
Code-Based Zero-Knowledge from

VOLE-in-the-Head and Their Applications:

Simpler, Faster, and Smaller

Ying Ouyang Deng Tang Yanhong Xu

ASIACRYPT 2024

Background

Zero Knowledge Proofs

3Ying Ouyang @ SJTU

…Prover Verifier
(𝑥, 𝑤) 𝑥

Claim 𝑥, 𝑤 ∈ ℛ

Output 1/0

• Completeness: Verifier always accepts a valid proof.

• Knowledge Soundness: If Verifier accepts a proof, then Prover must know a valid witness 𝑤.

• Zero-Knowledge: Verifier learns nothing about 𝑤 except 𝑥, 𝑤 ∈ ℛ.

Applications of zero-knowledge proofs

⚫ Privacy-preserving systems such as:

• Ring signatures (RS)

• Group signatures (GS)

• Attribute–based signatures (ABS), …

⚫ Standard signatures

✓ Standard Sig.

✓ Privacy-preserving Sig.

[NTW+19,NNS+21,BGK+

23,LNP+24,WCD+24,…]

• 𝑯𝒆 = 𝒚

• 𝒆 has some specific

structure

Stern’s ZK [Stern96]

• 𝑪 𝒘 = 𝟏 or

• ቐ
𝒇𝟏(𝒘) = 𝟎

…
𝒇𝒕(𝒘) = 𝟎

VOLEitH [BBG+23]

• 𝑪 𝒘 = 𝟏

• Need a method to

share 𝒘

MPCitH [IKOS09]

✓ Standard Sig. [FJR22, CCJ23, MGH+23, MHJ+23,

FR23,BCC+24, ARV23,BFG+24,CLY+24,…]

Privacy-preserving Sig.

Code-Based Zero Knowledge Protocols

4Ying Ouyang @ SJTU

Large soundness error (2/3)
128-bit security: 219 times

256-bit security: 438 times

Code-Based Zero Knowledge Protocols

5

Can we build code-based privacy-preserving systems from VOLEitH?

Ying Ouyang @ SJTU

✓ Standard Sig.

✓ Privacy-preserving Sig.

[NTW+19,NNS+21,BGK+

23,LNP+24,WCD+24,…]

• 𝑯𝒆 = 𝒚

• 𝒆 has some specific

structure

Stern’s ZK [Stern96]

• 𝑪 𝒘 = 𝟏 or

• ቐ
𝒇𝟏(𝒘) = 𝟎

…
𝒇𝒕(𝒘) = 𝟎

VOLEitH [BBG+23]

• 𝑪 𝒘 = 𝟏

• Need a method to

share 𝒘

MPCitH [IKOS09]

✓ Standard Sig. [FJR22, CCJ23, MGH+23, MHJ+23,

FR23,BCC+24, ARV23,BFG+24,CLY+24,…]

Privacy-preserving Sig.

Large soundness error (2/3)
128-bit security: 219 times

256-bit security: 438 times

Difficulties in Designing Code-Based Privacy-Preserving Systems

6Ying Ouyang @ SJTU

⚫ Nguyen et al. [NTW+19AC] built a Merkle-tree accumulator, which employs

the following regular encoding.

⚫ Toy Example, it maps 𝑐 bits to 2𝑐 bits.

• (00) is encoded to (1000).

• (01) is encoded to (0100).

• (10) is encoded to (0010).

• (11) is encoded to (0001).

⚫ Nguyen et al. designed a dedicated Stern-type ZK for proving the correct

regular encoding process.

Unit Vectors

7

⚫ Nguyen et al. [NTW+19AC] built a Merkle-tree accumulator, which employs

the following regular encoding.

⚫ Toy Example, it maps 𝑐 bits to 2𝑐 bits.

• (00) is encoded to (1000).

• (01) is encoded to (0100).

• (10) is encoded to (0010).

• (11) is encoded to (0001).

⚫ Nguyen et al. designed a dedicated Stern-type ZK for proving the correct

regular encoding process.

Unit Vectors

We aim to prove the correct regular encoding process within VOLEitH framework.

