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Introduction to SDLP



Definitions

Semidirect Product
Let G be a finite group and Aut(G) its group of automorphisms. We
define G⋊ Aut(G) to be the group of pairs in G× Aut(G) equipped
with the following multiplication:

(g, ϕ)(h, ψ) := (gϕ(h), ϕ ◦ ψ)

G Aut(G)

G

Notice

(g, ϕ)2 = (gϕ(g), ϕ2)
(g, ϕ)3 = (g, ϕ)(gϕ(g), ϕ2)

= (gϕ(g)ϕ2(g), ϕ3)
(g, ϕ)4 = (g, ϕ)(gϕ(g)ϕ2(g), ϕ3)

= (gϕ(g)ϕ2(g)ϕ3(g), ϕ4)
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Definitions

ρg,ϕ

Fix (g, ϕ) ∈ G⋊ Aut(G). Define ρg,ϕ : G→ G by

ρg,ϕ(h) = gϕ(h)

We have seen that

ρxg,ϕ(1G) = gϕ(g)...ϕx−1(g)

SDLP
Fix G⋊ Aut(G) and a pair (g, ϕ). Suppose we are given ρxg,ϕ(1G) for
some x ∈ Z. The Semidirect Discrete Logarithm Problem is to
recover x.
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Background

• Natural; outside the mainstream; feasibly post-quantum
• Turns out semidirect product cryptography can be described via
commutative group actions*

• Commutative group actions give us Diffie-Hellman-style key
exchanges (NIKEs)†, and digital signatures‡

• Recent fast algorithms for SDLP in certain classes of group§

*B. et al. 2023a.
†Habeeb et al. 2013.
‡B. et al. 2023b.
§Mendelsohn et al. 2023; Imran and Ivanyos 2024.
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Reduction to Simple Groups



Intuition

G

N ◁ G

N
G/N
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The Decomposition Tool

Imran and Ivanyos 2024, Theorem 3
Consider SDLP with respect to a pair (g, ϕ) ∈ G⋊ Aut(G). Given a
ϕ-invariant normal subgroup N of G, the solutions of SDLP are a
linear combination of solutions of an instance of SDLP in G/N and
an instance of SDLP in N.

Imran and Ivanyos 2024, Theorem 4
We can solve SDLP in solvable groups, and groups whose
composition factors are small-dimensional matrix groups.

• Our contribution: reduce an arbitrary instance of SDLP in a finite
group to instances of SDLP in simple groups, then solve those
with the Classification. Requires a couple of (justified)
computational group theory oracles.

• To complete the reduction need to compute invariant subgroups
and check the recursion terminates.
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Computing the Invariant Subgroup

ϕ(N)

N

ϕ2(N)
C

Figure 1: The ϕ-invariant
subgroup cannot be smaller than
the characteristic subgroup.

• Suppose we can compute a maximal
normal subgroup of G, say N.

• Imran and Ivanyos 2024 show that
the intersection

N ∩ ϕ(N) ∩ ... ∩ ϕi(N) ∩ ...

stabilises with a ϕ-invariant
subgroupa

• The algorithm doesn’t terminate in
the trivial subgroup if N contains a
characteristic subgroup C (see left)

• We show there is a characteristic
subgroup if and only if every
maximal normal subgroup contains
a characteristic subgroup.

aNo proof that this is not the trivial subgroup.
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Characteristically Simple Groups

G

S2S1 S3

S1 S1S3

S1 S1S3

Figure 2: An automorphism of S3 .

• Well-known that groups with no
characteristic subgroups
(characteristically simple groups) are
exactly of the form Sk for some
simple group S.

• We show the algorithm for
computing ϕ-invariant normal
subgroups terminates in the identity
exactly when G = Sk and ϕ acts
transitively on these components.

• In turn this gives us k2 SDLP
instances in S to solve.
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Recursion to (Characteristically) Simple Groups

At each step of the recursion if the ϕ-invariant subgroup algorithm
outputs trivial subgroup, call a simple/characteristically simple SDLP
solver on that group.

Correspondence theorem: the subgroups of G/N are of the form N′/N
where N ⊂ N′ ◁ G; and (G/N)/(N′/N) ∼= G/N′

N00 N0/N00

N0 N/N0

N G/N

G

Figure 3: A recursion tree whose nodes are simple or characteristically simple.
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Simple Groups Analysis



Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type,
4. the exceptional groups of Lie type

or one of 26 groups called the sporadic groups.

