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Zero Knowledge Proofs
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…Prover Verifier
(𝑥, 𝑤) 𝑥

Claim 𝑥, 𝑤 ∈ ℛ

Output 1/0

• Completeness: Verifier always accepts a valid proof. 

• Knowledge Soundness: If Verifier accepts a proof, then Prover must know a valid witness 𝑤.

• Zero-Knowledge: Verifier learns nothing about 𝑤 except 𝑥, 𝑤 ∈ ℛ. 

Applications of zero-knowledge proofs

⚫ Privacy-preserving systems such as:

• Ring signatures (RS)

• Group signatures (GS)

• Attribute–based signatures (ABS), …

⚫ Standard signatures



✓ Standard Sig. 

✓ Privacy-preserving Sig.

[NTW+19,NNS+21,BGK+

23,LNP+24,WCD+24,…]

• 𝑯𝒆 = 𝒚

• 𝒆 has some specific 

structure 

Stern’s ZK [Stern96]

• 𝑪 𝒘 = 𝟏 or

• ቐ
𝒇𝟏(𝒘) = 𝟎

…
𝒇𝒕(𝒘) = 𝟎

VOLEitH [BBG+23]

• 𝑪 𝒘 = 𝟏

• Need a method to 

share 𝒘

MPCitH [IKOS09]

✓ Standard Sig. [FJR22, CCJ23, MGH+23, MHJ+23, 

FR23,BCC+24, ARV23,BFG+24,CLY+24,…]

Privacy-preserving Sig.

Code-Based Zero Knowledge Protocols

4Ying Ouyang  @ SJTU

Large soundness error (2/3)
128-bit security: 219 times

256-bit security: 438 times



Code-Based Zero Knowledge Protocols
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Can we build code-based privacy-preserving systems from VOLEitH?

Ying Ouyang  @ SJTU

✓ Standard Sig. 

✓ Privacy-preserving Sig.

[NTW+19,NNS+21,BGK+

23,LNP+24,WCD+24,…]

• 𝑯𝒆 = 𝒚

• 𝒆 has some specific 

structure 

Stern’s ZK [Stern96]

• 𝑪 𝒘 = 𝟏 or

• ቐ
𝒇𝟏(𝒘) = 𝟎

…
𝒇𝒕(𝒘) = 𝟎

VOLEitH [BBG+23]

• 𝑪 𝒘 = 𝟏

• Need a method to 

share 𝒘

MPCitH [IKOS09]

✓ Standard Sig. [FJR22, CCJ23, MGH+23, MHJ+23, 

FR23,BCC+24, ARV23,BFG+24,CLY+24,…]

Privacy-preserving Sig.

Large soundness error (2/3)
128-bit security: 219 times

256-bit security: 438 times



Difficulties in Designing Code-Based Privacy-Preserving Systems
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⚫ Nguyen et al. [NTW+19AC] built a Merkle-tree accumulator, which employs 

the following regular encoding. 

⚫ Toy Example, it maps 𝑐 bits to 2𝑐 bits.

• (00) is encoded to (1000).

• (01) is encoded to (0100).

• (10) is encoded to (0010).

• (11) is encoded to (0001).

⚫ Nguyen et al. designed a dedicated Stern-type ZK for proving the correct 

regular encoding process.

Unit Vectors
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⚫ Nguyen et al. [NTW+19AC] built a Merkle-tree accumulator, which employs 

the following regular encoding. 

⚫ Toy Example, it maps 𝑐 bits to 2𝑐 bits.

• (00) is encoded to (1000).

• (01) is encoded to (0100).

• (10) is encoded to (0010).

• (11) is encoded to (0001).

⚫ Nguyen et al. designed a dedicated Stern-type ZK for proving the correct 

regular encoding process.

Unit Vectors

We aim to prove the correct regular encoding process within VOLEitH framework.