Difficulties in Designing Code-Based Privacy-Preserving Systems

Ying Ouyang @ SJTU

Recap:

VOLEitH Proof System

∆∈ 𝔽𝒑𝒓𝐮 ∈ 𝔽𝒑
𝒍

M𝐮 ∈ 𝔽𝒑𝒓
𝒍

K𝐮 ∈ 𝔽𝒑𝒓
𝒍

Prover Verifier
K𝐮 = M𝐮 + 𝐮 ⋅ Δ

(Subfield)

VOLE

VOLE-based Zero Knowledge Proof

9

Linearly homomorphic commitment from VOLE:
Linear homomorphism:

Given 𝐱 , 𝐲 , then 𝒛 = [a𝐱 + 𝐲]

is obtained by

(aK𝐱 + K𝐲) = (aM𝐱 + M𝐲) + (a𝐱 + 𝐲) ⋅ Δ

K𝐳 M𝐳 𝐳
We define this VOLE correlation by [u].

Ying Ouyang @ SJTU

∆∈ 𝔽𝒑𝒓𝐮 ∈ 𝔽𝒑
𝒍

M𝐮 ∈ 𝔽𝒑𝒓
𝒍

K𝐮 ∈ 𝔽𝒑𝒓
𝒍

Prover Verifier
K𝐮 = M𝐮 + 𝐮 ⋅ Δ

(Subfield)

VOLE

VOLE-based Zero Knowledge Proof

10

Linearly homomorphic commitment from VOLE:

We define this VOLE correlation by [u].

Linear homomorphism:

Given 𝐱 , 𝐲 , then 𝒛 = [a𝐱 + 𝐲]

is obtained by

(aK𝐱 + K𝐲) = (aM𝐱 + M𝐲) + (a𝐱 + 𝐲) ⋅ Δ

K𝐳 M𝐳 𝐳

在此处键入公式。

Commit to 𝑤:
𝑑 = 𝑤 − 𝑢

locally compute 𝑤

Open:

𝑤, M𝑤

verify that K𝑤 = M𝑤 + 𝑤 ⋅ Δ
Ying Ouyang @ SJTU

∆∈ 𝔽𝒑𝒓𝐮 ∈ 𝔽𝒑
𝒍

M𝐮 ∈ 𝔽𝒑𝒓
𝒍

K𝐮 ∈ 𝔽𝒑𝒓
𝒍

Prover Verifier
K𝐮 = M𝐮 + 𝐮 ⋅ Δ

(Subfield)

VOLE

Linear homomorphism:

Given 𝐱 , 𝐲 , then 𝒛 = [a𝐱 + 𝐲]

is obtained by

(aK𝐱 + K𝐲) = (aM𝐱 + M𝐲) + (a𝐱 + 𝐲) ⋅ Δ

VOLE-based Zero Knowledge Proof

11

Linearly homomorphic commitment from VOLE:

We define this VOLE correlation by [u].
K𝐳 M𝐳 𝐳

在此处键入公式。

Commit to 𝑤:
𝑑 = 𝑤 − 𝑢

locally compute 𝑤

Open:

𝑤, M𝑤

verify that K𝑤 = M𝑤 + 𝑤 ⋅ Δ

Proving degree-2 polynomial constraints: 𝑤1 ⋅ 𝑤2 = 𝑤3

1. The prover commits to 𝑤1, 𝑤2, 𝑤3;

2. How to prove it?

Ying Ouyang @ SJTU

Ying Ouyang @ SJTU

∆∈ 𝔽𝒑𝒓𝐮 ∈ 𝔽𝒑
𝒍

M𝐮 ∈ 𝔽𝒑𝒓
𝒍

K𝐮 ∈ 𝔽𝒑𝒓
𝒍

Prover Verifier
K𝐮 = M𝐮 + 𝐮 ⋅ Δ

(Subfield)

VOLE

Linear homomorphism:

Given 𝐱 , 𝐲 , then 𝒛 = [a𝐱 + 𝐲]

is obtained by

(aK𝐱 + K𝐲) = (aM𝐱 + M𝐲) + (a𝐱 + 𝐲) ⋅ Δ

VOLE-based Zero Knowledge Proof

12

Linearly homomorphic commitment from VOLE:

We define this VOLE correlation by [u].
K𝐳 M𝐳 𝐳

在此处键入公式。

Commit to 𝑤:
𝑑 = 𝑤 − 𝑢

locally compute 𝑤

Open:

𝑤, M𝑤

verify that K𝑤 = M𝑤 + 𝑤 ⋅ Δ

Proving degree-2 polynomial constraints: 𝑤1 ⋅ 𝑤2 = 𝑤3

1. The prover commits to 𝑤1, 𝑤2, 𝑤3;

2. How to prove it?

𝐵 = K1 ⋅ K2 − K3 ⋅ Δ

= M1 ⋅ M2 + M2 ⋅ 𝑤1 + M1 ⋅ 𝑤2 − M3 ⋅ Δ + (𝑤1 ⋅ 𝑤2 − 𝑤3) ⋅ Δ2

= 𝐴0 + 𝐴1 ⋅ Δ

know to 𝒱

know to 𝒫know to 𝒫 0 if 𝒫 is honest

B = σℎ=0
𝑑 𝑔ℎ K1, ⋯ , K𝑙 ⋅ Δ𝑑−ℎ = σℎ=0

𝑑 𝑔ℎ M1 + 𝑤1 ⋅ Δ, ⋯ , M𝑙 + 𝑤𝑙 ⋅ Δ ⋅ Δ𝑑−ℎ

= 𝑓 𝑤1, ⋯ , 𝑤𝑙 ⋅ Δ𝑑 + 𝐴0 + 𝐴1 ⋅ Δ + ⋯ + 𝐴𝑑−1 ⋅ Δ𝑑−1

VOLE-based Zero Knowledge Proof

13

Vector oblivious polynomial evaluation (VOPE):

Extension to prove degree-d polynomial constraints:

degree-separate form: 𝑓 𝑤1, ⋯ , 𝑤𝑙 = σℎ∈[0,𝑑] 𝑔ℎ 𝑤1, ⋯ , 𝑤𝑙 = 0

know to 𝒱

𝒫0 if 𝒫 is honest known to 𝒫𝒫

∆∈ 𝔽𝒑𝒓

Prover Verifier

VOPE
𝐵 ∈ 𝔽𝒑𝒓

𝐴0, ⋯ , 𝐴𝑑 ∈ 𝔽𝒑𝒓

𝐵 = 𝐴0 + 𝐴1 ⋅ Δ + ⋯ + 𝐴𝑑 ⋅ Δ𝑑

VOLE
extend to

Ying Ouyang @ SJTU

VOLE-in-the-Head

14

Ying Ouyang @ SJTU

⚫ VOLE-in-the-Head: add public verifiability

VOLE-ZK

(designated verifier)
Public-coin “VOLE-in-the-head”

proof system [BBG+23]

⚫ VOLE-ZK

• Pros:

• Cons:

Information-theoretic (after VOLE setup) Fast prover Small memory

Linear proof size Designated verifier

Fiat-Shamir

Non-interactive ZK

A delayed VOLE

functionality

Our Contributions

Summary of Our Contributions

16

⚫ A novel ZK protocol for proving the correctness of a regular encoding process

⚫ New ZK protocols for concrete code-based relations

• ZK arguments of knowledge (ZKAoK) of a valid opening

• ZKAoK of an accumulated value

• ZKAoK of a plaintext

⚫ Develop several code-based privacy-preserving primitives

• Efficient RS, GS, and fully dynamic ABS (FDABS)

• Achieve signature sizes two to three orders of magnitude smaller than Stern-type constructions

⚫ New standard signature

• Based on regular syndrome decoding problem

• With “public key + signature size” 3.05 KB for 128-bit security

Ying Ouyang @ SJTU

ZK for Proving the Correctness of a Regular Encoding Process

17

Input: 𝑐 bit binary vector 𝐱 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑐

Output: 2𝑐 bit unit vector 𝐲 = 𝑦1, 𝑦2, ⋯ , 𝑦2𝑐 = RE(𝐱)

Regular Encoding Function

RE: {0,1}𝑐⟶ {0,1}2𝑐

Key

Observation RE: {0,1}𝑐⟶ {0,1}2𝑐
can be seen as 2𝑐 𝑐-variate Boolean functions.

