
Faster BGV Bootstrapping for Power-of-two

Cyclotomics through Homomorphic NTT

Shihe Ma, Tairong Huang, Anyu Wang, XiaoyunWang

Tsinghua University

 FHE enables computation over encrypted data without decryption key

 Concept by Rivest et al. in 1978

 First plausible scheme by Gentry in 2009

 4 generations of schemes: Gentry’s; BGV/BFV; FHEW/TFHE; CKKS

 Bootstrapping: remove noise homomorphically to enable infinite homomorphic computation

 Single Instruction Multiple Data (SIMD) encoding: amortize cost in BGV/BFV/CKKS

 Rings with a power-of-two cyclotomic order are preferred in RLWE schemes

 Exclusively used by SEAL, OpenFHE, lattigo

Fully Homomorphic Encryption

1. Fast and easy implementation with Cooley-Tukey NTT

2. Compatible with FHE standard

3. More efficient null-polynomial-based digit removal [MHWW, Eurocrypt 2024]

 Pr 𝐼 > 𝑘
ℎ𝜙 𝑀 2𝜔 𝑀

12𝑀
< 𝜙 𝑀 ⋅ erfc

𝑘

2

 For different 𝑀 with roughly the same 𝜙 𝑀 ,
𝜙 𝑀 2𝜔 𝑀

𝑀
is smaller when 𝑀 is a power of two → smaller

bound on 𝐼 → null polynomials with lower degrees → faster digit removal

4. Simpler plaintext space structure for BGV/BFV

 1-D array or a 2 ×
𝐿

2
-sized 2-D array

Why using power-of-two cyclotomics in BGV/BFV?

 We want to achieve bootstrapping of BGV/BFV that

1. fully exploits the SIMD encoding property

2. uses power-of-two cyclotomic rings

3. is efficient

 Such a goal has not been realized because having many slots in a power-of-two ring means

1. having a large plaintext prime 𝑝, causing slow digit removal (without the techniques of [MHWW24])

2. the linear transformations during bootstrapping are slow, because

1. their large dimensions require more computing time

2. existing acceleration techniques based on decomposed linear transformations works only in

non-power-of-two rings

Problem and method overview

Chen and Han, Eurocrypt 2018

Halevi and Shoup, JoC 2021

 Main idea: decompose SlotToCoeff/CoeffToSlot matrices into the product of NTT matrices

 NTT matrices has much fewer nonzero diagonals → much faster homomorphic evaluation

 Similar techniques have been applied to CKKS bootstrapping [Chen, Chilloti, Song. Eurocrypt’19][Han, Hhan, Cheon, 2019]

 Porting to BGV/BFV is nontrivial because…

 Other optimizations…

 Faster linearized polynomial on subfield/subring

 BSGS tailored for NTT matrices

 Reordering of linear transformations

Problem and method overview

Scheme Slot value Slot arrangement NTT type Linear transformation type

CKKS Complex number 1D array Cooley-Tukey On scalar vectors

BGV/BFV Finite ring elements 1D or 2D array Cooley-Tukey or Bruun On vectors of small scalar vectors

Structure of BGV/BFV plaintext space

 RLWE based encryption with cyclotomic ring 𝑅𝑞 = ℤ𝑞 𝑋 / Φ𝑀 𝑋 , plaintext modulus 𝑝𝑟

 Ciphertext format is 𝑏 = −𝑎𝑠 + 𝑝𝑟𝑒 + 𝑚, 𝑎 ∈ 𝑅𝑞
2 for BGV or 𝑏 = −𝑎𝑠 + 𝑒 +

𝑞

𝑝𝑟 𝑚 , 𝑎 ∈ 𝑅𝑞
2 for BFV,

with randomness 𝑎 ← 𝑅𝑞, Gaussian noise 𝑒 ∈ 𝑅, small secret 𝑠 ∈ 𝑅, and message 𝑚 ∈ 𝑅𝑝𝑟

 SIMD property. Plaintext space 𝑅𝑝𝑟 is isomorphic to 𝐸𝐿 for some Galois ring/field 𝐸 and integer 𝐿

 Supported homomorphic operations on 𝐸𝐿:

(1) slot-wise addition, (2) slot-wise multiplication, (3) rotation of slots, (4) slot-wise Frobenius automorphism

BGV/BFV FHE schemes

 Cyclotomic ring factorization

 Let 𝑁 = 𝜙 𝑀

 Case of 𝑟 = 1:

 Φ𝑀 𝑋 = ς𝑖=0
𝐿−1 𝐹𝑖 𝑋 , where deg 𝐹𝑖 𝑋 = ordℤ𝑀

∗ 𝑝 is denoted as 𝑑. 𝐿𝑑 = 𝑁

 𝐹𝑖 𝑋 are monic, irreducible, distinct in 𝔽𝑝 𝑋 , i.e., 𝔽𝑝 𝑋 / 𝐹𝑖 𝑋 ≅ GF 𝑝𝑑

 𝑅𝑝 ≅ ς𝑖=0
𝐿−1 𝔽𝑝 𝑋 / 𝐹𝑖 𝑋 ≅ GF 𝑝𝑑 𝐿

, each GF 𝑝𝑑 position is called a slot

 Case of 𝑟 > 1:

 Can be obtained from the previous case using Hensel Lifting

 𝑅𝑝𝑟 ≅ GR 𝑝𝑟; 𝑑 𝐿

Plaintext encoding in BGV/BFV

 Fix a representation of GR 𝑝𝑟; 𝑑 , say ℤ𝑝𝑟 𝑋 / 𝐹0 𝑋 . Denote it as 𝐸

 𝑋𝑁 + 1 splits in 𝐸, denote one of the roots of 𝐹0 𝑋 in 𝐸 as 𝜂, then

 Each 𝐹𝑖 𝑋 = ς𝑗=0
𝑑−1 𝑋 − 𝜂𝑠𝑖⋅𝑝𝑗

, and the set 𝑠𝑖 ⊆ ℤ𝑀
∗ is a representative set of 𝐻 = ℤ𝑀

∗ / 𝑝

 Decode 𝑚 = 𝑚 𝜂𝑠0 , 𝑚 𝜂𝑠1 , … , 𝑚 𝜂𝑠𝐿−1 : 𝑅𝑝𝑟 → 𝐸𝐿

 Encode = Decode−1

Plaintext encoding in BGV/BFV

 Example. 𝐻 = 𝑔1, 𝑔2 with ord𝐻 𝑔𝑖 = 𝑑𝑖, by setting 𝑠𝑖,𝑗 = 𝑔1
𝑖 𝑔2

𝑗
, the slots 𝑓 𝜂𝑠𝑖,𝑗 of 𝑓 𝑋 ∈ 𝑅𝑝𝑟 forms

𝑓 𝜂𝑠0,0 ⋯ 𝑓 𝜂𝑠0,𝑑2−1

⋮ ⋱ ⋮
𝑓 𝜂𝑠𝑑1−1,0 ⋯ 𝑓 𝜂𝑠𝑑1−1,𝑑2−1

 Let 𝑔𝑖
𝑑𝑖 ≡ 𝑝𝑒𝑖 mod 𝑀, Galois automorphism 𝜃𝑖 mapping 𝜂 → 𝜂𝑔𝑖 rotates the matrix up or left (𝑖 = 0 or 1), while

the wrapped-around elements additionally go through Frobenius automorphism 𝜎𝑒𝑖 mapping 𝜂 → 𝜂𝑝𝑒𝑖

 The 𝑖-th dimension is good ⟺ the rotation is perfect ⟺ 𝑒𝑖 = 0

 Rotation by 𝑘 positions in 𝑖-th dimension: 𝜌𝑖
𝑠 = 𝜃𝑖

𝑠 or 𝜌𝑖
𝑠 = 𝜃𝑖

𝑠 ⋅ 𝜇𝑖 𝑠 + 𝜃𝑖
𝑠−𝑑𝑖 ⋅ 𝜇𝑖

′ 𝑠 for masks 𝜇𝑖 and 𝜇𝑖
′

 Homomorphic rotations are important in homomorphic linear transformations

Hypercube structure and rotation

 Intra-slot ℤ𝑝𝑟 linear transformation:

 Computable through linearized polynomials. 𝑓 𝑥 = σ𝑖=0
𝑑−1 𝑎𝑖𝑥𝑝𝑖

 1

 Realized by homomorphic Frobenius automorphisms 𝜎 𝑥 = 𝑥𝑝

 Inter-slot 1-D linear transformation along dimension 𝑠:

 𝐸-linear case: 𝑓 𝑥 = σ
𝑖=0
𝑑𝑖−1

𝑎𝑖 ⋅ 𝜌𝑠
𝑖 𝑥 2

 ℤ𝑝𝑟-linear case: 𝑓 𝑥 = σ
𝑖=0
𝑑𝑖−1 σ𝑗=0

𝑑−1 𝑎𝑖,𝑗 ⋅ 𝜎𝑗 𝜌𝑠
𝑖 𝑥 3

 Each 𝑎𝑖 (𝑎𝑖,𝑗) is nonzero if the 𝑖-th diagonal in the corresponding matrix is nonzero

