Tsinghua University

Faster BGV Bootstrapping for Power-of-two

Cyclotomics through Homomorphic NTT

Shihe Ma, Tairong Huang, Anyu Wang, Xiaoyun Wang

Tsinghua University

Fully Homomorphic Encryption

m FHE enables computation over encrypted data without decryption key
®m Concept by Rivest et al. in 1978
® First plausible scheme by Gentry in 2009
® 4 generations of schemes: Gentry’s; BGV/BFV; FHEW/TFHE; CKKS

m Bootstrapping: remove noise homomorphically to enable infinite homomorphic computation
m Single Instruction Multiple Data (SIMD) encoding: amortize cost in BGV/BFV/CKKS

m Rings with a power-of-two cyclotomic order are preferred in RLWE schemes

® Exclusively used by SEAL, OpenFHE, lattigo

Why using power-of-two cyclotomics in BGV/BFV?

|. Fast and easy implementation with Cooley-Tukey NTT
2. Compatible with FHE standard
3. More efficient null-polynomial-based digit removal [MHWW, Eurocrypt 2024]

1l > k \/"‘P(M)Z“’(M)‘ < $() - exfe (LX)

m Pr

12M V2

) ¢(M)20M)

= For different M with roughly the same ¢(M is smaller when M is a power of two = smaller

bound on I = null polynomials with lower degrees = faster digit removal

4. Simpler plaintext space structure for BGV/BFV

" |-Darrayora?2x %—sized 2-D array

Problem and method overview

= We want to achieve bootstrapping of BGV/BFV that

fully exploits the SIMD encoding property <

Chen and Han, Eurocrypt 2018

2. uses power-of-two cyclotomic rings
Halevi and Shoup, JoC 2021

3. is efficient

Such a goal has not been realized because having many slots in a power-of-two ring means

having a large plaintext prime p, causing slow digit removal (without the techniques of [MHWW?24])

2. the linear transformations during bootstrapping are slow, because
|. their large dimensions require more computing time

2. existing acceleration techniques based on decomposed linear transformations works only in
non-power-of-two rings

Problem and method overview

® Main idea: decompose SlotToCoeff/Coeff ToSlot matrices into the product of NTT matrices

= NTT matrices has much fewer nonzero diagonals = much faster homomorphic evaluation

m Similar techniques have been applied to CKKS bootstrapping [Chen, Chilloti, Song. Eurocrypt’ | 9][Han, Hhan, Cheon, 2019]

® Porting to BGV/BFV is nontrivial because...

m Slot value Slot arrangement | NTT type Linear transformation type

CKKS Complex number ID array Cooley-Tukey On scalar vectors
BGV/BFV Finite ring elements 1D or 2D array Cooley-Tukey or Bruun On vectors of small scalar vectors
m Other optimizations...

® Faster linearized polynomial on subfield/subring

m BSGS tailored for NTT matrices

® Reordering of linear transformations

Structure of BGV/BFV plaintext space

BGV/BFV FHE schemes

= RLWE based encryption with cyclotomic ring R, = Z, [X]/(CI)M(X)), plaintext modulus p”

= Ciphertext formatis (b = —as + p'e+m,a) € RCZI for BGV or (b = —as+e+ {% m}) a) = Ré for BFV,

with randomness a < R, Gaussian noise e € R, small secret s € R,and message m € R,r

= SIMD property. Plaintext space R,,r is isomorphic to E™ for some Galois ring/field E and integer L

= Supported homomorphic operations on E°:
(1) slot-wise addition, (2) slot-wise multiplication, (3) rotation of slots, (4) slot-wise Frobenius automorphism