Ying Ouyang @ SJTU

18

Input: 𝑐 bit binary vector 𝐱 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑐

Output: 2𝑐 bit unit vector 𝐲 = 𝑦1, 𝑦2, ⋯ , 𝑦2𝑐 = RE(𝐱)

Regular Encoding Function

RE: {0,1}𝑐⟶ {0,1}2𝑐

Key

Observation RE: {0,1}𝑐⟶ {0,1}2𝑐
can be seen as 2𝑐 𝑐-variate Boolean functions.

ZK for Proving the Correctness of a Regular Encoding Process

Ying Ouyang @ SJTU

Can we express each 𝑦𝑗 explicitly

using 𝑥1, 𝑥2, ⋯ , 𝑥𝑐 ?

19

Input: 𝑐 bit binary vector 𝐱 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑐

Output: 2𝑐 bit unit vector 𝐲 = 𝑦1, 𝑦2, ⋯ , 𝑦2𝑐 = RE(𝐱)

Regular Encoding Function

RE: {0,1}𝑐⟶ {0,1}2𝑐

Key

Observation RE: {0,1}𝑐⟶ {0,1}2𝑐
can be seen as 2𝑐 𝑐-variate Boolean functions.

ZK for Proving the Correctness of a Regular Encoding Process

Ying Ouyang @ SJTU

Can we express each 𝑦𝑗 explicitly

using 𝑥1, 𝑥2, ⋯ , 𝑥𝑐 ?

20

Output

𝑦1 𝑦2 𝑦3 𝑦4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Input

𝑥1 𝑥2

0 0

0 1

1 0

1 1

Toy Example: 𝑐 = 2

RE

ZK for Proving the Correctness of a Regular Encoding Process

Ying Ouyang @ SJTU

21

Output

𝑦1 𝑦2 𝑦3 𝑦4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Input

𝑥1 𝑥2

0 0

0 1

1 0

1 1

Toy Example: 𝑐 = 2

RE

𝑦2 = 𝑓 0,1 𝑥1, 𝑥2 = 1 + 𝑥1 ⋅ 𝑥2

𝑦1 = 𝑓 0,0 𝑥1, 𝑥2 = 1 + 𝑥1 ⋅ 1 +𝑥2

𝑦3 = 𝑓 1,0 𝑥1, 𝑥2 = 𝑥1 ⋅ 1 + 𝑥2

𝑦4 = 𝑓 1,1 𝑥1, 𝑥2 = 𝑥1 ⋅ 𝑥2

ZK for Proving the Correctness of a Regular Encoding Process

Ying Ouyang @ SJTU

22

𝑦𝑗 ≜ 𝑓 𝑗1,⋯,𝑗𝑐
𝑥1, ⋯ , 𝑥𝑐 = ς𝑖=1

𝑐 1 + 𝑗𝑖 + 𝑥𝑖 , where 𝑗1, ⋯ , 𝑗𝑐 = bin(𝑗 − 1)

Output

𝑦1 𝑦2 𝑦3 𝑦4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Input

𝑥1 𝑥2

0 0

0 1

1 0

1 1

Toy Example: 𝑐 = 2

RE

𝑦2 = 𝑓 0,1 𝑥1, 𝑥2 = 1 + 𝑥1 ⋅ 𝑥2

𝑦1 = 𝑓 0,0 𝑥1, 𝑥2 = 1 + 𝑥1 ⋅ 1 +𝑥2

𝑦3 = 𝑓 1,0 𝑥1, 𝑥2 = 𝑥1 ⋅ 1 + 𝑥2

𝑦4 = 𝑓 1,1 𝑥1, 𝑥2 = 𝑥1 ⋅ 𝑥2

We have transformed the regular encoding process into 2𝑐 degree-𝑐
𝑐-variate polynomial relations.