Corollary
The Semidirect Discrete Logarithm Problem (SDLP) in any finite
group is not a secure assumption for quantum resistant primitives.
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Cyclic Groups

Let G be a cyclic group of prime order, then for any g ∈ G and
ϕ ∈ Aut(G) we have ϕ(g) = ga for some a ∈ N, so:

sg,ϕ(x) = gϕ(g) · · ·ϕx(g) = g · ga · · ·ga
x
= g

∑x
i=0 a

i
.

With a Quantum Computer we can recover

x∑
i=0

ai = ax+1 − 1
a− 1

then use again it again to solve SDLP.
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Simple Groups

Theorem (Classification of Finite Simple Groups)
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Linear Groups Analysis



Matrix Power Problem

Given G ≤ GLn(F)

and ϕ ∈ Inn(G) (i.e. ϕ(G) = SGS−1) , thanks to Imran
and Ivanyos 2024, SDLP reduces to:

Matrix Power Problem
Given vectors a,b ∈ V and a matrix T ∈ GL(V) find x ∈ N such that:

b = Tx · a .

Nice Fact: Thanks to Kannan and Lipton 1986 the problem can be
reduced to a discrete logarithm over GL(W) for W subspace of V.

Result: We can do the same for projective linear groups G ≤ PGL.
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Reduction to Inner Automorphisms

Theorem (Kohl 2003)
If G is a non-abelian finite simple group, then for all ϕ ∈ Aut(G)
there exists an integer x ≤ log2 |G| such that ϕx ∈ Inn(G).

Memo: by Imran and Ivanyos 2024, we can solve SDLP(G, ϕ) by solving
most y instances of SDLP(G, ϕy).

Consequence
We can limit ourselves to solve SDLP for inner authormorphism, i.e.
conjugations.
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5, <- Linear
3. the classical groups of Lie type, <- Linear
4. the exceptional groups of Lie type <- Linear

or one of 26 groups called the sporadic groups.

Like for DLOG with division over Z/pZ, this do not directly implies
that SDLP is broken.
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Constructive Recognition Problem

Black-Box Groups
A black-box group G ⊂ {0, 1}n is a group endowed with an oracle
that performs the group operations, multiplication and inversion,
and can check for the identity.

Since Lie groups and alternating groups are defined as (projective)
linear groups the SDLP reduces to the following:

Constructive Recognition Problem, Babai and Beals 1999
Given a simple black-box group G, the problem require to find a
computationally efficient isomorphism between G and an explicitly
defined simple group.
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5, <- Jambor et al. 2013
3. the classical groups of Lie type,
4. the exceptional groups of Lie type

or one of 26 groups called the sporadic groups.
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type, <- Dietrich et al. 2015, but we
need to:

• use number theory oracles
• solve recognition problem from PSL(2, q)

4. the exceptional groups of Lie type
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type,
4. the exceptional groups of Lie type

G2(q),q ⩾ 3; F4(q); E6(q); 2E6(q); 3D4(q); E7(q); E8(q)

2B2
(
22n+1

)
,n ⩾ 1; 2G2

(
32n+1

)
,n ⩾ 1; 2F4

(
22n+1

)
,n ⩾ 1

or one of 26 groups called the sporadic groups and 2F4(2)′.
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type,
4. the exceptional groups of Lie type

���HHHG2(q),q ⩾ 3;���HHHF4(q);���HHHE6(q);���HHH
2E6(q); 3D4(q)*;���HHHE7(q);���HHHE8(q)

�����XXXXX
2B2

(
22n+1

)
,n ⩾ 1;�����XXXXX

2G2
(
32n+1

)
,n ⩾ 1; 2F4

(
22n+1

)
,n ⩾ 1

In Kantor and Magaard 2013 and 2015 reduce the problem to
PSL(2,q), using number theory oracles.

or one of 26 groups called the sporadic groups and 2F4(2)′.
*solved if q is odd 19



Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type,
4. the exceptional groups of Lie type*

or one of 26 groups called the sporadic groups and 2F4(2)′.
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Sporadic Groups



Sporadic Groups

There are 26 finite simple groups:

1. The largest of the 26 sporadic groups is the Fischer-Griess
monster groupM of cardinality:

808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

≈ 2179.07

2. of the remaining 19 (+ 1) are part of the happy family, i. e., they
are subquotients ofM,

3. the other are referred as the six pariahs, and have cardinality
≤ 267

21
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Breaking Sporadic Groups

1. Result: Baby-Step Giant-Step algorithm can be adapted to SDLP,
cutting the bit security ofM to 89.6;

2. Actually if G is a sporadic group clearly we can restrict without
loss of generality to

x ≤ max
g∈G

(ord(g)) · max
ϕ∈Aut(G)

(ord(ϕ)) =: b(G) ;

3. ForM we have b(G) = 1192 ≈ 214;
4. For G in the happy family b(G) ≤ 2 · 1192 ≈ 215;
5. For G one of the six pariahs b(G) = 672 ≈ 213;
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type,
4. the exceptional groups of Lie type*

or one of 26 groups called the sporadic groups and����XXXX2F4(2)′.
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Meme
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Questions?