 Matrices on each hypercolumn along dimension 𝑠

Homomorphic linear transformations

= general matrix in ℤ𝑝𝑟
𝑑×𝑑

= multiply by some element in 𝐸

1

2

3

CoeffToSlot/SlotToCoeff as NTT matrices

1. The slot vector: a ℤ𝑝𝑟
𝑁 vector formed by 𝐿 coefficient vectors of the GR 𝑝𝑟; 𝑑 value in each slot

2. The polynomial coefficients vector: a ℤ𝑝𝑟
𝑁 vector of 𝑚 ∈ 𝑅𝑝𝑟 under basis 𝑋𝑖

 CoeffToSlot: move (2) into (1). SlotToCoeff: move (1) into (2)

CoeffToSlot and SlotToCoeff

 A homomorphic Decode 𝑚 = 𝑚 𝜂𝑠0 , 𝑚 𝜂𝑠1 , … , 𝑚 𝜂𝑠𝐿−1 : ℤ𝑝𝑟
𝑁 → ℤ𝑝𝑟

𝑁 in slots achieves SlotToCoeff

 Decode = Eval ∘ Red, with

Red 𝑚 = 𝑚 mod 𝐹0, 𝑚 mod 𝐹1, … , 𝑚 mod 𝐹𝐿−1 : 𝑅𝑝𝑟 → ෑ

𝑖=0

𝐿−1

ℤ𝑝𝑟 𝑋 /𝐹𝑖 𝑋

Eval 𝑚0, 𝑚1, … , 𝑚𝐿−1 = 𝑚 𝜂𝑠0 , 𝑚 𝜂𝑠1 , … , 𝑚 𝜂𝑠𝐿−1 : ෑ

𝑖=0

𝐿−1

ℤ𝑝𝑟 𝑋 /𝐹𝑖 𝑋 → 𝐸𝐿

 Red ⋅ can be computed with NTT (and a bit-reversal permutation Perm)

 Iterative CRT: 𝑋8 + 1 = 𝑋4 − 𝜂4 𝑋4 + 𝜂4 = 𝑋2 − 𝜂2 𝑋2 + 𝜂2 𝑋2 + 𝜂6 𝑋2 − 𝜂6 = ⋯

 Digit removal (or decryption formula simplification) is insensitive to the order of slots, i.e.,

Decode−1 ∘ Perm−1 ∘ DigitRemoval ∘ Perm ∘ Decode = Decode−1 ∘ DigitRemoval ∘ Decode

 Eval ⋅ is intra-slot → linearized polynomial

Decoding/Encoding as a chain of ring isomorphisms

 If 𝑝 ≡ 1 mod 4, 𝐻 = −1,5 , 𝑑1 = 2, 𝑑2 =
𝐿

2
. Dim 1 is good, dim 2 is good iff 𝑑 = 1

 We flatten the 2 ×
𝐿

2
 sized array by concatenating the first and second row, i.e., 𝑠𝐿

2
𝑖+𝑗

= −1 𝑖5𝑗

 𝐹𝑘 𝑋 = 𝑋𝑑 − 𝜁𝑠𝑘 with 𝜁 ∈ ℤ𝑝𝑟 as a 2𝐿-th primitive root of unity

 Cooley-Tukey NTT

 If 𝑝 ≡ 3 mod 4, 𝐻 = 5 , 𝑑1 = 𝐿. Dim 1 is good iff 𝑑 = 2

 Only a 1D array

 𝐹𝑘 𝑋 = 𝑋𝑑 − 𝜁𝑠𝑘 + 𝜁𝑠𝑘⋅𝑝 𝑋𝑑/2 + 𝜁𝑠𝑘 𝑝+1 with 𝜁 ∈ GR 𝑝𝑟; 2 as a 4𝐿-th primitive root of unity

 Bruun NTT

Plaintext encoding for power-of-two 𝑀

 Toy example of permuted Red−1 when
𝑝 ≡ 1 mod 4 and 𝐿 = 8

 Summary of Red−1

1. log2 𝐿 − 1 1D 𝐸-linear transformations,
each with 2-3 nonzero diagonals

2. One 2D 𝐸-linear transformations with 2
nonzero diagonals

 More than 𝐸-linear:
multiply by something in 𝐸 →
multiply by some integer

Inverse NTT decomposition of (the permuted) Red−1

𝑁1 𝑁2

𝑁3

Toy examples of permuted Red−1 when 𝑝 ≡ 3 mod 4 and 𝐿 = 8, with different butterfly arrangement in Bruun NTT