ZK for Proving the Correctness of a Regular Encoding Process

Ying Ouyang @ SJTU

23

𝑦𝑗 ≜ 𝑓 𝑗1,⋯,𝑗𝑐
𝑥1, ⋯ , 𝑥𝑐 = ς𝑖=1

𝑐 1 + 𝑗𝑖 + 𝑥𝑖 , where 𝑗1, ⋯ , 𝑗𝑐 = bin(𝑗 − 1)

Output

𝑦1 𝑦2 𝑦3 𝑦4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Input

𝑥1 𝑥2

0 0

0 1

1 0

1 1

Toy Example: 𝑐 = 2

RE

𝑦2 = 𝑓 0,1 𝑥1, 𝑥2 = 1 + 𝑥1 ⋅ 𝑥2

𝑦1 = 𝑓 0,0 𝑥1, 𝑥2 = 1 + 𝑥1 ⋅ 1 +𝑥2

𝑦3 = 𝑓 1,0 𝑥1, 𝑥2 = 𝑥1 ⋅ 1 + 𝑥2

𝑦4 = 𝑓 1,1 𝑥1, 𝑥2 = 𝑥1 ⋅ 𝑥2

We have transformed the regular encoding process into 2𝑐 degree-𝑐
𝑐-variate polynomial relations.

ZK for Proving the Correctness of a Regular Encoding Process

Ying Ouyang @ SJTU

Thus, can be proven

efficiently using VOLEitH

proof system.

ZK Arguments of Knowledge of a Valid Opening

24

𝒫 is to prove the knowledge of 𝐱 ∈ 𝔽2
𝐿 and 𝐫 ∈ 𝔽2

𝑘 such that

𝐜 = 𝐂𝟎 ⋅ RE 𝐱 ۩ 𝐂𝟏 ⋅ RE 𝐫 (1)

Goal
Consider the commitment scheme by Nguyen et al. [NTWZ19AC].

𝐱: message

𝐫: opening randomness

𝐜: commitment

𝐂𝟎, 𝐂𝟏 : public matrices param.

Ying Ouyang @ SJTU

25

Equation (1)

is equivalent to
some degree-𝑐

polynomial constraints

Thus, can be proven

efficiently using VOLEitH

proof system.

𝒫 is to prove the knowledge of 𝐱 ∈ 𝔽2
𝐿 and 𝐫 ∈ 𝔽2

𝑘 such that

𝐜 = 𝐂𝟎 ⋅ RE 𝐱 ۩ 𝐂𝟏 ⋅ RE 𝐫 (1)

Goal
Consider the commitment scheme by Nguyen et al. [NTWZ19AC].

RE functions

are degree-𝑐
polynomial relations

Matrix

multiplication is a

linear operation

ZK Arguments of Knowledge of a Valid Opening

Ying Ouyang @ SJTU

𝐱: message

𝐫: opening randomness

𝐜: commitment

𝐂𝟎, 𝐂𝟏 : public matrices param.

ZK Arguments of Knowledge of an Accumulated Value

26

𝒫 is to prove the knowledge of 𝐝∗ which was accumulated in a value 𝐮.
Goal

Consider the accumulator by Nguyen et al. [NTWZ19AC].

Toy Example: 𝑙 = 3, 𝑁 = 7 Using the modified AFS hash function:

ℎ𝐁(𝐝0, 𝐝1) = 𝐁0 · RE 𝐝0 ⊕ 𝐁1 · RE 𝐝0

𝐝7𝐝6𝐰3𝐝∗𝐝3𝐝2𝐝1𝐝0

𝐰2𝐯2

𝐯1𝐰1

𝐮

bin 𝑗 = 𝑗1, 𝑗2, 𝑗3 = (100)
𝑗 = 4

1

0

0

Code-base Merkle-tree Accumulator
Ying Ouyang @ SJTU

ZK Arguments of Knowledge of an Accumulated Value

27

𝒫 is to prove the knowledge of 𝐝∗ which was accumulated in a value 𝐮.
Goal

Consider the accumulator by Nguyen et al. [NTWZ19AC].