Thank you for your attention!
eprint.iacr.org/2024/905
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Additional Material



Finding Maximal Normal Subgroups

The task of finding a maximal normal subgroup is more subtle, since
it depends on the particular implementation of the black-box group
G.

We can solve it via computing a composition series:

{e} = Gn ≤ Gn−1 ≤ ... ≤ G1 ≤ G ,

a well know problem in computational group theory

However, this branch of literature typically wishes to achieve much
stronger results and are thwarted by DLOG computation - we do not
impose this limitation since we assume QCs.
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Finding Maximal Normal Subgroups : Possible Solutions:

1. if we know the particular structure of the group G, we can use it
to construct for any subgroup S the smallest normal subgroup
containing ⟨SG⟩ in linear time, as explained in Babai et al. 1991.

2. Use Imran and Ivanyos 2024, but requires that every non-Abelian
composition factor of G possesses a faithful small permutation
representation;

3. Otherwise, with Babai and Beals 1999 and a QC we can find
G1 ≤ G, with G/G1:
3.1 simple and nonabelian, so G1 is Maximal Normal Subgroup;
3.2 or abelian, so we can use point 1 to get the maximal normal

subgroup A1 ◁ G/G1¶ and A1G1 will be a maximal normal in G by the
correspondence theorem.

¶we need G/G1 to have the unique encoding property
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SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider G ≤ GLn(F) and ϕ ∈ Inn(G) such that ϕ(G) = SGS−1, then:

sG,ϕ(x) = G · SGS−1 · S2GS−2 · · · Sx−1GS−x+1 · SxGS−x =

= GS · GS · GS · · · SG · S−x = (GS)x · G · S−x

So if we vectorize the matrices we get:

vec(sG,ϕ(x)) = vec
(
(GS)x · G · S−x

)
= vec

(
(GS) · (GS)x−1 · G · S−(x−1) · S−1

)
= vec

(
(GS) · sG,ϕ(x− 1) · S−1

)
=

[
(GS)⊗ S−1

]
vec(sG,ϕ(x− 1))

...repeating the argument x− 1 more times...

=
[
(GS)⊗ S−1

]x vec(G)



SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider G ≤ GLn(F) and ϕ ∈ Inn(G) such that ϕ(G) = SGS−1, then:

sG,ϕ(x) = G · SG����:S
S−1 · S2GS−2 · · · Sx−1G�����:S

S−x+1 · SxGS−x =

= GS · GS · GS · · · SG · S−x = (GS)x · G · S−x

So if we vectorize the matrices we get:

vec(sG,ϕ(x)) = vec
(
(GS)x · G · S−x

)
= vec

(
(GS) · (GS)x−1 · G · S−(x−1) · S−1

)
= vec

(
(GS) · sG,ϕ(x− 1) · S−1

)
=

[
(GS)⊗ S−1

]
vec(sG,ϕ(x− 1))

...repeating the argument x− 1 more times...

=
[
(GS)⊗ S−1

]x vec(G)



SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider G ≤ GLn(F) and ϕ ∈ Inn(G) such that ϕ(G) = SGS−1, then:

sG,ϕ(x) = G · SG����:S
S−1 · S2GS−2 · · · Sx−1G�����:S

S−x+1 · SxGS−x =
= GS · GS · GS · · · SG · S−x = (GS)x · G · S−x

So if we vectorize the matrices we get:

vec(sG,ϕ(x)) = vec
(
(GS)x · G · S−x

)
= vec

(
(GS) · (GS)x−1 · G · S−(x−1) · S−1

)
= vec

(
(GS) · sG,ϕ(x− 1) · S−1

)
=

[
(GS)⊗ S−1

]
vec(sG,ϕ(x− 1))

...repeating the argument x− 1 more times...

=
[
(GS)⊗ S−1

]x vec(G)



SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider G ≤ GLn(F) and ϕ ∈ Inn(G) such that ϕ(G) = SGS−1, then:

sG,ϕ(x) = G · SG����:S
S−1 · S2GS−2 · · · Sx−1G�����:S

S−x+1 · SxGS−x =
= GS · GS · GS · · · SG · S−x = (GS)x · G · S−x

So if we vectorize the matrices we get:

vec(sG,ϕ(x)) = vec
(
(GS)x · G · S−x

)

= vec
(
(GS) · (GS)x−1 · G · S−(x−1) · S−1

)
= vec

(
(GS) · sG,ϕ(x− 1) · S−1

)
=

[
(GS)⊗ S−1

]
vec(sG,ϕ(x− 1))

...repeating the argument x− 1 more times...

