L vale University

Computer Science

Relaxed Functional Bootstrapping:
A New Perspective on BGV/BFV Bootstrapping

Zeyu Liu, Yunhao Wang
Yale University

vale University — Ey|ly Homomorphic Encryption & Bootstrapping

Computer Science

A 4

=
A 4

Enc(x) Enc(f(x))

* Enc(f'(f (x)))

=
=3
Qo
s

* Very inefficient
* Bootstrapping circuit is complicated
* Bootstrapping does nothing else

®* Qur work:

* Define and build relaxed functional bootstrapping
* Allows a more efficient bootstrapping circuit
* Free function evaluation during bootstrapping 2

Yale University BGV/BFV FHE SCheme

Computer Science

* Ring-LWE based
* Works over rings R = Z[X]/¢pn(X) where ¢ (X) is the N-th cyclotomic polynomial
* Ciphertexts has form (a, b) € R for some large q
. b=as+e+[%mj
* Plaintext space R, for some p”
* MERy
* If Nisapowerof2andp mod2N = 1, plaintext space can be Zg (encode m € Zg intom € Ry)

* Allows addition & multiplication
* For Zy, operations are done element-wise

(7 (7
00090} ©0090)
ala &3
(N 4 N
©0069) ©00869)

valeuniversity — Past \WWorks in BGV/BFV Bootstrapping

Computer Science

Modulus

* Temporarily enlarge plaintext space (co,c1) € R; : » €0, C1 € Rpe
* From p” tope forsome e > r switch J’
* This restricts the choice of p

C) + €15 = Zﬁ?;Xi € Rpe

/ \Linear transform

~ -~ ~

mo | | M | MN-1

Digit extract

b~

mo | | M - | MN-1

\\ /Lineartransform

((_.gutj Coutl) < m — Z m,—X"

vale University — Relaxed Functional Bootstrapping Definition

Computer Science

* Plaintext space Z’,‘,’ (operated element-wise)

* Correctness only guaranteed for X € 7,

* e, ifm € X, outputis f(m) for some pre-defined f: X — Z,
* Qutput noise budget > input noise budget

* If fis non-trivial, it can be interesting even if noise budget does not increase
* Regular bootstrapping is a special case of ours

* Why reasonable?
* For lots of applications, we know the input in advance.
* Example 1: after a comparison, the result is always 0/1
* Example 2: encode the data into X instead of Z,, for applications like PIR/PSI

Definition 3.1 (Correctness). The bootstrapping procedure is correct, if it satisfies the following: let
(pp = (N, t, Bin, Bouts F PPauy)- 5k, btk) < Setup(1?), for any function f : X — Y € F (where X,) C 7
and |X| > |Y| > 2),* any honest input ciphertext ct with B(sk,ct) > Bi,, let ct’ + Boot(pp, btk, f,ct),
m < Dec(sk, ct) € ZN, m’ + Dec(sk, ct’) € ZY, it holds that:

Vie [N, [if mfi] € X, f(m]i]) = m/[i]

Pr A B(Sk, Ct,) > Bout > Bin

> 1 — negl(\) .

vale University — Relaxed Functional Bootstrapping Definition

Computer Science

What if m & X?
* In general, we do not care. This is the core source of our efficiency improvement.

* However, we define £-closeness
* Ifm ¢ X, output f(m") where m’ € X is one of the £ closest elements to m
* Some of our constructions achieve this for free, some does not achieve it, and some achieves with costs
* Can be useful for some applications like privacy-preserving machine learning

Definition 3.2 (/-closeness). The bootstrapping procedure is ¢-close, if it satisfies the following: for the
same quantifiers as correctness: for all x € Z; \ X, let vy, 1,...,y, |y denote all the points in Y satisfying
fo (Yar) — 2] < |fit(ye2) — 2| <o < |fo (yey)) — 21710 and Sy := {yz1,- -, Ya,e}; it holds that for all
1€ [N|, if m[i] ¢ X

Pr [f(m[i]) € Smpp] > 1 — negl(A)'

Yale University Our Starting pOint (pal’t 1)

Computer Science

* DefineX =[0,p —1 —r,r](ie, (0,1,2r,..,p —1 —71))

* 71 to-be-defined 0 2r p-1-2r p-1-r
* Assume r divides p - v J
* Otherwise choose r to be the nearest value that divides p CZ:

* OrletX :==[0,p —c—r,r] for some integer c such thatr|p — ¢
* Define f to be the identity function

* je,outputmifmeX

Yale University Our Starting pOint (pal’t 1)

Computer Science

* Given ciphertext (a,b) € R, encrypting m € Z,
* Modulus switching itto (a’,b") € Ryencrypting m € Z,
* IfmeX,m' €(m —~,m+), where r is the modulus switching error

/modh

switching

Yale University Our Starting pOint (pal’t 1)