◼ Bruun style

• One 1D ℤ𝑝𝑟-linear transformation with 2 diagonals

• log2 𝐷 − 1 1D 𝐸-linear transformations with ≤7

diagonals

◼ Radix-2 style

• log2 𝐷 1D ℤ𝑝𝑟-linear transformations

with 2-3 diagonals

𝑁1 𝑁2

𝑁3

𝑁1 𝑁2

𝑁3

 𝑝 ≡ 1 mod 4

 General bootstrapping (SlotToCoeff first)

 PtoN ∘ RedBR
−1 ∘ Eval−1 ∘ ⋯ ∘ Eval ∘ RedBR = RedBR

−1 ∘ PtoN ∘ Eval−1 ∘ ⋯ ∘ Eval ∘ RedBR

 Thin bootstrapping (SlotToCoeff first, only integers in slots)

 RedBR
−1 ∘ Eval−1 ∘ Rm ∘ ⋯ ∘ Eval ∘ RedBR, where Rm removes extra coefficients in plaintext polynomial

 𝑝 ≡ 3 mod 4

 General bootstrapping (SlotToCoeff first)

 RedBR
−1 ∘ PtoN ∘ Eval−1 ∘ ⋯ ∘ Eval ∘ RedBR

 Thin bootstrapping (SlotToCoeff first, only integers in slots)

 Bruun style: RedBR
−1 ∘ Eval−1 ∘ Rm ∘ ⋯ ∘ Eval ∘ RedBR

 Radix-2 style: Rm′ ∘ RedBR
−1 ∘ Eval−1 ∘ Rm ∘ ⋯ ∘ Eval ∘ RedBR, where Rm′ removes extra coefficients in slots

Formulas for CoeffToSlot/SlotToCoeff

RedBR
−1 = ൝

𝑁𝑙𝑜𝑔2 𝐿 ∘ ⋯ ∘ 𝑁2 ∘ 𝑁1, Bruun style

𝑁log2 𝐿 ∘ ⋯ ∘ 𝑁1, Radix2 style

 Combine consecutive NTT matrices (and Eval or PtoN) to save some levels

 Level collapsing from CKKS bootstrapping

 More nonzero diagonals after combination: tradeoff between running time and remaining capacity

 𝑝 ≡ 1 mod 4

 General & thin bootstrapping: ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎

 The product of 𝑘 NTT matrices (or their inverses) has < 2𝑘+1 nonzero diagonals

 ∎ in both ends are 2-dimensional

 𝑝 ≡ 3 mod 4

 General & thin bootstrapping:

 ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for Bruun style, < 7 ⋅ 2𝑘 nonzero diagonals

 ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for Radix-2 style, < 2𝑘+1 nonzero diagonals

Combining consecutive NTT matrices

 BSGS matrix multiplication: reduce computation cost from 𝑂 𝑑𝑠 to 𝑂 𝑑𝑠

 Giant step 𝑔, number of giant steps ℎ =
𝑑𝑠

𝑔
. Let 𝑖 = 𝑗 + 𝑔𝑘 for 0 ≤ 𝑖 < 𝑑𝑠, where 0 ≤ 𝑗 < 𝑔. 𝑔 = 𝑂 𝑑𝑠 is optimal

 Rotation keys for 𝜌𝑠
𝑗
 and 𝜌𝑠

𝑔𝑘
 are included in the public key

 𝐸-linear case: 𝑓 𝑥 = σ𝑖=0
𝑑𝑖−1

𝑎𝑖 ⋅ 𝜌𝑠
𝑖 𝑥 → 𝑓 𝑥 = σ𝑘=0

ℎ−1 𝜌𝑠
𝑔𝑘 σ𝑗=0

𝑔−1
𝜌𝑠

−𝑔𝑘
𝑎𝑖 𝜌𝑠

𝑗
𝑥

 ℤ𝑝𝑟-linear case: 𝑓 𝑥 = σ𝑖=0
𝑑𝑖−1

σ𝑗=0
𝑑−1 𝑎𝑖,𝑗 ⋅ 𝜎𝑗 𝜌𝑠

𝑖 𝑥 is similar

 Hoisting: computing multiple automorphisms on the same input is faster

 Switching the order of σ𝑗 and σ𝑘 to minimize the number of unhoisted automorphisms

 Reduce the number of small-step automorphisms

 Diagonals of 𝑁𝑘 ⋯ 𝑁𝑗 roughly have indices 2−𝑘𝑑𝑠 ⋅ −𝑐 ⋅ 21+𝑘−𝑗 , 𝑐 ⋅ 21+𝑘−𝑗 , with 𝑐 = 1 or 3