Plaintext encoding in BGV/BFV

= Cyclotomic ring factorization

m et N =¢p(M)

m Caseofr =1:
s (X)) =[1iZ) F;(X), where deg(Fl-(X)) = ordz;ﬁw(p) is denotedas d.Ld = N
" F;(X) are monic, irreducible, distinct in F,[X],i.e., I, [X]/(Fi(X)) = GF(pd)
= R, = s F, [X]/(Fi(X)) =~ GF(pd)L, each GF(pd) position is called a slot

m Caseofr > 1:

m Can be obtained from the previous case using Hensel Lifting

= R, =GR(p"; d)*

Plaintext encoding in BGV/BFV

= Fix a representation of GR(p"; d), say Zpr[X]/(FO (X)) Denote it as E

= XN + 1 splits in E, denote one of the roots of Fy(X) in E as 7, then

= FEach F;(X) = ?:_01 (X — nsi'pj), and the set {s;} € 7Zj, is a representative set of H = Zj,/(p)

m Decode(m) = (m(nso),m(nsl), ...,m(nsL—l)):Rpr — EL

1

m Encode = Decode™

Hypercube structure and rotation

" Example. H = (g, g,) with ordy (g;) = d;, by setting s; ; = gigé,the slots {f (7°/)} of f(X) € R,r forms
f(nso,o) f(nso,d2—1)
f(nscil—l,O) 00G f(nsdl.—l,dz—l)

m |et gidi = p® mod M, Galois automorphism 6; mapping n = n9i rotates the matrix up or left (i = 0 or 1), while
the wrapped-around elements additionally go through Frobenius automorphism ¢ mapping n - npei

®m The i-th dimension is good < the rotation is perfect &< ¢; = 0

= Rotation by k positions in i-th dimension: p; = 6; or p; = 07 - u;(s) + Gis_di - u;(s) for masks y; and y;

" Homomorphic rotations are important in homomorphic linear transformations

Homomorphic linear transformations

general matrix in e

= multiply by some element in E

® |ntra-slot Zpr linear transformation:

= Computable through linearized polynomials. f (x) = };i=, a; xP" (1)
m Realized by homomorphic Frobenius automorphisms a(x) = xP

® |nter-slot |-D linear transformation along dimension s:
: di—1 :
m E-linear case: f(x) = X%, a; - ps(x) (2)
= Lyl FHCIED AN ¥ 169 3)
pr-linear case: f(x) = 2,2, Xj=g @i j o’ (pi(x
= FEach a; (a; ;) is nonzero if the i-th diagonal in the corresponding matrix is nonzero

= Matrices on each hypercolumn along dimension s @

CoeffToSlot/SlotToCoeff as NTT matrices

CoeffToSlot and SlotToCoeff

Enc(m;p")
iDecryption Formula Simplification and
Homomorphic Inner Product

Enc(p® "m + € p°)
iCoeffToSlot and Unpacking
Enc([p® "mim + €iny ooy P Mintn—1 + €ingn_1);p°) fore=0,1,...,d—1
iHomomorphic Digit Removal
Enc([Min, -« s Mintn—1];0") fori=20,1,...,d—1
lRepacking and SlotToCoeft
Enc(m;p")

|. The slot vector: a Zgr vector formed by L coefficient vectors of the GR(p"; d) value in each slot

2. The polynomial coefficients vector:a Zgr vector of m € R,r under basis {Xi}

m CoeffToSlot: move (2) into (1). SlotToCoeff: move (1) into (2)

Decoding/Encoding as a chain of ring isomorphisms

= A homomorphic Decode(m) = (m(nSO),m(nsl), ...,m(nsL—l)): Zgr — Zgr in slots achieves SlotToCoeff

m Decode = Eval o Red, with

Red(m) = (m mod Fy, m mod Fy, ..., m mod F; _,): Ryr — 1_[Lyr[X]/F;(X)

L—1
Eval(mg, my, .., myy) = (mGr%0), m@r*), .., mr=0): | | 2rx1/F: 00 - B
i=0
= Red(:) can be computed with NTT (and a bit-reversal permutation Perm)

m |terative CRT: X8 + 1 = (X* —nH)(X* +n*) = ((X2 —n?) (X% + nz)) ((X2 +1°) (X% - 716)) -

® Digit removal (or decryption formula simplification) is insensitive to the order of slots, i.e.,