Computer Science

* Homomorphically decrypt (a’,b") € R, to obtain m'
* Compute —as+ b € R,
* This can be done either via linear transformation or homomorphic NTT

* Homomorphically compute a function f,,;

* Maps(m —~,m+2)tomvmeX I L -

This can be done via a degree-(p — 1) function

* Correctness is achieved in a straightforward way ifpm/

e 2-closeness 0 T
* Ifm ¢ X, after modulus switching

m' € (my —g,mz +§) where m; <m <m,

andmy,m, € X

Yale University Our Starting pOint (pal’t 2)

Computer Science

* DefineX, =[u,vr](ie, wu+r,u+2r,..,v)) r A\
* Arbitrary 1’

p—-1
r u utr’ ut2r’ v-r’ow

- v -
* Require r—,” =

* Define f, to be an arbitrary function f,: X, — Z,
* je,output f/,(m)ifmeX,

10

Yale University Our Starting pOint (pal’t 2)

Computer Science

. . , A
Now it is possible that ' < r r e
e Direct modulus switching may cause error
First homomorphically evaluate f,,.. uowtr ut2r vr’

. preEXZ - X / J l \
) fp?‘e(x) =7 -(x —u) 1

* Only one level of plaintext multiplication
* Can be merged with SlotToCoeff, so essentially for free

Then performs modulus switching and homomorphic decryption
Needs a new post-processing function, since £, is no longer an identity function

frostz = fa(fpre(r - round(x/r)))

* Again, it can be interpolated as a degree p — 1 function

11

vale University Our general framework

Computer Science

[ct, = Enc(sk, f () eR, | [ct = Enc(sk, m) ER_]
L B f
pre
I ct, = Enc(sk, sk)
6 | ot,=Enc(sk,m_)€R_ | ct, = Enc(sk, m_+e’) €R |
(m () =3 f. miX" | M (m _+e=m(X)=ymx"|
pre i € [N] pre OduluS pre i
SlotToCoeff — — — — — — > R — — — — — 4+ HomDec
Switching |
I
[Ctout= Enc(sk, f(m)) eR,] | [ct,=Enc(sk,(m’) _JER,] I
| post itainiininininie

12

Yale University More fine-grained constructions

Computer Science -- multiple points

Define X5 = {yq, ..., V;}
* Arbitrary points, butz < p7—1
Define f; to be an arbitrary function f5: X5 — Z,

Naturally, we can define f,,.. 3 to be a map from X3 to X; (the first z elements)

* However, if z < pT_l, amapping f .. 37 (x) = w - x for some w € Z, is already sufficient to obtain
aresult X3 = f,,., 3r(X3) such that every two points in X3 is separated by r

fpost,3 18 similar to fp,os¢ 2
* Butonlydegree = z-rinsteadofp — 1

13

Yale University More fine-grained constructions

Computer Science -- multiple ranges

u,, v [u,, v.] [u, v] u,,. v, [y, vJ

i+17, i+

* Define X, = {[uy, v1], ., [Wp, Vi 1} C = 4+

* k well-separated ranges w2 v
* e, |w — vj| >r,Vi,jE€E k] “ 7

* Define f, to be an arbitrary function f,: X, — Z,, s.t.
* Mapping one range to one point

* e, falx) =y;ifx € [uj, vj]

® fprea is simply an identity function

® fposta 1S similar to fyost 3
* Except that it now maps [u; +~,v; +] to y;
* Ithasdegree = |X,| + k-7

14

Yale University More fine-grained constructions

Computer Science -- unbalanced ranges

* Define X5 = {[u1; vl]» [uZI UZ]}
e 2 well-separated ranges
* One being much larger than the other, i.e. v, —u, » v; —uy
* Can be extended to k ranges but preferably one range larger than the others combined

* Define f5 to be an arbitrary function f5: X5 - Z, s.t.
* Mapping one range to one point

® fores is again simply an identity function

® fposts first checks if x € [uy, v]
* If so, maps to y;, 0.w., maps to y,
fpost,5(X) = (Hie[ul_g’vﬁﬂ(x)P (yy —y1) +y1)

