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Zero Knowledge Proofs
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« Completeness: Verifier always accepts a valid proof.
« Knowledge Soundness: If Verifier accepts a proof, then Prover must know a valid witness w.
« Zero-Knowledge: Verifier learns nothing about w except (x,w) € R.

Applications of zero-knowledqge proofs

® Privacy-preserving systems such as:
* Ring signatures (RS)
« Group signatures (GS)
« Attribute—based signatures (ABS), ...

® Standard signatures
Ying Ouyang @ SJTU



Code-Based Zero Knowledge Protocols

Stern’s ZK [Stern96]

He =y
e has some specific

structure

v Standard Sig.
v' Privacy-preserving Sig.

[INTW+19,NNS+21,BGK+
23,LNP+24 WCD+24,.. ]

Large soundness error (2/3)
128-bit security: 219 times

256-bit security: 438 times

MPCitH [IKOS09] VOLEitH [BBG+23]
Cw) =1 + Cw)=1or
Need a method to filw) =0
share w ft(“’“). ~ 0

v' Standard Sig. [FJR22, CCJ23, MGH+23, MHJ+23,
FR23,BCC+24, ARV23,BFG+24,CLY+24,...]

? Privacy-preserving Sig.
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Code-Based Zero Knowledge Protocols

Stern’s ZK [Stern96] MPCitH [IKOSO09] VOLEIitH [BBG+23]

He =y e Clw) =1 e Clw)=1or
e has some specific « Need a method to fiw) =0
structure share w ft(w..). =0

v Standard Sig. v' Standard Sig. [FJR22, CCJ23, MGH+23, MHJ+23,

v Privacy-preserving Sig. FR23,BCC+24, ARV23,BFG+24,CLY+24,...]

[INTW+19,NNS+21,BGK+ _ _ _

23,LNP+24 WCD+24,...] ? Privacy-preserving Sig.

Large soundness error (2/3)
128-bit security: 219 times

256-bit security: 438 times

Can we build code-based privacy-preserving systems from VOLEIitH?

Ying Ouyang @ SJTU



Difficulties in Designing Code-Based Privacy-Preserving Systems

® Nguyen et al. [NTW+19AC] built a Merkle-tree accumulator, which employs
the following regular encoding.

® Toy Example, it maps c bits to 2¢ bits.
(00) is encoded to (1000).
(01) is encoded to (0100).
(10) is encoded to (0010).
(11) is encoded to (0001).

® Nguyen et al. designed a dedicated Stern-type ZK for proving the correct
regular encoding process.

Ying Ouyang @ SJTU



Difficulties in Designing Code-Based Privacy-Preserving Systems

® Nguyen et al. [NTW+19AC] built a Merkle-tree accumulator, which employs
the following regular encoding.

® Toy Example, it maps c bits to 2¢ bits.
(00) is encoded to (1000).
(01) is encoded to (0100).
(10) is encoded to (0010).
(11) is encoded to (0001).

® Nguyen et al. designed a dedicated Stern-type ZK for proving the correct
regular encoding process.

We aim to within VOLEItH framework.



Recap:
VOLEItH Proof System



VOLE-based Zero Knowledge Proof

Linearly homomorphic commitment from VOLE:

I il iaiieiiniintieiiniieiieileile ittt .. Linear homomorphism:
A€ Fyr . Given [x], [y], then [z] = [ax +
(Subfield) : y lax +]
VOLE < el is obtained by
— i (aKy + K)) =@My + M) + (ax +y) - A
Ky =M,+u-A ; ‘ , \ S ,
We define this VOLE correlation by [u]. K M, Z
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VOLE-based Zero Knowledge Proof

Linearly homomorphic commitment from VOLE:

P e e e e e T T i e e e e T T T T I

(Subfield)

VOLE

S -

N e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

Linear homomorphism:

Given [x], [y], then [z] = [ax + ¥]

IS obtained by
(aKy + Ky) =@My + My) + (ax +y) - A
% w4

Z Z

» Commit to w: :
: d=w—-u !