 Use a power-of-two 𝑔 close to 𝑑𝑠 → the range of 𝑗 in σ𝑗 is small

Optimized BSGS matrix multiplication

log2 𝑑𝑠

Binary representation of

𝑖 = 𝑗 + 𝑔𝑘 for nonzero 𝑎𝑖

 During SlotToCoeff/CoeffToSlot in thin bootstrapping, the slot values lie in a subring 𝐹 < 𝐸

 Linearized polynomial needs 𝐹: ℤ𝑝𝑟 − 1 Frobenius automorphisms

 𝑝 ≡ 1 mod 4

 𝐹 = ℤ𝑝𝑟 , Eval/Eval−1 is omitted

 ∎ ∘ ⋯ ∘ ∎ ∘ Rm ∘ Nonlinear ∘ ∎ ∘ ⋯ ∘ ∎

 𝑝 ≡ 3 mod 4

 𝐹: ℤ𝑝𝑟 = 2

 ∎ ∘ ⋯ ∘ ∎ ∘ Rm ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for Bruun style

 ∎ ∘ ⋯ ∘ ∎ ∘ Rm ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for Radix-2 style

Faster ℤ𝑝𝑟-linear transformation in thin bootstrapping

Experiment Results

 THEIRS

 𝑁𝑖 are 1D 𝐸-linear transformations with 3 nonzero diagonals

 𝑝 ≡ 1 mod 4

 General bootstrapping ∎ ∘ ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ ∘ ∎,

ours is better

 Thin bootstrapping ∎ ∘ ⋯ ∘ ∎ ∘ Trace ∘ Nonlinear ∘ ∎ ∘ ⋯ ∘ ∎, both

methods are the same

 𝑝 ≡ 3 mod 4

 General bootstrapping:

 ∎ ∘ ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ ∘ ∎

 Better than our Radix-2 one

 Compared to our Bruun one: fewer nonzero diagonals but two more ‘∎’

 Thin bootstrapping:

 Trace′ ∘ ∎ ∘ ⋯ ∘ ∎ ∘ Trace ∘ Nonlinear ∘ ∎ ∘ ⋯ ∘ ∎, theirs is better

Comparison with the concurrent work by Geelen [CIC’24]

 OURS

 𝑝 ≡ 1 mod 4, General & thin bootstrapping:

 ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎

 The product of 𝑘 NTT matrices (or their
inverses) has < 2𝑘+1 nonzero diagonals

 ∎ in both ends are 2-dimensional

 𝑝 ≡ 3 mod 4, General & thin bootstrapping:

 ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for

Bruun style, < 7 ⋅ 2𝑘 nonzero diagonals

 ∎ ∘ ⋯ ∘ ∎ ∘ ∎ ∘ Nonlinear ∘ ∎ ∘ ∎ ∘ ⋯ ∘ ∎ for

Radix-2 style, < 2𝑘+1 nonzero diagonals

 Q&A

Thank you for listening

	幻灯片 1: Faster BGV Bootstrapping for Power-of-two Cyclotomics through Homomorphic NTT
	幻灯片 2: Fully Homomorphic Encryption
	幻灯片 3: Why using power-of-two cyclotomics in BGV/BFV?
	幻灯片 4: Problem and method overview
	幻灯片 5: Problem and method overview
	幻灯片 6: Structure of BGV/BFV plaintext space
	幻灯片 7: BGV/BFV FHE schemes
	幻灯片 8: Plaintext encoding in BGV/BFV
	幻灯片 9: Plaintext encoding in BGV/BFV
	幻灯片 10: Hypercube structure and rotation
	幻灯片 11: Homomorphic linear transformations
	幻灯片 12: CoeffToSlot/SlotToCoeff as NTT matrices
	幻灯片 13: CoeffToSlot and SlotToCoeff
	幻灯片 14: Decoding/Encoding as a chain of ring isomorphisms
	幻灯片 15: Plaintext encoding for power-of-two 大写 M
	幻灯片 16: Inverse NTT decomposition of (the permuted) Red ...次方 停顿 减 1 结束 上标
	幻灯片 17
	幻灯片 18: Formulas for CoeffToSlot/SlotToCoeff
	幻灯片 19: Combining consecutive NTT matrices
	幻灯片 20: Optimized BSGS matrix multiplication
	幻灯片 21: Faster 双线体 大写 Z 下标 停顿 p ...次方 r 设备控制 4 结束 下标-linear transformation in thin bootstrapping
	幻灯片 22: Experiment Results
	幻灯片 23: Comparison with the concurrent work by Geelen [CIC’24]
	幻灯片 24: Thank you for listening