Decode™! o Perm~! o DigitRemoval o Perm o Decode = Decode™?! o DigitRemoval o Decode

= Eval(:) is intra-slot = linearized polynomial

Plaintext encoding for power-of-two M

" [fp=1mod4,H =(-1,5),d; =2,d, = % Dim | is good,dim 2 is good iff d = 1

L . : : : icj
® We flatten the 2 X P sized array by concatenating the first and second row, i.e., SLiyj = (—1)'5/
2

" F(X) = X?* — {®k with { € Z,r as a 2L-th primitive root of unity
® Cooley-Tukey NTT

= |fp=3mod4,H =(5),d; = L.Dim | is good iffd = 2
" Onlya ID array

n F(X) = X4 — (¢Sk 4+ SkP)X 42 4 75+ 1) with ¢ € GR(p™; 2) as a 4L-th primitive root of unity
" Bruun NTT

Inverse NTT decomposition of (the permuted) Red ™!

£ & O Jox, EV] [+ # : 0+, FV] [oox, F®
* * *,Fl(ﬂ) 0*,F1(1) * ok E U*,Fl(l) 10*,F0(2)
% o PO 1x, PV * ok 1, FV| |01, F
T IO | L9 vl BN 29 2 U O uT DU £ 20 i B 39 i
% * *, Fiﬂ) 0, F4(15 ’ PRk 0%, F.a(lj 00*:F4(2)
ook x| B ok, FY | x 0x, FV| | 10%, F®
E* * *,F(D) 1*,F4(1) * ok 1*,F4(1) 01*,F4(2)
I Lo x5 B0] [15,FM] | | 1 FO] 114, F?
Ny N,
E | % 1oox, F® [o00x, £®
x _— 105, 7 | |010%, 7
* * 0%, F” 001, F%)
______ 1 x|, FP | |o11x, B
00s 77| ~ 1008, FO
% L 10x, F* 110%, F*
* * 01%, 7% 101%, F*)
*] « |16, FP | 1118, B
i M

Fig. 2. An illustration of Redgé for D =4 and p =1 mod 4. A ‘%’ in matrices stands
for a nonzero entry that is a multiple of I;, while a ‘x’ in the vectors means log,(d) bits
ranging from all zeros to all ones. Each slot stores part of the coefficients of m mod
Fz.(j). The (binary format of) indices of the coefficients are displayed along with the

corresponding Fi(j). E.g., ‘01x, F0(2)’ means that this slot stores (m mod FO(Q))[d +: d|.

Toy example of permuted Red ™! when
p=1mod4and L =8

Summary of Red ™!