Ying Ouyang @ SJTU

𝒫 wants to prove knowledge of 𝑗1, . . . , 𝑗ℓ , 𝐯1, . . . , 𝐯ℓ = 𝐝∗, 𝐰𝟏, . . . , 𝐰ℓ such that

ഥ𝑗1 · 𝐁0 · RE 𝐯1 ⊕ 𝐁1 · RE 𝐰1 + 𝑗1 · 𝐁0 · RE 𝐰1 ⊕ 𝐁1 · RE 𝐯1 = 𝐮,
ഥ𝑗2 · 𝐁0 · RE 𝐯2 ⊕ 𝐁1 · RE 𝐰2 + 𝑗2 · 𝐁0 · RE 𝐰2 ⊕ 𝐁1 · RE 𝐯2 = 𝐯1,

⋯
ഥ𝑗𝑙 · 𝐁0 · RE 𝐯ℓ ⊕ 𝐁1 · RE 𝐰ℓ + 𝑗𝑙 · 𝐁0 · RE 𝐰ℓ ⊕ 𝐁1 · RE 𝐯ℓ = 𝐯ℓ−1.

(2)

ZK Arguments of Knowledge of an Accumulated Value

28

𝒫 is to prove the knowledge of 𝐝∗ which was accumulated in a value 𝐮.
Goal

Consider the accumulator by Nguyen et al. [NTWZ19AC].

Ying Ouyang @ SJTU

Equation (2)

are equivalent to
some degree-(𝑐 + 1)

polynomial constraints

RE functions

are degree-𝑐
polynomial relations

Matrix

multiplication

is a linear

operation

𝑗1, . . . , 𝑗ℓ

are also

witnesses

𝒫 wants to prove knowledge of 𝑗1, . . . , 𝑗ℓ , 𝐯1, . . . , 𝐯ℓ = 𝐝∗, 𝐰𝟏, . . . , 𝐰ℓ such that

ഥ𝑗1 · 𝐁0 · RE 𝐯1 ⊕ 𝐁1 · RE 𝐰1 + 𝑗1 · 𝐁0 · RE 𝐰1 ⊕ 𝐁1 · RE 𝐯1 = 𝐮,
ഥ𝑗2 · 𝐁0 · RE 𝐯2 ⊕ 𝐁1 · RE 𝐰2 + 𝑗2 · 𝐁0 · RE 𝐰2 ⊕ 𝐁1 · RE 𝐯2 = 𝐯1,

⋯
ഥ𝑗𝑙 · 𝐁0 · RE 𝐯ℓ ⊕ 𝐁1 · RE 𝐰ℓ + 𝑗𝑙 · 𝐁0 · RE 𝐰ℓ ⊕ 𝐁1 · RE 𝐯ℓ = 𝐯ℓ−1.

(2)

ZK Arguments of Knowledge of an Accumulated Value

29

𝒫 is to prove the knowledge of 𝐝∗ which was accumulated in a value 𝐮.
Goal

Consider the accumulator by Nguyen et al. [NTWZ19AC].

Ying Ouyang @ SJTU

Equation (2)

are equivalent to
some degree-(𝑐 + 1)

polynomial constraints

RE functions

are degree-𝑐
polynomial relations

Matrix

multiplication

is a linear

operation

𝑗1, . . . , 𝑗ℓ

are also

witnesses

𝒫 wants to prove knowledge of 𝑗1, . . . , 𝑗ℓ , 𝐯1, . . . , 𝐯ℓ = 𝐝∗, 𝐰𝟏, . . . , 𝐰ℓ such that

ഥ𝑗1 · 𝐁0 · RE 𝐯1 ⊕ 𝐁1 · RE 𝐰1 + 𝑗1 · 𝐁0 · RE 𝐰1 ⊕ 𝐁1 · RE 𝐯1 = 𝐮,
ഥ𝑗2 · 𝐁0 · RE 𝐯2 ⊕ 𝐁1 · RE 𝐰2 + 𝑗2 · 𝐁0 · RE 𝐰2 ⊕ 𝐁1 · RE 𝐯2 = 𝐯1,

⋯
ഥ𝑗𝑙 · 𝐁0 · RE 𝐯ℓ ⊕ 𝐁1 · RE 𝐰ℓ + 𝑗𝑙 · 𝐁0 · RE 𝐰ℓ ⊕ 𝐁1 · RE 𝐯ℓ = 𝐯ℓ−1.