Difficulties in Designing Code-Based Privacy-Preserving Systems

Ying Ouyang  @ SJTU



Recap:

VOLEitH Proof System



∆∈ 𝔽𝒑𝒓𝐮 ∈ 𝔽𝒑
𝒍

M𝐮 ∈ 𝔽𝒑𝒓
𝒍

K𝐮 ∈ 𝔽𝒑𝒓
𝒍

Prover Verifier
K𝐮 = M𝐮 + 𝐮 ⋅ Δ

(Subfield) 

VOLE

VOLE-based Zero Knowledge Proof

9

Linearly homomorphic commitment from VOLE:
Linear homomorphism:

Given 𝐱 , 𝐲 , then 𝒛 = [a𝐱 + 𝐲]

is obtained by

(aK𝐱 + K𝐲) = (aM𝐱 + M𝐲) + (a𝐱 + 𝐲) ⋅ Δ

K𝐳 M𝐳 𝐳
We define this VOLE correlation by [u].

Ying Ouyang  @ SJTU
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Linearly homomorphic commitment from VOLE:

We define this VOLE correlation by [u].

Linear homomorphism:

Given 𝐱 , 𝐲 , then 𝒛 = [a𝐱 + 𝐲]

is obtained by

(aK𝐱 + K𝐲) = (aM𝐱 + M𝐲) + (a𝐱 + 𝐲) ⋅ Δ

K𝐳 M𝐳 𝐳

在此处键入公式。

Commit to 𝑤:
𝑑 = 𝑤 − 𝑢

locally compute 𝑤

Open:

𝑤, M𝑤

verify that K𝑤 = M𝑤 + 𝑤 ⋅ Δ
Ying Ouyang  @ SJTU
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Linearly homomorphic commitment from VOLE:

We define this VOLE correlation by [u].
K𝐳 M𝐳 𝐳

在此处键入公式。

Commit to 𝑤:
𝑑 = 𝑤 − 𝑢

locally compute 𝑤

Open:

𝑤, M𝑤

verify that K𝑤 = M𝑤 + 𝑤 ⋅ Δ

Proving degree-2 polynomial constraints:   𝑤1 ⋅ 𝑤2 = 𝑤3

1. The prover commits to 𝑤1, 𝑤2, 𝑤3;

2. How to prove it?

Ying Ouyang  @ SJTU
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Linearly homomorphic commitment from VOLE:

We define this VOLE correlation by [u].
K𝐳 M𝐳 𝐳

在此处键入公式。

Commit to 𝑤:
𝑑 = 𝑤 − 𝑢

locally compute 𝑤

Open:

𝑤, M𝑤

verify that K𝑤 = M𝑤 + 𝑤 ⋅ Δ

Proving degree-2 polynomial constraints:   𝑤1 ⋅ 𝑤2 = 𝑤3

1. The prover commits to 𝑤1, 𝑤2, 𝑤3;

2. How to prove it?

𝐵 = K1 ⋅ K2 − K3 ⋅ Δ

= M1 ⋅ M2 + M2 ⋅ 𝑤1 + M1 ⋅ 𝑤2 − M3 ⋅ Δ + (𝑤1 ⋅ 𝑤2 − 𝑤3) ⋅ Δ2

= 𝐴0 + 𝐴1 ⋅ Δ

know to 𝒱

know to 𝒫know to 𝒫 0 if 𝒫 is honest



B = σℎ=0
𝑑 𝑔ℎ K1, ⋯ , K𝑙 ⋅ Δ𝑑−ℎ = σℎ=0

𝑑 𝑔ℎ M1 + 𝑤1 ⋅ Δ, ⋯ , M𝑙 + 𝑤𝑙 ⋅ Δ ⋅ Δ𝑑−ℎ

= 𝑓 𝑤1, ⋯ , 𝑤𝑙 ⋅ Δ𝑑 + 𝐴0 + 𝐴1 ⋅ Δ + ⋯ + 𝐴𝑑−1 ⋅ Δ𝑑−1

VOLE-based Zero Knowledge Proof
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Vector oblivious polynomial evaluation (VOPE):