log, L — 1 ID E-linear transformations,
each with 2-3 nonzero diagonals

One 2D E-linear transformations with 2
nonzero diagonals

More than E-linear:
multiply by something in E 2
multiply by some integer

[# # 1FY o, 2V [+ i i s (o, BY] [o00s, B?] 4 # Txe O] [xoe,rM] [# # 1[xos, 77 [x00x, £
4 ” «, F 0%, £V * * * * | |0, FY 00%, F? # # X6, FO | x0x, F" # o # X0, V| |X00%,
4 «, F o, PV | | (T e x| |ow, BY 10+, F? # # ||x O [xox, FM| [# # xo0«, F" | |x10%,F
i # *vFE.(O) _ 0*,F3(1) o L E____;_g_ 0*’}73(1) _ 10*,F1(2) # # X*,F;U) _ XO*,FB.(I) S R D XO*,FEEI) _ X10%, F?
4 4 WFO| T 1 7O | 10, FO | [014, B # # X*,F% X1*,FU$ ’ ## Xl*,FDEB XOl*,FUEZ;
’sto) 1,F1(1) I 1*,F1(1) 01*,ng’ # # X*,FS(O) Xl*,Fl(l) i ## Xl*,Fl(l) X01*,F1(2)
i # x, F") L ED | | e T 1+,) 114, £ # # X*,F%) X1*,F2;1) # # Xl*,FQ(U Xll*,FO(2)
L # #] *,FT(D) _1*,F3(1)_ | * i _1*,F3f1)_ _11*,F1(2)_ - ;\‘Z e I]\:/2 R
Nl [« % %] 00+ F(‘Z)]_VZ 000+ F(3)_ # # I XUO*,F&E) XUOO*,FU(3T
S " # # 5 X005, 7P | |x100+, FY
*ox 00+, Fy 100+, F # #! X10%, F” X010%, F.”
okoxox 10+, 010+, F,}” 4 H X10%, F? X110+, F
B B 105, 77| | 110+, F” TR R xo01+, F? |~ |x001, FY
s % ok [long FEP| | 001, B po x01%, F? | |x1014, 7Y
, * % [|01%, P 101%, F¥ # #||x115,F? | |X011%, FY
* % % x| 116, F? 011x, F” i : # #| [x115,F? | |[x111%, F)]
i o |1 2P| 1114, FP | N,
N3 Fig. 4. An illustration of Rengl in Radix-2 style for D = 8 and p = 1 mod 4. A
Fig. 3. An illustration of Redgl}{ in Bruun-style for D = 8 and p = 3 mod 4. A ‘4’ in ‘“*’ in vectors means log,(d) — 1 bits ranging from all zeros to all ones while a ‘X’
_) -aUId/2 a1ly)o . means a single bit running from 0 to 1. For example, when d = 8, ‘X0« stands for
matrices stands for a nonzero entry with the formof || y °° p | for ai € Zp. Other = (9000, 0001, 0010,0011, 1000, 1001, 1010, 1011). Other symbols have the same meaning
symbols have the same meaning as in Figure 2.) as in Figure 2 and Figure 3.

Toy examples of permuted Red™! when p = 3 mod 4 and L = 8, with different butterfly arrangement in Bruun NTT

B Bruun style B Radix-2 style

* One ID Z,r-linear transformation with 2 diagonals * log, D ID Zyr-linear transformations

e log, D — 1 ID E-linear transformations with <7 with 2-3 diagonals

diagonals

Formulas for CoeffToSlot/SlotToCoeff

= p=1mod4
® General bootstrapping (SlotToCoeff first)
= PtoN o Redgg o Eval™! o ---0 Eval o Redgg = Redgs © (PtoN o Eval™!) o --- 0 Eval o Redgg
® Thin bootstrapping (SlotToCoeff first, only integers in slots)
= Redgg o Eval™! o Rm o -+ o Eval o Redgg, where Rm removes extra coefficients in plaintext polynomial
= p=3mod4
m General bootstrapping (SlotToCoeff first)

-1 -1
= Redgg ° (PtoN o Eval™) o --- o Eval o Redgg Niog, 1 © -**© Ny o Nj, Bruun style

Redgg = .
= Thin bootstrapping (SlotToCoeff first, only integers in slots) = Niog, 1 © -+ © N1, Radix2 style

= Bruun stylee Redgi o Eval™! o Rm o --- o Eval o Redgg

= Radix-2 style: Rm’ o Redgg o Eval™! o Rm o - o Eval o Redgg, where Rm’ removes extra coefficients in slots

Combining consecutive NTT matrices

= Combine consecutive NTT matrices (and Eval or PtoN) to save some levels

m Level collapsing from CKKS bootstrapping

® More nonzero diagonals after combination: tradeoff between running time and remaining capacity
= p=1mod4
m General & thin bootstrapping: B o ---o B o B o Nonlinearomomo: o m

= The product of k NTT matrices (or their inverses) has < 2%*! nonzero diagonals

= m in both ends are 2-dimensional
= p=3mod4
m General & thin bootstrapping:

" mo--omomoNonlinearo m o mo o m for Bruun style, < 7 - 2% nonzero diagonals

" mo--omomoNonlinearo m o m oo m for Radix-2 style, < 2%*1 nonzero diagonals

Optimized BSGS matrix multiplication

m BSGS matrix multiplication: reduce computation cost from 0(d;) to O (\/d_s)

