the runtime is > 100 x faster than prior works for the bootstrapping
part
* It has extra benefit of allowing more slots, thus in general more efficient

24
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®*  Oblivious Permutation
* PIR/PSI/Fuzzy PSI (with computation)

*  Secure machine learning
*  Closeness can be preferred

* Of independent interest, our techniques can be used to improve batched FHEW/TFHE
bootstrapping

25
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*  Open questions
*  Additional function families
*  Other more efficient constructions
*  More applications

*  Paper: https://eprint.iacr.org/2024/172.pdf
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