Extension to prove degree-d polynomial constraints:

degree-separate form:      𝑓 𝑤1, ⋯ , 𝑤𝑙 = σℎ∈[0,𝑑] 𝑔ℎ 𝑤1, ⋯ , 𝑤𝑙 = 0

know to 𝒱

𝒫0 if 𝒫 is honest known to 𝒫𝒫

∆∈ 𝔽𝒑𝒓

Prover Verifier

VOPE
𝐵 ∈ 𝔽𝒑𝒓

𝐴0, ⋯ , 𝐴𝑑 ∈ 𝔽𝒑𝒓

𝐵 = 𝐴0 + 𝐴1 ⋅ Δ + ⋯ + 𝐴𝑑 ⋅ Δ𝑑

VOLE
extend to

Ying Ouyang  @ SJTU



VOLE-in-the-Head
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Ying Ouyang  @ SJTU

⚫ VOLE-in-the-Head: add public verifiability

VOLE-ZK

(designated verifier)
Public-coin “VOLE-in-the-head” 

proof system [BBG+23]

⚫ VOLE-ZK

• Pros:

• Cons:

Information-theoretic (after VOLE setup) Fast prover Small memory

Linear proof size Designated verifier

Fiat-Shamir

Non-interactive ZK

A delayed VOLE

functionality



Our Contributions



Summary of Our Contributions
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⚫ A novel ZK protocol for proving the correctness of a regular encoding process

⚫ New ZK protocols for concrete code-based relations

• ZK arguments of knowledge (ZKAoK) of a valid opening

• ZKAoK of an accumulated value

• ZKAoK of a plaintext

⚫ Develop several code-based privacy-preserving primitives

• Efficient RS, GS, and fully dynamic ABS (FDABS)

• Achieve signature sizes two to three orders of magnitude smaller than Stern-type constructions

⚫ New standard signature

• Based on regular syndrome decoding problem

• With “public key + signature size” 3.05 KB for 128-bit security

Ying Ouyang  @ SJTU



ZK for Proving the Correctness of a Regular Encoding Process 
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Input: 𝑐 bit binary vector 𝐱 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑐

Output: 2𝑐 bit unit vector 𝐲 = 𝑦1, 𝑦2, ⋯ , 𝑦2𝑐 = RE(𝐱)

Regular Encoding Function

RE: {0,1}𝑐⟶ {0,1}2𝑐

Key 

Observation RE: {0,1}𝑐⟶ {0,1}2𝑐
can be seen as 2𝑐 𝑐-variate Boolean functions.

Ying Ouyang  @ SJTU
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Input: 𝑐 bit binary vector 𝐱 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑐
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Regular Encoding Function

RE: {0,1}𝑐⟶ {0,1}2𝑐

Key 

Observation RE: {0,1}𝑐⟶ {0,1}2𝑐
can be seen as 2𝑐 𝑐-variate Boolean functions.

ZK for Proving the Correctness of a Regular Encoding Process 

Ying Ouyang  @ SJTU

Can we express each 𝑦𝑗 explicitly 

using 𝑥1, 𝑥2, ⋯ , 𝑥𝑐 ?
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Output

𝑦1 𝑦2 𝑦3 𝑦4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Input

𝑥1 𝑥2

0 0

0 1

1 0

1 1

Toy Example: 𝑐 = 2

RE

ZK for Proving the Correctness of a Regular Encoding Process 

Ying Ouyang  @ SJTU
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Output

𝑦1 𝑦2 𝑦3 𝑦4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Input

𝑥1 𝑥2

0 0

0 1

1 0

1 1

Toy Example: 𝑐 = 2

RE

𝑦2 = 𝑓 0,1 𝑥1, 𝑥2 = 1 + 𝑥1 ⋅ 𝑥2

𝑦1 = 𝑓 0,0 𝑥1, 𝑥2 = 1 + 𝑥1 ⋅ 1 +𝑥2

𝑦3 = 𝑓 1,0 𝑥1, 𝑥2 = 𝑥1 ⋅ 1 + 𝑥2

𝑦4 = 𝑓 1,1 𝑥1, 𝑥2 = 𝑥1 ⋅ 𝑥2

ZK for Proving the Correctness of a Regular Encoding Process 

Ying Ouyang  @ SJTU
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𝑦𝑗 ≜ 𝑓 𝑗1,⋯,𝑗𝑐
𝑥1, ⋯ , 𝑥𝑐 = ς𝑖=1