=
[
(GS)⊗ S−1

]x vec(G)



SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider G ≤ GLn(F) and ϕ ∈ Inn(G) such that ϕ(G) = SGS−1, then:

sG,ϕ(x) = G · SG����:S
S−1 · S2GS−2 · · · Sx−1G�����:S

S−x+1 · SxGS−x =
= GS · GS · GS · · · SG · S−x = (GS)x · G · S−x

So if we vectorize the matrices we get:

vec(sG,ϕ(x)) = vec
(
(GS)x · G · S−x

)
= vec

(
(GS) · (GS)x−1 · G · S−(x−1) · S−1

)

= vec
(
(GS) · sG,ϕ(x− 1) · S−1

)
=

[
(GS)⊗ S−1

]
vec(sG,ϕ(x− 1))

...repeating the argument x− 1 more times...

=
[
(GS)⊗ S−1

]x vec(G)



SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider G ≤ GLn(F) and ϕ ∈ Inn(G) such that ϕ(G) = SGS−1, then:

sG,ϕ(x) = G · SG����:S
S−1 · S2GS−2 · · · Sx−1G�����:S

S−x+1 · SxGS−x =
= GS · GS · GS · · · SG · S−x = (GS)x · G · S−x

So if we vectorize the matrices we get:

vec(sG,ϕ(x)) = vec
(
(GS)x · G · S−x

)
= vec

(
(GS) · (GS)x−1 · G · S−(x−1) · S−1

)
= vec

(
(GS) · sG,ϕ(x− 1) · S−1

)

=
[
(GS)⊗ S−1

]
vec(sG,ϕ(x− 1))

...repeating the argument x− 1 more times...

=
[
(GS)⊗ S−1

]x vec(G)



SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider G ≤ GLn(F) and ϕ ∈ Inn(G) such that ϕ(G) = SGS−1, then:

sG,ϕ(x) = G · SG����:S
S−1 · S2GS−2 · · · Sx−1G�����:S

S−x+1 · SxGS−x =
= GS · GS · GS · · · SG · S−x = (GS)x · G · S−x

So if we vectorize the matrices we get:

vec(sG,ϕ(x)) = vec
(
(GS)x · G · S−x

)
= vec

(
(GS) · (GS)x−1 · G · S−(x−1) · S−1

)
= vec

(
(GS) · sG,ϕ(x− 1) · S−1

)
=

[
(GS)⊗ S−1

]
vec(sG,ϕ(x− 1))

...repeating the argument x− 1 more times...

=
[
(GS)⊗ S−1

]x vec(G)



SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider G ≤ GLn(F) and ϕ ∈ Inn(G) such that ϕ(G) = SGS−1, then:

sG,ϕ(x) = G · SG����:S
S−1 · S2GS−2 · · · Sx−1G�����:S

S−x+1 · SxGS−x =
= GS · GS · GS · · · SG · S−x = (GS)x · G · S−x

So if we vectorize the matrices we get:

vec(sG,ϕ(x)) = vec
(
(GS)x · G · S−x

)
= vec

(
(GS) · (GS)x−1 · G · S−(x−1) · S−1

)
= vec

(
(GS) · sG,ϕ(x− 1) · S−1

)
=

[
(GS)⊗ S−1

]
vec(sG,ϕ(x− 1))

...repeating the argument x− 1 more times...

=
[
(GS)⊗ S−1

]x vec(G)



SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider G ≤ GLn(F) and ϕ ∈ Inn(G) such that ϕ(G) = SGS−1, then:

sG,ϕ(x) = G · SG����:S
S−1 · S2GS−2 · · · Sx−1G�����:S

S−x+1 · SxGS−x =
= GS · GS · GS · · · SG · S−x = (GS)x · G · S−x

So if we vectorize the matrices we get:

vec(sG,ϕ(x)) = vec
(
(GS)x · G · S−x

)
= vec

(
(GS) · (GS)x−1 · G · S−(x−1) · S−1

)
= vec

(
(GS) · sG,ϕ(x− 1) · S−1

)
=

[
(GS)⊗ S−1

]
vec(sG,ϕ(x− 1))

...repeating the argument x− 1 more times...

=
[
(GS)⊗ S−1

]x vec(G)


	Introduction to SDLP
	Reduction to Simple Groups
	Simple Groups Analysis
	Linear Groups Analysis
	Sporadic Groups
	References
	Appendix
	Additional Material


