
Faster BGV Bootstrapping for Power-of-two

Cyclotomics through Homomorphic NTT

Shihe Ma, Tairong Huang, Anyu Wang, XiaoyunWang

Tsinghua University

 FHE enables computation over encrypted data without decryption key

 Concept by Rivest et al. in 1978

 First plausible scheme by Gentry in 2009

 4 generations of schemes: Gentry’s; BGV/BFV; FHEW/TFHE; CKKS

 Bootstrapping: remove noise homomorphically to enable infinite homomorphic computation

 Single Instruction Multiple Data (SIMD) encoding: amortize cost in BGV/BFV/CKKS

 Rings with a power-of-two cyclotomic order are preferred in RLWE schemes

 Exclusively used by SEAL, OpenFHE, lattigo

Fully Homomorphic Encryption

1. Fast and easy implementation with Cooley-Tukey NTT

2. Compatible with FHE standard

3. More efficient null-polynomial-based digit removal [MHWW, Eurocrypt 2024]

 Pr 𝐼 > 𝑘
ℎ𝜙 𝑀 2𝜔 𝑀

12𝑀
< 𝜙 𝑀 ⋅ erfc

𝑘

2

 For different 𝑀 with roughly the same 𝜙 𝑀 ,
𝜙 𝑀 2𝜔 𝑀

𝑀
is smaller when 𝑀 is a power of two → smaller

bound on 𝐼 → null polynomials with lower degrees → faster digit removal

4. Simpler plaintext space structure for BGV/BFV

 1-D array or a 2 ×
𝐿

2
-sized 2-D array

Why using power-of-two cyclotomics in BGV/BFV?

 We want to achieve bootstrapping of BGV/BFV that

1. fully exploits the SIMD encoding property

2. uses power-of-two cyclotomic rings

3. is efficient

 Such a goal has not been realized because having many slots in a power-of-two ring means

1. having a large plaintext prime 𝑝, causing slow digit removal (without the techniques of [MHWW24])

2. the linear transformations during bootstrapping are slow, because

1. their large dimensions require more computing time

2. existing acceleration techniques based on decomposed linear transformations works only in

non-power-of-two rings

Problem and method overview

Chen and Han, Eurocrypt 2018

Halevi and Shoup, JoC 2021

 Main idea: decompose SlotToCoeff/CoeffToSlot matrices into the product of NTT matrices

 NTT matrices has much fewer nonzero diagonals → much faster homomorphic evaluation

 Similar techniques have been applied to CKKS bootstrapping [Chen, Chilloti, Song. Eurocrypt’19][Han, Hhan, Cheon, 2019]

 Porting to BGV/BFV is nontrivial because…

 Other optimizations…

 Faster linearized polynomial on subfield/subring

 BSGS tailored for NTT matrices

 Reordering of linear transformations

Problem and method overview

Scheme Slot value Slot arrangement NTT type Linear transformation type

CKKS Complex number 1D array Cooley-Tukey On scalar vectors

BGV/BFV Finite ring elements 1D or 2D array Cooley-Tukey or Bruun On vectors of small scalar vectors

Structure of BGV/BFV plaintext space

 RLWE based encryption with cyclotomic ring 𝑅𝑞 = ℤ𝑞 𝑋 / Φ𝑀 𝑋 , plaintext modulus 𝑝𝑟

 Ciphertext format is 𝑏 = −𝑎𝑠 + 𝑝𝑟𝑒 + 𝑚, 𝑎 ∈ 𝑅𝑞
2 for BGV or 𝑏 = −𝑎𝑠 + 𝑒 +

𝑞

𝑝𝑟 𝑚 , 𝑎 ∈ 𝑅𝑞
2 for BFV,

with randomness 𝑎 ← 𝑅𝑞, Gaussian noise 𝑒 ∈ 𝑅, small secret 𝑠 ∈ 𝑅, and message 𝑚 ∈ 𝑅𝑝𝑟

 SIMD property. Plaintext space 𝑅𝑝𝑟 is isomorphic to 𝐸𝐿 for some Galois ring/field 𝐸 and integer 𝐿

 Supported homomorphic operations on 𝐸𝐿:

(1) slot-wise addition, (2) slot-wise multiplication, (3) rotation of slots, (4) slot-wise Frobenius automorphism

BGV/BFV FHE schemes

 Cyclotomic ring factorization

 Let 𝑁 = 𝜙 𝑀

 Case of 𝑟 = 1:

 Φ𝑀 𝑋 = ς𝑖=0
𝐿−1 𝐹𝑖 𝑋 , where deg 𝐹𝑖 𝑋 = ordℤ𝑀

∗ 𝑝 is denoted as 𝑑. 𝐿𝑑 = 𝑁

 𝐹𝑖 𝑋 are monic, irreducible, distinct in 𝔽𝑝 𝑋 , i.e., 𝔽𝑝 𝑋 / 𝐹𝑖 𝑋 ≅ GF 𝑝𝑑

 𝑅𝑝 ≅ ς𝑖=0
𝐿−1 𝔽𝑝 𝑋 / 𝐹𝑖 𝑋 ≅ GF 𝑝𝑑 𝐿

, each GF 𝑝𝑑 position is called a slot

 Case of 𝑟 > 1:

 Can be obtained from the previous case using Hensel Lifting

 𝑅𝑝𝑟 ≅ GR 𝑝𝑟; 𝑑 𝐿

Plaintext encoding in BGV/BFV

 Fix a representation of GR 𝑝𝑟; 𝑑 , say ℤ𝑝𝑟 𝑋 / 𝐹0 𝑋 . Denote it as 𝐸

 𝑋𝑁 + 1 splits in 𝐸, denote one of the roots of 𝐹0 𝑋 in 𝐸 as 𝜂, then

 Each 𝐹𝑖 𝑋 = ς𝑗=0
𝑑−1 𝑋 − 𝜂𝑠𝑖⋅𝑝𝑗

, and the set 𝑠𝑖 ⊆ ℤ𝑀
∗ is a representative set of 𝐻 = ℤ𝑀

∗ / 𝑝

 Decode 𝑚 = 𝑚 𝜂𝑠0 , 𝑚 𝜂𝑠1 , … , 𝑚 𝜂𝑠𝐿−1 : 𝑅𝑝𝑟 → 𝐸𝐿

 Encode = Decode−1

Plaintext encoding in BGV/BFV

 Example. 𝐻 = 𝑔1, 𝑔2 with ord𝐻 𝑔𝑖 = 𝑑𝑖, by setting 𝑠𝑖,𝑗 = 𝑔1
𝑖 𝑔2

𝑗
, the slots 𝑓 𝜂𝑠𝑖,𝑗 of 𝑓 𝑋 ∈ 𝑅𝑝𝑟 forms

𝑓 𝜂𝑠0,0 ⋯ 𝑓 𝜂𝑠0,𝑑2−1

⋮ ⋱ ⋮
𝑓 𝜂𝑠𝑑1−1,0 ⋯ 𝑓 𝜂𝑠𝑑1−1,𝑑2−1

 Let 𝑔𝑖
𝑑𝑖 ≡ 𝑝𝑒𝑖 mod 𝑀, Galois automorphism 𝜃𝑖 mapping 𝜂 → 𝜂𝑔𝑖 rotates the matrix up or left (𝑖 = 0 or 1), while

the wrapped-around elements additionally go through Frobenius automorphism 𝜎𝑒𝑖 mapping 𝜂 → 𝜂𝑝𝑒𝑖

 The 𝑖-th dimension is good ⟺ the rotation is perfect ⟺ 𝑒𝑖 = 0

 Rotation by 𝑘 positions in 𝑖-th dimension: 𝜌𝑖
𝑠 = 𝜃𝑖

𝑠 or 𝜌𝑖
𝑠 = 𝜃𝑖

𝑠 ⋅ 𝜇𝑖 𝑠 + 𝜃𝑖
𝑠−𝑑𝑖 ⋅ 𝜇𝑖

′ 𝑠 for masks 𝜇𝑖 and 𝜇𝑖
′

 Homomorphic rotations are important in homomorphic linear transformations

Hypercube structure and rotation

 Intra-slot ℤ𝑝𝑟 linear transformation:

 Computable through linearized polynomials. 𝑓 𝑥 = σ𝑖=0
𝑑−1 𝑎𝑖𝑥𝑝𝑖

 1

 Realized by homomorphic Frobenius automorphisms 𝜎 𝑥 = 𝑥𝑝

 Inter-slot 1-D linear transformation along dimension 𝑠:

 𝐸-linear case: 𝑓 𝑥 = σ
𝑖=0
𝑑𝑖−1

𝑎𝑖 ⋅ 𝜌𝑠
𝑖 𝑥 2

 ℤ𝑝𝑟-linear case: 𝑓 𝑥 = σ
𝑖=0
𝑑𝑖−1 σ𝑗=0

𝑑−1 𝑎𝑖,𝑗 ⋅ 𝜎𝑗 𝜌𝑠
𝑖 𝑥 3

 Each 𝑎𝑖 (𝑎𝑖,𝑗) is nonzero if the 𝑖-th diagonal in the corresponding matrix is nonzero