𝑐 1 + 𝑗𝑖 + 𝑥𝑖 ,  where 𝑗1, ⋯ , 𝑗𝑐 = bin(𝑗 − 1)

Output

𝑦1 𝑦2 𝑦3 𝑦4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Input

𝑥1 𝑥2

0 0

0 1

1 0

1 1

Toy Example: 𝑐 = 2

RE

𝑦2 = 𝑓 0,1 𝑥1, 𝑥2 = 1 + 𝑥1 ⋅ 𝑥2

𝑦1 = 𝑓 0,0 𝑥1, 𝑥2 = 1 + 𝑥1 ⋅ 1 +𝑥2

𝑦3 = 𝑓 1,0 𝑥1, 𝑥2 = 𝑥1 ⋅ 1 + 𝑥2

𝑦4 = 𝑓 1,1 𝑥1, 𝑥2 = 𝑥1 ⋅ 𝑥2

We have transformed the regular encoding process into 2𝑐 degree-𝑐
𝑐-variate polynomial relations. 

ZK for Proving the Correctness of a Regular Encoding Process 

Ying Ouyang  @ SJTU
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Ying Ouyang  @ SJTU

Thus, can be proven 

efficiently using VOLEitH

proof system.



ZK Arguments of Knowledge of a Valid Opening
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𝒫 is to prove the knowledge of  𝐱 ∈ 𝔽2
𝐿 and 𝐫 ∈ 𝔽2

𝑘 such that 

𝐜 = 𝐂𝟎 ⋅ RE 𝐱 ۩ 𝐂𝟏 ⋅ RE 𝐫 (1)

Goal
Consider the commitment scheme by Nguyen et al. [NTWZ19AC]. 

𝐱: message

𝐫: opening randomness

𝐜: commitment

𝐂𝟎, 𝐂𝟏 : public matrices param.

Ying Ouyang  @ SJTU
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Equation (1)

is equivalent to
some degree-𝑐

polynomial constraints

Thus, can be proven 

efficiently using VOLEitH

proof system.

𝒫 is to prove the knowledge of  𝐱 ∈ 𝔽2
𝐿 and 𝐫 ∈ 𝔽2

𝑘 such that 

𝐜 = 𝐂𝟎 ⋅ RE 𝐱 ۩ 𝐂𝟏 ⋅ RE 𝐫 (1)

Goal
Consider the commitment scheme by Nguyen et al. [NTWZ19AC]. 

RE functions

are degree-𝑐
polynomial relations

Matrix 

multiplication is a 

linear operation

ZK Arguments of Knowledge of a Valid Opening

Ying Ouyang  @ SJTU

𝐱: message

𝐫: opening randomness

𝐜: commitment

𝐂𝟎, 𝐂𝟏 : public matrices param.



ZK Arguments of Knowledge of an Accumulated Value
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𝒫 is to prove the knowledge of 𝐝∗ which was accumulated in a value 𝐮.
Goal

Consider the accumulator by Nguyen et al. [NTWZ19AC]. 

Toy Example: 𝑙 = 3, 𝑁 = 7 Using the modified AFS hash function: 

ℎ𝐁(𝐝0, 𝐝1) = 𝐁0 · RE 𝐝0 ⊕ 𝐁1 · RE 𝐝0

𝐝7𝐝6𝐰3𝐝∗𝐝3𝐝2𝐝1𝐝0

𝐰2𝐯2

𝐯1𝐰1

𝐮

bin 𝑗 = 𝑗1, 𝑗2, 𝑗3 = (100)
𝑗 = 4

1

0

0

Code-base Merkle-tree Accumulator
Ying Ouyang  @ SJTU



ZK Arguments of Knowledge of an Accumulated Value
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𝒫 is to prove the knowledge of 𝐝∗ which was accumulated in a value 𝐮.
Goal

Consider the accumulator by Nguyen et al. [NTWZ19AC]. 