= Giant step g, number of giant steps h = [%}. leti =]+ gkfor0<i<ds,where0<)j<g.g=0 (\/d_s) is optimal

® Rotation keys for pg and p;gk are included in the public key
. di_ [— - - j
= E-linear case: f(x) = ot a; - pi(x) > () = 2hzdpd* (2925 b5 (@)pl ()

. di-1 wd— o o
m Zpr-linear case: f(x) = X, %, j-l=(} a;j- o’ (pé(x)) is similar
Binary representation of

® Hoisting: computing multiple automorphisms on the same input is faster i = j + gk for nonzero a;
m Switching the order of). and), to minimize the number of unhoisted automorphisms
; T R P EEEEEEE
m Reduce the number of small-step automorphisms
[T [P 7 7]
= Diagonals of Ny - N; roughly have indices 27%d - [—c - 21K~/ ¢ . 21*k=J] with ¢ = 1 or 3
L EEEEEEN

" Use a power-of-two g close to /ds = the range of j in). ; is small i

Faster Z,r-linear transformation in thin bootstrapping

® During SlotToCoeff/CoeffToSlot in thin bootstrapping, the slot values lie in a subring F < E
® Linearized polynomial needs [F: Zpr] — 1 Frobenius automorphisms

= p=1mod4
= F =7, Eval/Eval™" is omitted
" mo--omoRmoNonlinearomo:--om

= p=3mod4

[F:Zpr] =2

" mo--omoRmoNonlinearo m o m o --- o m for Bruun style

L Rm o Nonlinear o for Radix-2 style

Experiment Results

Table 2. The parameter sets. h and A are the Hamming weight and the security level

of the main secret key, while b’ and)\’ are those for the encapsulated bootstrapping Table 3. The partitions for general and thin bootstrapping.

key: Bootstrapping Type I Style I1 111
ID| p |r| M L D |d|log,(Q)| h A [RN Thin (1,6,12,16) Bruun |(1,6,10,13) | (1,7,12,15)
I | 65537 65536 | 32768 | 16384 | 1 26| 134.4 Partition T Radix-2 | (1,5,9,13) |(1,6,10,15)
IT'| 8191 |1|65536| 4096 | 4096 (8| 1332 [120]81.13|24| 129.8 General (1,6,12,16) Bruun | (1,5,10,13) | (1,7,12,15)
IIT { 131071 65536 | 16384 | 16384 | 2 26 |133.81 T Radix-2 | (1,5,9,13) |(1,6,10,15)

Table 5. Benchmark results for general bootstrapping. Capacity refers to the capacity con-
sumed by each stage of bootstrapping. The speedup is computed as the ratio of throughput
with respect to the baseline case.

Table 4. Benchmark results for thin bootstrapping. Capacity refers to the capacity consumed
by each stage of bootstrapping. The speedup is computed as the ratio of throughput with
respect to the baseline case.

Parameter Set I II 111 Parameter Set I II 111

Method Baseline Qurs | Baseline B?Eflsn RZEEQ Baseline B?*Eflsn stfjg Method Baseline Ours | Baseline B?Elfn R(;;fiQ Baseline B?_E}fn R(zgfjg

Initial 941 941 947 947 947 939 939 939 Initial 941 941 947 947 947 939 939 939

Capacity | CoeffToSlot 62 134 56 119 118 64 144 143 Capacity | CoeffToSlot' 62 134 58 120 129 65 143 143

(bits) | SlotToCoeff 39 79 33 70 69 39 85 85 (bits) | SlotToCoeff’ 38 78 36 72 80 39 84 84

Digit extract | 265 265 232 231 232 277 276 277 Digit extract | 265 264 297 293 295 326 327 326

Remaining 556 446 610 all 513 540 415 415 Remaining 2h7 447 541 447 428 489 366 366

Time CoeffToSlot 320 12.8 53 15.1 11.8 170 16.4 14.0 Time CoeffToSlot 316 127 | 1017 19.0 234 1624 16.1 14.1