1 »

locally compute [w]

: w, M, :

_________________________________________
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VOLE-based Zero Knowledge Proof

Linearly homomorphic commitment from VOLE:

g s .. Linear homomorphism:
' A€y ' Given [x], [y], then [2] = [ax +
(Subfield) ; y [ax +y]
VOLE < el . is obtained by
T (aKy + Ky) =@My + My) + (ax +y) - A
Ku = I\/Iu +u-A ,'I \_Y_l \_Y_} \ J
We define this VOLE correlation by [u]. K M, Z

! Proving degree-2 polynomial constraints: wy - wy, = wy

» Commit to w: i .
| d=w—u | 1. The prover commits to wy, wy, ws;

1 »

! 2. How to prove it?
| locally compute [w]

: w, M, :

----------------------------------------- Ying Ouyang @ SJTU



VOLE-based Zero Knowledge Proof

Linearly homomorphic commitment from VOLE:

g s .. Linear homomorphism:
' A€y ' Given [x], [y], then [2] = [ax +
(Subfield) ; y [ax +y]
VOLE < el . is obtained by
T (aKy + Ky) =@My + My) + (ax +y) - A
Ku = I\/Iu +u-A ,'I \_Y_l \_Y_} \ J
We define this VOLE correlation by [u]. K M, Z

! Proving degree-2 polynomial constraints: wy - wy, = wy

» Commit to w: i .
| d=w—u | 1. The prover commits to wy, wy, ws;

1 »

2. How to prove it?

locally compute [w]

X M X i=Ml'M2+(|M2'W1+M1'WZ_M?)'A+§W1'W2_W3I)'Azi
| w, M, . o — :
| ’ | i knowto P know to P 0if P is honest

_________________________________________

________________________________________________________________________



VOLE-based Zero Knowledge Proof

Vector oblivious polynomial evaluation (VOPE):

______________________________________________________________

extend to

VOLE

B € Fyr

e ————— - -

~
v

B=Ay+A;-A+-+A, A%

N e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e =

B = l2%:0 gn(Ky, -, Kp) 'Ad_'f = Yt o gn(My +wy - A, -, My +w; - A) - A%TR

|

= ]:(Wlnl'“,Vl{l) 'Ad + ‘14'2, + \fl'_l;.A + - + ‘1'45_1 ,Ad—l
0 if  is honest P P known to P
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VOLE-In-the-Head

® VOLE-ZK

 Pros: [Information-theoretic (after VOLE setup)] [ Fast prover] [ Small memory]

° COHSZ[ Linear proof size } [ Designated verifier }

® \VVOLE-Iin-the-Head: add

VOLE-ZK A delayed VOLE Public-coin “VOLE-in-the-head”

designated verifier
(desig ) functionality proof system [BBG+23]

Fiat-Shamir

Non-interactive ZK

14
Ying Ouyang @ SJTU



Our Contributions



Summary of Our Contributions

® A novel ZK protocol for proving the correctness of a regular encoding process

® New ZK protocols for concrete code-based relations
« ZK arguments of knowledge (ZKAoK) of a valid opening
« ZKAoK of an accumulated value

« ZKAOoK of a plaintext
® Develop several code-based privacy-preserving primitives

« Efficient RS, GS, and fully dynamic ABS (FDABS)

« Achieve signature sizes two to three orders of magnitude smaller than Stern-type constructions
® New standard signature

« Based on regular syndrome decoding problem

« With “public key + signature size” 3.05 KB for 128-bit security

Ying Ouyang @ SJTU 16



ZK for Proving the Correctness of a Regular Encoding Process

___________________________________________

Regular Encoding Function |  Input: ¢ bit binary vector x = (x4, x5, xc)
. Output: 2¢ bit y = (1,2, Vo) = RE(X)

can be seen as c-variate Boolean functions.



ZK for Proving the Correctness of a Regular Encoding Process

___________________________________________

Regular Encoding Function |  Input: ¢ bit binary vector x = (x4, x5, xc)
. Output: 2¢ bit y = (1,2, Vo) = RE(X)

can be seen as c-variate Boolean functions.

Can we express each y; explicitly
USIng (xl) X2, ", xC)?
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ZK for Proving the Correctness of a Regular Encoding Process

___________________________________________

Regular Encoding Function |  Input: c bit binary vector x = (x1, X3, x.)
RE: {0,1}*— {0,1}* . Output: 2€ bit unit vector y = (yq, ¥, -+, ¥2¢) = RE(X)
oy RE: {0,1})°— {0,1}*° can b 2¢ c-variate Boolean functi
Observation 1 {0,1}*—{0,1}* can be seen as 2° c-variate Boolean functions.