 Matrices on each hypercolumn along dimension 𝑠

Homomorphic linear transformations

= general matrix in ℤ𝑝𝑟
𝑑×𝑑

= multiply by some element in 𝐸

1

2

3

CoeffToSlot/SlotToCoeff as NTT matrices

1. The slot vector: a ℤ𝑝𝑟
𝑁 vector formed by 𝐿 coefficient vectors of the GR 𝑝𝑟; 𝑑 value in each slot

2. The polynomial coefficients vector: a ℤ𝑝𝑟
𝑁 vector of 𝑚 ∈ 𝑅𝑝𝑟 under basis 𝑋𝑖

 CoeffToSlot: move (2) into (1). SlotToCoeff: move (1) into (2)

CoeffToSlot and SlotToCoeff

 A homomorphic Decode 𝑚 = 𝑚 𝜂𝑠0 , 𝑚 𝜂𝑠1 , … , 𝑚 𝜂𝑠𝐿−1 : ℤ𝑝𝑟
𝑁 → ℤ𝑝𝑟

𝑁 in slots achieves SlotToCoeff

 Decode = Eval ∘ Red, with

Red 𝑚 = 𝑚 mod 𝐹0, 𝑚 mod 𝐹1, … , 𝑚 mod 𝐹𝐿−1 : 𝑅𝑝𝑟 → ෑ

𝑖=0

𝐿−1

ℤ𝑝𝑟 𝑋 /𝐹𝑖 𝑋

Eval 𝑚0, 𝑚1, … , 𝑚𝐿−1 = 𝑚 𝜂𝑠0 , 𝑚 𝜂𝑠1 , … , 𝑚 𝜂𝑠𝐿−1 : ෑ

𝑖=0

𝐿−1

ℤ𝑝𝑟 𝑋 /𝐹𝑖 𝑋 → 𝐸𝐿

 Red ⋅ can be computed with NTT (and a bit-reversal permutation Perm)

 Iterative CRT: 𝑋8 + 1 = 𝑋4 − 𝜂4 𝑋4 + 𝜂4 = 𝑋2 − 𝜂2 𝑋2 + 𝜂2 𝑋2 + 𝜂6 𝑋2 − 𝜂6 = ⋯

 Digit removal (or decryption formula simplification) is insensitive to the order of slots, i.e.,

Decode−1 ∘ Perm−1 ∘ DigitRemoval ∘ Perm ∘ Decode = Decode−1 ∘ DigitRemoval ∘ Decode

 Eval ⋅ is intra-slot → linearized polynomial

Decoding/Encoding as a chain of ring isomorphisms

 If 𝑝 ≡ 1 mod 4, 𝐻 = −1,5 , 𝑑1 = 2, 𝑑2 =
𝐿

2
. Dim 1 is good, dim 2 is good iff 𝑑 = 1

 We flatten the 2 ×
𝐿

2
 sized array by concatenating the first and second row, i.e., 𝑠𝐿

2
𝑖+𝑗

= −1 𝑖5𝑗

 𝐹𝑘 𝑋 = 𝑋𝑑 − 𝜁𝑠𝑘 with 𝜁 ∈ ℤ𝑝𝑟 as a 2𝐿-th primitive root of unity

 Cooley-Tukey NTT

 If 𝑝 ≡ 3 mod 4, 𝐻 = 5 , 𝑑1 = 𝐿. Dim 1 is good iff 𝑑 = 2

 Only a 1D array

 𝐹𝑘 𝑋 = 𝑋𝑑 − 𝜁𝑠𝑘 + 𝜁𝑠𝑘⋅𝑝 𝑋𝑑/2 + 𝜁𝑠𝑘 𝑝+1 with 𝜁 ∈ GR 𝑝𝑟; 2 as a 4𝐿-th primitive root of unity

 Bruun NTT

Plaintext encoding for power-of-two 𝑀

 Toy example of permuted Red−1 when
𝑝 ≡ 1 mod 4 and 𝐿 = 8

 Summary of Red−1

1. log2 𝐿 − 1 1D 𝐸-linear transformations,
each with 2-3 nonzero diagonals

2. One 2D 𝐸-linear transformations with 2
nonzero diagonals

 More than 𝐸-linear:
multiply by something in 𝐸 →
multiply by some integer

Inverse NTT decomposition of (the permuted) Red−1

𝑁1 𝑁2

𝑁3

Toy examples of permuted Red−1 when 𝑝 ≡ 3 mod 4 and 𝐿 = 8, with different butterfly arrangement in Bruun NTT