Ying Ouyang  @ SJTU

𝒫 wants to prove knowledge of 𝑗1, . . . , 𝑗ℓ , 𝐯1, . . . , 𝐯ℓ = 𝐝∗, 𝐰𝟏, . . . , 𝐰ℓ such that

ഥ𝑗1 · 𝐁0 · RE 𝐯1 ⊕ 𝐁1 · RE 𝐰1 + 𝑗1 · 𝐁0 · RE 𝐰1 ⊕ 𝐁1 · RE 𝐯1 = 𝐮,
ഥ𝑗2 · 𝐁0 · RE 𝐯2 ⊕ 𝐁1 · RE 𝐰2 + 𝑗2 · 𝐁0 · RE 𝐰2 ⊕ 𝐁1 · RE 𝐯2 = 𝐯1,

⋯
ഥ𝑗𝑙 · 𝐁0 · RE 𝐯ℓ ⊕ 𝐁1 · RE 𝐰ℓ + 𝑗𝑙 · 𝐁0 · RE 𝐰ℓ ⊕ 𝐁1 · RE 𝐯ℓ = 𝐯ℓ−1.

(2)



ZK Arguments of Knowledge of an Accumulated Value
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𝒫 is to prove the knowledge of 𝐝∗ which was accumulated in a value 𝐮.
Goal

Consider the accumulator by Nguyen et al. [NTWZ19AC]. 

Ying Ouyang  @ SJTU

Equation (2)

are equivalent to
some degree-(𝑐 + 1)

polynomial constraints

RE functions 

are degree-𝑐
polynomial relations

Matrix 

multiplication 

is a linear 

operation

𝑗1, . . . , 𝑗ℓ

are also 

witnesses

𝒫 wants to prove knowledge of 𝑗1, . . . , 𝑗ℓ , 𝐯1, . . . , 𝐯ℓ = 𝐝∗, 𝐰𝟏, . . . , 𝐰ℓ such that

ഥ𝑗1 · 𝐁0 · RE 𝐯1 ⊕ 𝐁1 · RE 𝐰1 + 𝑗1 · 𝐁0 · RE 𝐰1 ⊕ 𝐁1 · RE 𝐯1 = 𝐮,
ഥ𝑗2 · 𝐁0 · RE 𝐯2 ⊕ 𝐁1 · RE 𝐰2 + 𝑗2 · 𝐁0 · RE 𝐰2 ⊕ 𝐁1 · RE 𝐯2 = 𝐯1,

⋯
ഥ𝑗𝑙 · 𝐁0 · RE 𝐯ℓ ⊕ 𝐁1 · RE 𝐰ℓ + 𝑗𝑙 · 𝐁0 · RE 𝐰ℓ ⊕ 𝐁1 · RE 𝐯ℓ = 𝐯ℓ−1.

(2)
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𝒫 is to prove the knowledge of 𝐝∗ which was accumulated in a value 𝐮.
Goal

Consider the accumulator by Nguyen et al. [NTWZ19AC]. 

Ying Ouyang  @ SJTU

Equation (2)

are equivalent to
some degree-(𝑐 + 1)

polynomial constraints

RE functions 

are degree-𝑐
polynomial relations

Matrix 

multiplication 

is a linear 

operation

𝑗1, . . . , 𝑗ℓ

are also 

witnesses

𝒫 wants to prove knowledge of 𝑗1, . . . , 𝑗ℓ , 𝐯1, . . . , 𝐯ℓ = 𝐝∗, 𝐰𝟏, . . . , 𝐰ℓ such that

ഥ𝑗1 · 𝐁0 · RE 𝐯1 ⊕ 𝐁1 · RE 𝐰1 + 𝑗1 · 𝐁0 · RE 𝐰1 ⊕ 𝐁1 · RE 𝐯1 = 𝐮,
ഥ𝑗2 · 𝐁0 · RE 𝐯2 ⊕ 𝐁1 · RE 𝐰2 + 𝑗2 · 𝐁0 · RE 𝐰2 ⊕ 𝐁1 · RE 𝐯2 = 𝐯1,

⋯
ഥ𝑗𝑙 · 𝐁0 · RE 𝐯ℓ ⊕ 𝐁1 · RE 𝐰ℓ + 𝑗𝑙 · 𝐁0 · RE 𝐰ℓ ⊕ 𝐁1 · RE 𝐯ℓ = 𝐯ℓ−1.