Can we express each y; explicitly
USIng (xll X2, xC)?

Ying Ouyang @ SJTU



ZK for Proving the Correctness of a Regular Encoding Process

Toy Example: ¢ = 2

RE
X1 Xy ——) V1 Y2 Y3 Va

B O O
O +» O
o » O O
— O O O

o O O B
o O » O

Ying Ouyang @ SJTU

20



ZK for Proving the Correctness of a Regular Encoding Process

Toy Example: ¢ = 2

e

RE
X1 Xy —— V1 Y2 Y3 Va Vi = flo0)(x1,x2) = (14 xq) - (1 +x3)
Y2 = flon(xp,x2) = (14 x1) - x3

Vs = frio)(x,x2) = x1 - (1 + x3)

Vi = f(1,1) (x1,%x2) = x1 - %3

R B O O
) O kL O
o o O Bk
o O r O
O B O O
m O O O

Ying Ouyang @ SJTU
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ZK for Proving the Correctness of a Regular Encoding Process

Toy Example: ¢ = 2

e

RE
X1 Xy —— V1 Y2 Y3 Va Vi = flo0)(x1,x2) = (14 xq) - (1 +x3)
Y2 = flon(xp,x2) = (14 x1) - x3

Vs = fio)(x,x2) = x1 - (1 + x3)

Vi = f(1,1)(x1, X2) = X1 X;

P B O O
) O kB O
O B O O
~ O O O

o O O B
o O —» O

<> . c g 0 5
ﬁ Vi 2 [ X x0) = [T521(1 + j; + x;), where (jy, -+, jo) = bin(G — 1)

° We have transformed the regular encoding process into 2¢ degree-c
c-variate polynomial relations.

Ying Ouyang @ SJTU 22



ZK for Proving the Correctness of a Regular Encoding Process

Toy Example: ¢ = 2

X1 X —— V1 Vo V3 Va Loy = floo) (e x) = (1 +x1) - (1 +x5) :
|

0) 0) 1 0 0 0 LYo = flon(x,x) = (1 +x9) - x; :
|

0 1 0 1 0 0 : Vs = fl,0(x,x2) = x1 - (1 +x3) :

1 0 0 0 1 0 Loy = frn (g, x2) = X1 % :

1 1 0 0 0 1 o .

A Thus, can be proven
Vi 2 fiioj) G x0) = 1§ efficiently using VOLEitH - 1)

proof system.

o We have transformed the regular encoding process into 2¢ degree-c
c-variate polynomial relations.

Ying Ouyang @ SJTU 23



ZK Arguments of Knowledge of a Valid Opening
99?.8}9.?!}_*1?_ commitment scheme by Nguyen etal. INTWZ19AC).

| P is to prove the knowledge of x € 5 and r € [F% such that
_____ . ¢c=Cop-REx) ®C;{-RE (1) (1)

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

| X. message

. r: opening randomness
. ¢ commitment :
:\ Co, C1 : public matrices param.

____________________________________

Ying Ouyang @ SJTU
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ZK Arguments of Knowledge of a Valid Opening

Consider the commitment scheme by Nguyen et al. [NTWZ19AC].

____________________________________________________________________________________________________

P is to prove the knowledge of x € 5 and r € [F¥ such that

_____ i_______________________________\ C = CO . RE(X) @Cl -RE (l") (1)

i X message S

. r: opening randomness |
i ¢: commitment |
:\ Co, C1 : public matrices param. :

____________________________________

Thus, can be proven
efficiently using VOLEitH

proof system.

: : Equation (1
RE functions Matrix | =guatio (1)
T is equivalent to
are degree-c multiplication is a
. : . . some degree-c
polynomial relations linear operation

polynomial constraints

Ying Ouyang @ SJTU
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ZK Arguments of Knowledge of an Accumulated Value

Consider the accumulator by Nguyen et al. [NTWZ19AC].