◼ Bruun style

• One 1D ℤ𝑝𝑟-linear transformation with 2 diagonals

• log2 𝐷 − 1 1D 𝐸-linear transformations with ≤7

diagonals

◼ Radix-2 style

• log2 𝐷 1D ℤ𝑝𝑟-linear transformations

with 2-3 diagonals

𝑁1 𝑁2

𝑁3

𝑁1 𝑁2

𝑁3

 𝑝 ≡ 1 mod 4

 General bootstrapping (SlotToCoeff first)

 PtoN ∘ RedBR
−1 ∘ Eval−1 ∘ ⋯ ∘ Eval ∘ RedBR = RedBR

−1 ∘ PtoN ∘ Eval−1 ∘ ⋯ ∘ Eval ∘ RedBR

 Thin bootstrapping (SlotToCoeff first, only integers in slots)

 RedBR
−1 ∘ Eval−1 ∘ Rm ∘ ⋯ ∘ Eval ∘ RedBR, where Rm removes extra coefficients in plaintext polynomial

 𝑝 ≡ 3 mod 4

 General bootstrapping (SlotToCoeff first)

 RedBR
−1 ∘ PtoN ∘ Eval−1 ∘ ⋯ ∘ Eval ∘ RedBR

 Thin bootstrapping (SlotToCoeff first, only integers in slots)

 Bruun style: RedBR
−1 ∘ Eval−1 ∘ Rm ∘ ⋯ ∘ Eval ∘ RedBR

 Radix-2 style: Rm′ ∘ RedBR
−1 ∘ Eval−1 ∘ Rm ∘ ⋯ ∘ Eval ∘ RedBR, where Rm′ removes extra coefficients in slots

Formulas for CoeffToSlot/SlotToCoeff

RedBR
−1 = ൝

𝑁𝑙𝑜𝑔2 𝐿 ∘ ⋯ ∘ 𝑁2 ∘ 𝑁1, Bruun style

𝑁log2 𝐿 ∘ ⋯ ∘ 𝑁1, Radix2 style

 Combine consecutive NTT matrices (and Eval or PtoN) to save some levels

 Level collapsing from CKKS bootstrapping

 More nonzero diagonals after combination: tradeoff between running time and remaining capacity

 𝑝 ≡ 1 mod 4

 General & thin bootstrapping: ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎

 The product of 𝑘 NTT matrices (or their inverses) has < 2𝑘+1 nonzero diagonals

 ∎ in both ends are 2-dimensional

 𝑝 ≡ 3 mod 4

 General & thin bootstrapping:

 ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for Bruun style, < 7 ⋅ 2𝑘 nonzero diagonals

 ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for Radix-2 style, < 2𝑘+1 nonzero diagonals

Combining consecutive NTT matrices

 BSGS matrix multiplication: reduce computation cost from 𝑂 𝑑𝑠 to 𝑂 𝑑𝑠

 Giant step 𝑔, number of giant steps ℎ =
𝑑𝑠

𝑔
. Let 𝑖 = 𝑗 + 𝑔𝑘 for 0 ≤ 𝑖 < 𝑑𝑠, where 0 ≤ 𝑗 < 𝑔. 𝑔 = 𝑂 𝑑𝑠 is optimal

 Rotation keys for 𝜌𝑠
𝑗
 and 𝜌𝑠

𝑔𝑘
 are included in the public key

 𝐸-linear case: 𝑓 𝑥 = σ𝑖=0
𝑑𝑖−1

𝑎𝑖 ⋅ 𝜌𝑠
𝑖 𝑥 → 𝑓 𝑥 = σ𝑘=0

ℎ−1 𝜌𝑠
𝑔𝑘 σ𝑗=0

𝑔−1
𝜌𝑠

−𝑔𝑘
𝑎𝑖 𝜌𝑠

𝑗
𝑥

 ℤ𝑝𝑟-linear case: 𝑓 𝑥 = σ𝑖=0
𝑑𝑖−1

σ𝑗=0
𝑑−1 𝑎𝑖,𝑗 ⋅ 𝜎𝑗 𝜌𝑠

𝑖 𝑥 is similar

 Hoisting: computing multiple automorphisms on the same input is faster

 Switching the order of σ𝑗 and σ𝑘 to minimize the number of unhoisted automorphisms

 Reduce the number of small-step automorphisms

 Diagonals of 𝑁𝑘 ⋯ 𝑁𝑗 roughly have indices 2−𝑘𝑑𝑠 ⋅ −𝑐 ⋅ 21+𝑘−𝑗 , 𝑐 ⋅ 21+𝑘−𝑗 , with 𝑐 = 1 or 3