(2)Thus, can be proven 

efficiently using 

VOLEitH proof system.



𝒫 wants to prove knowledge of 𝐮, 𝐦 and 𝐞 such that

𝐜 = 𝐆 ⋅ 𝐮
𝐦

۩ RE 𝐞 (3)

ZK Arguments of Knowledge of a Plaintext

30

Goal
Consider a variant of McEliece encryption scheme. 

𝐮: randomness

𝐦: message

𝐞: noise

𝐜: ciphertext

𝐆: pk
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Goal
Consider a variant of McEliece encryption scheme. 

𝐮: randomness

𝐦: message

𝐞: noise

𝐜: ciphertext

𝐆: pk
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Equation (3)

is equivalent to
some degree-𝑐

polynomial constraints

RE can be 

transformed into 

degree-𝑐 polynomial 

relations

Matrix 

multiplication is a 

linear operation

Thus, can be proven 

efficiently using VOLEitH

proof system.



Applications



secret key: 𝐱

Ring Signatures [NTWZ19AC]

33

𝐯ℓ

ZK of an accumulated value

ZK of the knowledge of 𝐱 that satisfies (4)

Underlying ZK protocols for 

the ring signature

𝐯ℓ = 𝐂 ⋅ RE 𝐱  (4) OWF

Ying Ouyang  @ SJTU



Our Ring Signatures
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Ring size

128-bit security 256-bit security

This paper (KB) Stern-type (MB) This paper (KB) Stern-type (MB)

25 35.12 32.26 140.24 129.04 

27 45.12 43.93 180.25 175.74

210 60.13 61.44 240.26 245.78 

215 85.14 90.63 340.28 362.51

220 110.15 119.81 440.30 479.25

230 160.17 178.18 640.34 712.72

We replace the stern-like ZK for the ring signature [NTWZ19AC] with our ZK, obtaining a 

new RS with much smaller signature sizes.

Ying Ouyang  @ SJTU

𝟗𝟑𝟒 × ~𝟏𝟏𝟒𝟎 ×



Group Signatures [NTWZ19AC]

35

𝐯ℓ

Underlying ZK protocols for 

the group signature

an encryption layer ZK of the knowledge of plaintexts

secret key: 𝐱

𝐯ℓ = 𝐂 ⋅ RE 𝐱  (4) OWF
ZK of the knowledge of 𝐱 that satisfies(4)

ZK of an accumulated value

Ying Ouyang  @ SJTU



Our Group Signatures
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Group size
128-bit security 256-bit security

This paper (KB) Stern-type (MB) This paper (KB) Stern-type (MB)

25 49.60 33.27 197.19 133.02

27 59.60 44.94 237.19 179.72

210 74.59 52.45 297.18 249.76

215 99.58 91.63 397.16 366.50

220 124.57 120.82 497.14 483.23

230 174.55 179.18 687.10 716.70

We replace the stern-like ZK for the group signature scheme [NTWZ19AC] using our ZK, 

obtaining a new GS with much smaller signature sizes.