_________________________________________________________________________________________________________

Using the modified AFS hash function: |
_hg(dq. d;) = By : RE(dg) & By - RE(dy)__,

Code-base Merkle-tree Accumulator

Ying Ouyang @ SJTU 26




ZK Arguments of Knowledge of an Accumulated Value

Consider the accumulator by Nguyen et al. [NTWZ19AC].
| P is to prove the knowledge of d* which was accumulated in a value u. i
, P wants to prove knowledge of j;,...,jz,Vvq,.-., vy, =d*,wy,..., w, such that

(BO RE(v,) @ B; - RE(W1)) + J1- (Bo RE(w;) © B; - RE(V1)) = u,

2+ (Bo ' RE(v2) © B, - RE(W,)) + 2 (Bo REW,) @ By RE(v)) = vy (z)?

ji - (By - RE(v,) ® B - RE(w{)))m (By - RE(wp) @ By - RE(vp)) = v,_;.

_______________________________________________________________________________________________________________



ZK Arguments of Knowledge of an Accumulated Value

Consider the accumulator by Nguyen et al. [NTWZ19AC].
| P is to prove the knowledge of d* which was accumulated in a value u. i
i P wants to prove knowledge of j;,...,j,,vq,...,Vp = d*, wyq,..., w, such that

(BO RE(v,) @ B; - RE(W1)) + J1- (Bo RE(w;) © B; - RE(V1)) = u,

2+ (Bo ' RE(v2) © B, - RE(W,)) + 2 (Bo REW,) @ By RE(v)) = vy (z)?

ji - (Bo - RE(vp) @ By -RE(Wp)) + ji - (By - RE(w,) @ By - RE(vp)) = v,_s.
: Matrix . . Q Equation (2)
RS WIEICIE multiplication J1r- 0 Je are equivalent to
are IS a i Else some degree-(c + 1)
relations

polynomial constraints



ZK Arguments of Knowledge of an Accumulated Value

Consider the accumulator by Nguyen et al. [NTWZ19AC].

________________________________________________________________________________________________________________

,"’ P wants to prove knowledge of j;,...,jp,vq,...,Vp = d*, wyq,..., w, such that

(BO RE(v;) @ B; - RE(W1)) + Jj1- (Bo RE(w;) @ B - !
iz (Bo-RE(v,) @ By - RE(Wy)) + j; - (By - RE(wy) & Thus, can be proven
efficiently using
ji - (B -RE(v,) @ By -RE(Wp)) + j; - (Bo RE(w,) & VOLEIitH proof system.

_______________________________________________________________________________________

Matrix

: : : Equation (2)
RE functions T :
multiplication Jur--0 e \ are equivalent to

are degree-c : )
J Is a linear are also

. : . some degree-(c + 1)
olynomial relations . witnesses / : :
POly operation polynomial constraints

Ying Ouyang @ SJTU 29



ZK Arguments of Knowledge of a Plaintext

” Consider a variant of McEliece encryption scheme.
; P wants to prove knowledge of u, m and e such that

I \ c=G-()DRE(e) (3)

d W TANAOMINESS oo e

i m: message
| e: noise
. ¢: ciphertext

Ying Ouyang @ SJTU
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ZK Arguments of Knowledge of a Plaintext

Consider a variant of McEliece encryption scheme.

_______________________________________________________________________________________________________

P wants to prove knowledge of u, m and e such that

\-—————————/

..................... \ c=G- (::1) @ RE(e) (3)

m: message
e: hoise
c. ciphertext

Thus, can be proven

G: pk efficiently using VOLEitH
"""""""""" proof system.
RE can be : ° Equation (3)
: Matrix : .

transformed into liaTesien is e > is equivalent to

degree-c polynomial : : some degree-c

: linear operation : :

relations polynomial constraints

Ying Ouyang @ SJTU 31



Applications



Ring Signhatures [NTWZ19AC]

00

v, =C-RE(X) (4) UOWF

Underlying ZK protocols for
the ring signature

Ying Ouyang @ SJTU
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Our Ring Signatures

We replace the stern-like ZK for the ring signature [NTWZ19AC] with our ZK, obtaining a
new RS with much smaller signature sizes.