* Thiscanbedonein~ v; —u; +log(p) +r

15

Yale University Benchmarks

Computer Science

. Output . . .
. . R Input Ciphertext . Total Runtime | Runtime per | Runtime per
Function Family Domain # of slots Modulus Noise (sec) slot (ms) bit (ms)
Budget
Identity functi e
entity function Jy over [0, 65536, 128 1425 4.35 0.48
[O,l,flfr.r],Algmz[/hmm 830 181
Fai v, > Vu,v.r" €L, [0,1022, 2] ' 142.4 4.34 0.48
Y C Zy, Algoril,hmm ’ ’ ’ :)
fptslzx_)y: X:YCZt- < £
1x[= [y =2 Algor“’h_mm {0, 32768} 590 198 18.7 0.57 0.57
Josy : X2 Y, XY C Ly, (X[=TV =8, [o000 46069 21931, | 22708 194 24.8 0.76 0.25
Al,qm'zthmm without pre-scale on X’ aanon = - -
ey T TA = [y =5 | 3998059092, 9965, 650
ptsg | X, , . 19 Fa
Arrithom A with precscale on 30013, 58301} 181 2.3 0.80 0.27
Jranges(m) = w5 if m € [u;, vy, Two ranges: [—63,63)) one -
i, v,y € Zai € K]k > 2, Algorithm[5]| & [32704,32831] 630 205 25 0.69 0.09
Ju(m) = y; il m € [u;, vy, Two ranges: [—63, 63]
i, Vs, Yi € Ly, i € [2], A[_qoril,hmm & Zessar \ [—127,127) 1070 180 34.3 1.04 0.07
n . . i
Regular ?Qix)}:(f:;tir;pmg [59] Ziogz 128 881 507 22.0 173.0 21.62
Regular %g};}’:{‘;’ﬁi‘é‘f‘sp‘n’{ [25] - 2268 1134 330 95.0 42.0 3.00
Regular ?iﬁ)}:ﬁfl‘;:‘;’,pmg 14 Zosr 128 806 245 42.0 328.0 20.50

16

Yale Univers_ity BenChmal’kS

25.0 1 Total Runtime »Q
22.51 MM Look-up Table Evaluation Runtime v

Runtime per

51 f2 fptsl fpt52 fpts3 franges fub [54] [22]
Function Family

17

Yale University AppllcatIOnS

Computer Science

* Oblivious Permutation
e [FLLP24] proposed a way to do homomorphic permutation

* Given a database of N bits, the server randomly permutes it without knowing the exact
permutation

* The server performs Thorp shuffle homomorphically, using random bits encrypted under FHE

18

Yale University Oblivious Permutation

Computer Science

19

Yale University Oblivious Permutation

Computer Science

20

Yale University Oblivious Permutation

Computer Science

1 2 3 4
5 6 7 8

21

Yale University Oblivious Permutation

Computer Science

1 2 3 4
= e
@ @
5 6 7 8

22

Yale University
Computer Science

Oblivious Permutation

* This gives a permutation, but not yet random

* Repeat this process k = 0(A) times
* Gives a random permutation except with 1 — negl(4) probability
* Concretely, k = 400

* For simplicity, assume these bits are easily samplable under FHE
* [FLLP] achieves this by building an FHE-friendly PRG, ~0.3ms/bit

1 2 3 4
5 6 7 8
1 5 6 2 > °

23

Yale University Oblivious Permutation

Computer Science

* Suitable application for our relaxed bootstrapping
* ~400 levels
* Fix some valid input set X, encode every log(|X|) bits into X
* The permutation circuit only involves swapping between elements (i.e., input output both in X)
* Using our bootstrapping, the runtime is > 100 x faster than prior works for the bootstrapping
part
* It has extra benefit of allowing more slots, thus in general more efficient

24

Yale University AppllcatIOnS

Computer Science

®* Oblivious Permutation
* PIR/PSI/Fuzzy PSI (with computation)

* Secure machine learning
* Closeness can be preferred

* Of independent interest, our techniques can be used to improve batched FHEW/TFHE
bootstrapping

25

Yale University Thank you|

Computer Science

* Open questions
* Additional function families
* Other more efficient constructions
* More applications

* Paper: https://eprint.iacr.org/2024/172.pdf

26

	Slide 1: Relaxed Functional Bootstrapping: A New Perspective on BGV/BFV Bootstrapping
	Slide 2: Fully Homomorphic Encryption & Bootstrapping
	Slide 3: BGV/BFV FHE Scheme
	Slide 4: Past Works in BGV/BFV Bootstrapping
	Slide 5: Relaxed Functional Bootstrapping Definition
	Slide 6: Relaxed Functional Bootstrapping Definition
	Slide 7: Our starting point (part 1)
	Slide 8: Our starting point (part 1)
	Slide 9: Our starting point (part 1)
	Slide 10: Our starting point (part 2)
	Slide 11: Our starting point (part 2)
	Slide 12: Our general framework
	Slide 13: More fine-grained constructions -- multiple points
	Slide 14: More fine-grained constructions -- multiple ranges
	Slide 15: More fine-grained constructions -- unbalanced ranges
	Slide 16: Benchmarks
	Slide 17: Benchmarks
	Slide 18: Applications
	Slide 19: Oblivious Permutation
	Slide 20: Oblivious Permutation
	Slide 21: Oblivious Permutation
	Slide 22: Oblivious Permutation
	Slide 23: Oblivious Permutation
	Slide 24: Oblivious Permutation
	Slide 25: Applications
	Slide 26: Thank you!