Ying Ouyang  @ SJTU

𝟔𝟖𝟑 × ~𝟏𝟎𝟓𝟑 ×



Fully Dynamic Attribute-Based Signatures [LNP+24PKC]
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𝐯ℓ

(𝐱, 𝐫)

ZK of a valid opening

Underlying ZK protocols for 

the FDABS scheme

ZK protocols for (5)

𝐂𝐨𝐦𝐦𝐢𝐭𝐦𝐞𝐧𝐭

𝑤𝑡 𝐯ℓ = 1 𝑚𝑜𝑑 2. (5)

P 𝐱 = 1. (6) ZK protocols for (6)

ZK of an accumulated value

Ying Ouyang  @ SJTU



Our Fully Dynamic Attribute-Based Signatures
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(𝟐𝒍, 𝑲)
128-bit security 256-bit security

This paper (KB) Stern-type (MB) This paper (KB) Stern-type (MB)

(210,29) 59.38 45.41 234.76 181.29

(210,216) 186.38 52.20 488.76 194.87

(215,29) 84.39 67.30 334.78 268.85

(215,216) 211.39 74.08 588.78 282.43

(220,29) 109.40 89.18 434.80 356.40

(220,216) 236.40 95.97 688.80 369.98

𝟐𝒍 denotes the maximum number of attributes; 𝑲 denotes the size of the circuit 𝑃.

We replace the stern-like ZK for the FDABS scheme [LNP+24PKC] using our ZK, obtaining 

a new FDABS with much smaller signature sizes.

Ying Ouyang  @ SJTU

𝟕𝟖𝟑 × ~𝟖𝟑𝟗 ×



Comparison with Other Post-Quantum Constructions 
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Schemes
Code-based Hash-based 

[KKW18]

Lattice-based

[LN22]This paper Stern-type

RS 60 KB
61 MB 

[NTW+19]

61 KB 

[LW24]

388 KB

(240 KB)
13 KB

GS 75 KB
63 MB 

[NTW+19]

121 KB* 

[LW24]

418 KB**

(297 KB)
18 KB*

FDABS 62 KB
46 MB 

[LNP+24]
- - -

* : They only achieve CPA-anonymity.

**: It only achieves selfless anonymity

• Focus on 128-bit security and ring/group size 210.

• For FDABS, choose 2𝑙 = 210, 𝐾 = 29 .

Ying Ouyang  @ SJTU



A Standard Signature from VOLEitH
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A canonical paradigm in signatures

⚫ Choose regular syndrome decoding problem 

Let 𝑚 =
𝑛

𝑐
⋅ 2𝑐.

• Verification key: 𝐁 ∈ {0,1}𝑛×𝑚 and 𝐲 ∈ {0,1}𝑛.

• Secret Key: 𝐱 ∈ {0,1}𝑚 such that

𝐁 ⋅ RE 𝐱 = 𝐲 . (4)

• To sign a message: the signer proves knowledge of 𝐱 that satisfies (4). This can be 

achieved using our ZK technique.

Ying Ouyang  @ SJTU

a public coin ZK proof 

for one-way functions
signatures

Fiat-Shamir 



Comparison with the Scheme [CLY+24]
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Scheme parameters
Signature sizes in bytes

CLY+24 𝒄 = 𝟐 𝒄 = 𝟑 𝒄 = 𝟒

𝜏 = 14
𝑇𝑜𝑝𝑒𝑛 = − 4082 4572(+12.0%) 4026(−1.4%) 4040(−1.0%) 

𝑇𝑜𝑝𝑒𝑛 = 112 3826 4316(+12.9%) 3770(−1.5%) 3784(−1.1%) 

𝜏 = 10
𝑇𝑜𝑝𝑒𝑛 = − 3510 3860(+10.0%) 3470(−1.1%) 3480(−0.9%) 

𝑇𝑜𝑝𝑒𝑛 = 102 3094 3444(+11.3%) 3054(−1.3%) 3064(−1.0%)

• [CLY+24] is also based on RSD problem.

• Different method to prove that a given vector is regular within VOLEitH framework. 

• Note: they do not involve proving the regular encoding process.

Ying Ouyang  @ SJTU

• Adapt optimizations from Baum et al. [BBM+24]: set the same value of 𝑇𝑜𝑝𝑒𝑛.

• When 𝑐 = 3, slightly smaller signature size.



Thank you

Q & A

42Ying Ouyang  @ SJTU

ouyang_ying@sjtu.edu.cn
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