(2)Thus, can be proven

efficiently using

VOLEitH proof system.

𝒫 wants to prove knowledge of 𝐮, 𝐦 and 𝐞 such that

𝐜 = 𝐆 ⋅ 𝐮
𝐦

۩ RE 𝐞 (3)

ZK Arguments of Knowledge of a Plaintext

30

Goal
Consider a variant of McEliece encryption scheme.

𝐮: randomness

𝐦: message

𝐞: noise

𝐜: ciphertext

𝐆: pk

Ying Ouyang @ SJTU

𝒫 wants to prove knowledge of 𝐮, 𝐦 and 𝐞 such that

𝐜 = 𝐆 ⋅ 𝐮
𝐦

۩ RE 𝐞 (3)

ZK Arguments of Knowledge of a Plaintext

31

Goal
Consider a variant of McEliece encryption scheme.

𝐮: randomness

𝐦: message

𝐞: noise

𝐜: ciphertext

𝐆: pk

Ying Ouyang @ SJTU

Equation (3)

is equivalent to
some degree-𝑐

polynomial constraints

RE can be

transformed into

degree-𝑐 polynomial

relations

Matrix

multiplication is a

linear operation

Thus, can be proven

efficiently using VOLEitH

proof system.

Applications

secret key: 𝐱

Ring Signatures [NTWZ19AC]

33

𝐯ℓ

ZK of an accumulated value

ZK of the knowledge of 𝐱 that satisfies (4)

Underlying ZK protocols for

the ring signature

𝐯ℓ = 𝐂 ⋅ RE 𝐱 (4) OWF

Ying Ouyang @ SJTU

Our Ring Signatures

34

Ring size

128-bit security 256-bit security

This paper (KB) Stern-type (MB) This paper (KB) Stern-type (MB)

25 35.12 32.26 140.24 129.04

27 45.12 43.93 180.25 175.74

210 60.13 61.44 240.26 245.78

215 85.14 90.63 340.28 362.51

220 110.15 119.81 440.30 479.25

230 160.17 178.18 640.34 712.72

We replace the stern-like ZK for the ring signature [NTWZ19AC] with our ZK, obtaining a

new RS with much smaller signature sizes.

Ying Ouyang @ SJTU

𝟗𝟑𝟒 × ~𝟏𝟏𝟒𝟎 ×

Group Signatures [NTWZ19AC]

35

𝐯ℓ

Underlying ZK protocols for

the group signature

an encryption layer ZK of the knowledge of plaintexts

secret key: 𝐱

𝐯ℓ = 𝐂 ⋅ RE 𝐱 (4) OWF
ZK of the knowledge of 𝐱 that satisfies(4)

ZK of an accumulated value

Ying Ouyang @ SJTU

Our Group Signatures

36

Group size
128-bit security 256-bit security

This paper (KB) Stern-type (MB) This paper (KB) Stern-type (MB)

25 49.60 33.27 197.19 133.02

27 59.60 44.94 237.19 179.72

210 74.59 52.45 297.18 249.76

215 99.58 91.63 397.16 366.50

220 124.57 120.82 497.14 483.23

230 174.55 179.18 687.10 716.70

We replace the stern-like ZK for the group signature scheme [NTWZ19AC] using our ZK,

obtaining a new GS with much smaller signature sizes.