 Use a power-of-two 𝑔 close to 𝑑𝑠 → the range of 𝑗 in σ𝑗 is small

Optimized BSGS matrix multiplication

log2 𝑑𝑠

Binary representation of

𝑖 = 𝑗 + 𝑔𝑘 for nonzero 𝑎𝑖

 During SlotToCoeff/CoeffToSlot in thin bootstrapping, the slot values lie in a subring 𝐹 < 𝐸

 Linearized polynomial needs 𝐹: ℤ𝑝𝑟 − 1 Frobenius automorphisms

 𝑝 ≡ 1 mod 4

 𝐹 = ℤ𝑝𝑟 , Eval/Eval−1 is omitted

 ∎ ∘ ⋯ ∘ ∎ ∘ Rm ∘ Nonlinear ∘ ∎ ∘ ⋯ ∘ ∎

 𝑝 ≡ 3 mod 4

 𝐹: ℤ𝑝𝑟 = 2

 ∎ ∘ ⋯ ∘ ∎ ∘ Rm ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for Bruun style

 ∎ ∘ ⋯ ∘ ∎ ∘ Rm ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for Radix-2 style

Faster ℤ𝑝𝑟-linear transformation in thin bootstrapping

Experiment Results

 THEIRS

 𝑁𝑖 are 1D 𝐸-linear transformations with 3 nonzero diagonals

 𝑝 ≡ 1 mod 4

 General bootstrapping ∎ ∘ ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ ∘ ∎,

ours is better

 Thin bootstrapping ∎ ∘ ⋯ ∘ ∎ ∘ Trace ∘ Nonlinear ∘ ∎ ∘ ⋯ ∘ ∎, both

methods are the same

 𝑝 ≡ 3 mod 4

 General bootstrapping:

 ∎ ∘ ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ ∘ ∎

 Better than our Radix-2 one

 Compared to our Bruun one: fewer nonzero diagonals but two more ‘∎’

 Thin bootstrapping:

 Trace′ ∘ ∎ ∘ ⋯ ∘ ∎ ∘ Trace ∘ Nonlinear ∘ ∎ ∘ ⋯ ∘ ∎, theirs is better

Comparison with the concurrent work by Geelen [CIC’24]

 OURS

 𝑝 ≡ 1 mod 4, General & thin bootstrapping:

 ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎

 The product of 𝑘 NTT matrices (or their
inverses) has < 2𝑘+1 nonzero diagonals

 ∎ in both ends are 2-dimensional

 𝑝 ≡ 3 mod 4, General & thin bootstrapping:

 ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for

Bruun style, < 7 ⋅ 2𝑘 nonzero diagonals

 ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for

Radix-2 style, < 2𝑘+1 nonzero diagonals

 Q&A

Thank you for listening

	幻灯片 1: Faster BGV Bootstrapping for Power-of-two Cyclotomics through Homomorphic NTT
	幻灯片 2: Fully Homomorphic Encryption
	幻灯片 3: Why using power-of-two cyclotomics in BGV/BFV?
	幻灯片 4: Problem and method overview
	幻灯片 5: Problem and method overview
	幻灯片 6: Structure of BGV/BFV plaintext space
	幻灯片 7: BGV/BFV FHE schemes
	幻灯片 8: Plaintext encoding in BGV/BFV
	幻灯片 9: Plaintext encoding in BGV/BFV
	幻灯片 10: Hypercube structure and rotation
	幻灯片 11: Homomorphic linear transformations
	幻灯片 12: CoeffToSlot/SlotToCoeff as NTT matrices
	幻灯片 13: CoeffToSlot and SlotToCoeff
	幻灯片 14: Decoding/Encoding as a chain of ring isomorphisms
	幻灯片 15: Plaintext encoding for power-of-two 大写 M
	幻灯片 16: Inverse NTT decomposition of (the permuted) Red ...次方 停顿 减 1 结束 上标
	幻灯片 17
	幻灯片 18: Formulas for CoeffToSlot/SlotToCoeff
	幻灯片 19: Combining consecutive NTT matrices
	幻灯片 20: Optimized BSGS matrix multiplication
	幻灯片 21: Faster 双线体 大写 Z 下标 停顿 p ...次方 r 设备控制 4 结束 下标-linear transformation in thin bootstrapping
	幻灯片 22: Experiment Results
	幻灯片 23: Comparison with the concurrent work by Geelen [CIC’24]
	幻灯片 24: Thank you for listening