(sec) SlotToCoeff 58 4.4 11.2 3.9 3.2 33 5.0 3.9 (sec) SlotToCoeff 316 12.8 1015 18.8 20.9 1625 15.9 14.0

Digit extract 6.0 5.9 5.9 6.1 6.0 6.1 5.7 5.7 Digit extract 6.1 5.8 49 48 48 12.2 11.7 11.9

Total 385 234 71 26 21.6 209 27 24.1 Total 639 32 2082 86 93 3261 44 40

Throughput (bps) 1.45 19.0 8.6 200 238 2.6 15.1 17.2 Throughput (bps) 0.87 14.1 0.26 5.2 4.6 0.15 8.3 9.1

Speedup 1x 13.2x 1x 2.32x 2.8x 1x 5.9x 6.7x Speedup 1x 16.2x 1x 20.0x 17.8x 1x DHX 60x

Memory Usage (GB) 398 31 52 9.7 8.8 201 24.1 23.6 Memory Usage (GB) 398 31 744 11.8 13.6 392 24.1 23.6

Comparison with the concurrent work by Geelen [CIC'24]

= THEIRS = QURS
m ; are 1D E-linear transformations with 3 nonzero diagonals = p = 1 mod 4, General & thin bootstrapping:
"= p=1mod4 m mo--comomoNonlinearocmomo:--om
= General bootstrapping m o m o---o m o W o Nonlinearomomo o mo m, = The product of k NTT matrices (or their
ours is better inverses) has < 2*** nonzero diagonals
m Thin bootstrapping m o --- o m o Trace o Nonlinear o m o --- o m, both = ® inboth ends are 2-dimensional

e icfsame = p = 3 mod 4, General & thin bootstrapping:

| o .
p =3 mod 4 " mo--omomoNonlinearomomo:--om for
. k .
m General bootstrapping: Bruun style, < 7 - 2" nonzero diagonals
" momo--omomoNonlihecarc momo---omWo°m " mo--omomoNonlinearomomo:--omfor

Radix-2 style, < 2¥*1 nonzero diagonals
= Better than our Radix-2 one

= Compared to our Bruun one: fewer nonzero diagonals but two more ‘W’

® Thin bootstrapping:

m omo--omoTrace o Nonlinearo m o --- o m, theirs is better

Thank you for listening

= Q&A

	幻灯片 1: Faster BGV Bootstrapping for Power-of-two Cyclotomics through Homomorphic NTT
	幻灯片 2: Fully Homomorphic Encryption
	幻灯片 3: Why using power-of-two cyclotomics in BGV/BFV?
	幻灯片 4: Problem and method overview
	幻灯片 5: Problem and method overview
	幻灯片 6: Structure of BGV/BFV plaintext space
	幻灯片 7: BGV/BFV FHE schemes
	幻灯片 8: Plaintext encoding in BGV/BFV
	幻灯片 9: Plaintext encoding in BGV/BFV
	幻灯片 10: Hypercube structure and rotation
	幻灯片 11: Homomorphic linear transformations
	幻灯片 12: CoeffToSlot/SlotToCoeff as NTT matrices
	幻灯片 13: CoeffToSlot and SlotToCoeff
	幻灯片 14: Decoding/Encoding as a chain of ring isomorphisms
	幻灯片 15: Plaintext encoding for power-of-two 大写 M
	幻灯片 16: Inverse NTT decomposition of (the permuted) Red ...次方 停顿 减 1 结束 上标
	幻灯片 17
	幻灯片 18: Formulas for CoeffToSlot/SlotToCoeff
	幻灯片 19: Combining consecutive NTT matrices
	幻灯片 20: Optimized BSGS matrix multiplication
	幻灯片 21: Faster 双线体 大写 Z 下标 停顿 p ...次方 r 设备控制 4 结束 下标-linear transformation in thin bootstrapping
	幻灯片 22: Experiment Results
	幻灯片 23: Comparison with the concurrent work by Geelen [CIC’24]
	幻灯片 24: Thank you for listening