128-bit security 256-bit security

This paper (KB) Stern-type (MB) This paper (KB) Stern-type (MB)

Ring size

25 35.12 32.26 140.24 129.04
27 45.12 43.93 180.25 175.74
210 60.13 61.44 240.26 245.78
215 85.14 90.63 340.28 362.51
220 110.15 119.81 440.30 479.25
230 160.17 178.18 640.34 712.72

934 X ~1140 X

Ying Ouyang @ SJTU



Group Sighatures [NTWZ19AC]

L

00

vy =C-REX) (4) HOWF

’ an encryption Iayerw

Underlying ZK protocols for
the group signature

Ying Ouyang @ SJTU
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Our Group Signatures

We replace the stern-like ZK for the group signature scheme [NTWZ19AC] using our ZK,
obtaining a new GS with much smaller signature sizes.

128-bit security 256-bit security

Group size
This paper (KB) Stern-type (MB) This paper (KB) Stern-type (MB)
25 49.60 33.27 197.19 133.02
27 59.60 44.94 237.19 179.72
210 74.59 52.45 297.18 249.76
2 99.58 91.63 397.16 366.50
220 124.57 120.82 497.14 483.23
230 174.55 179.18 687.10 716.70

683 X ~1053 X

Ying Ouyang @ SJTU



Fully Dynamic Attribute-Based Signatures [LNP+24PKC]

Underlying ZK protocols for
the FDABS scheme

Commitment P :

e Lo =

wt(v)) = 1mod 2. (5) | ZK protocols for (5)

P=1 (6 | - ZK protocols for (6)

Ying Ouyang @ SJTU 37



Our Fully Dynamic Attribute-Based Signatures

We replace the stern-like ZK for the FDABS scheme [LNP+24PKC] using our ZK, obtaining
a new FDABS with much smaller signature sizes,

2! denotes the maximum number of attributes; K denotes the size of the circuit P.

128-bit security 256-bit security
24 K)

This paper (KB) Stern-type (MB) This paper (KB) Stern-type (MB)

(210,29) 59.38 45.41 234.76 181.29
(210,216) 186.38 52.20 488.76 194.87
(215,29) 84.39 67.30 334.78 268.85
(215,216) 211.39 74.08 588.78 282.43
(220,29) 109.40 89.18 434.80 356.40
(220,216) 236.40 95.97 688.80 369.98

783 X ~839 X

Ying Ouyang @ SJTU
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Comparison with Other Post-Quantum Constructions

» Focus on 128-bit security and ring/group size 219,
« For FDABS, choose 2! = 210, K = 29,

Schemes Code-based Hash-based | Lattice-based
This paper Stern-type [KKW18] [LN22]
RS

61 MB 61 KB 388 KB

BUlez INTW-+19] [LW24] (240 KB) L2z
63 MB 121 KB* 418 KB* .
S [N [NTW+19] [LW24] (297 KB) LIINE
46 MB
FDABS 62 KB Ny

* . They only achieve CPA-anonymity.
**. |t only achieves selfless anonymity

Ying Ouyang @ SJTU 39



A Standard Signature from VOLEItH

A canonical paradigm in signatures

a public coin ZK proof Fiat-Shamir

: signatures
for one-way functions

® Choose regular syndrome decoding problem
Letm = % - 26,
 \erification key: B € {0,1}™™ and y € {0,1}".
« Secret Key: x € {0,1}" such that
B-RE(x) =vy. (4)
» To sign a message: the signer proves knowledge of x that satisfies (4). This can be

achieved using our ZK technique.



Comparison with the Scheme [CLY+24]

ICLY+24] Is also based on RSD problem.
Different method to prove that a given vector is regular within VOLEItH framework.
Note: they do not involve proving the regular encoding process.

Signature sizes in bytes
Scheme parameters

CLY+24 c=2 c=3 c=4

Heem = = 4082 4572(+12.0%) 4026(-1.4%) 4040(-1.0%)
T Typen = 112 3826 4316(+12.9%) 3770(-1.5%) 3784(-1.1%)

Megsen = = 3510 3860(+10.0%) 3470(-1.1%) 3480(-0.9%)
T Typen = 102 3094 3444(+11.3%) 3054(-1.3%) 3064(~1.0%)

Adapt optimizations from Baum et al. [BBM+24]: set the same value of T, .
When ¢ = 3, slightly smaller signature size.

Ying Ouyang @ SJTU



Thank you
Q&A

u ouyang_ying@sijtu.edu.cn
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