Ying Ouyang @ SJTU

𝟔𝟖𝟑 × ~𝟏𝟎𝟓𝟑 ×

Fully Dynamic Attribute-Based Signatures [LNP+24PKC]

37

𝐯ℓ

(𝐱, 𝐫)

ZK of a valid opening

Underlying ZK protocols for

the FDABS scheme

ZK protocols for (5)

𝐂𝐨𝐦𝐦𝐢𝐭𝐦𝐞𝐧𝐭

𝑤𝑡 𝐯ℓ = 1 𝑚𝑜𝑑 2. (5)

P 𝐱 = 1. (6) ZK protocols for (6)

ZK of an accumulated value

Ying Ouyang @ SJTU

Our Fully Dynamic Attribute-Based Signatures

38

(𝟐𝒍, 𝑲)
128-bit security 256-bit security

This paper (KB) Stern-type (MB) This paper (KB) Stern-type (MB)

(210,29) 59.38 45.41 234.76 181.29

(210,216) 186.38 52.20 488.76 194.87

(215,29) 84.39 67.30 334.78 268.85

(215,216) 211.39 74.08 588.78 282.43

(220,29) 109.40 89.18 434.80 356.40

(220,216) 236.40 95.97 688.80 369.98

𝟐𝒍 denotes the maximum number of attributes; 𝑲 denotes the size of the circuit 𝑃.

We replace the stern-like ZK for the FDABS scheme [LNP+24PKC] using our ZK, obtaining

a new FDABS with much smaller signature sizes.

Ying Ouyang @ SJTU

𝟕𝟖𝟑 × ~𝟖𝟑𝟗 ×

Comparison with Other Post-Quantum Constructions

39

Schemes
Code-based Hash-based

[KKW18]

Lattice-based

[LN22]This paper Stern-type

RS 60 KB
61 MB

[NTW+19]

61 KB

[LW24]

388 KB

(240 KB)
13 KB

GS 75 KB
63 MB

[NTW+19]

121 KB*

[LW24]

418 KB**

(297 KB)
18 KB*

FDABS 62 KB
46 MB

[LNP+24]
- - -

* : They only achieve CPA-anonymity.

**: It only achieves selfless anonymity

• Focus on 128-bit security and ring/group size 210.

• For FDABS, choose 2𝑙 = 210, 𝐾 = 29 .

Ying Ouyang @ SJTU

A Standard Signature from VOLEitH

40

A canonical paradigm in signatures

⚫ Choose regular syndrome decoding problem

Let 𝑚 =
𝑛

𝑐
⋅ 2𝑐.

• Verification key: 𝐁 ∈ {0,1}𝑛×𝑚 and 𝐲 ∈ {0,1}𝑛.

• Secret Key: 𝐱 ∈ {0,1}𝑚 such that

𝐁 ⋅ RE 𝐱 = 𝐲 . (4)

• To sign a message: the signer proves knowledge of 𝐱 that satisfies (4). This can be

achieved using our ZK technique.

Ying Ouyang @ SJTU

a public coin ZK proof

for one-way functions
signatures

Fiat-Shamir

Comparison with the Scheme [CLY+24]

41

Scheme parameters
Signature sizes in bytes

CLY+24 𝒄 = 𝟐 𝒄 = 𝟑 𝒄 = 𝟒

𝜏 = 14
𝑇𝑜𝑝𝑒𝑛 = − 4082 4572(+12.0%) 4026(−1.4%) 4040(−1.0%)

𝑇𝑜𝑝𝑒𝑛 = 112 3826 4316(+12.9%) 3770(−1.5%) 3784(−1.1%)

𝜏 = 10
𝑇𝑜𝑝𝑒𝑛 = − 3510 3860(+10.0%) 3470(−1.1%) 3480(−0.9%)

𝑇𝑜𝑝𝑒𝑛 = 102 3094 3444(+11.3%) 3054(−1.3%) 3064(−1.0%)

• [CLY+24] is also based on RSD problem.

• Different method to prove that a given vector is regular within VOLEitH framework.

• Note: they do not involve proving the regular encoding process.

Ying Ouyang @ SJTU

• Adapt optimizations from Baum et al. [BBM+24]: set the same value of 𝑇𝑜𝑝𝑒𝑛.

• When 𝑐 = 3, slightly smaller signature size.

Thank you

Q & A

42Ying Ouyang @ SJTU

ouyang_ying@sjtu.edu.cn

	Slide 1: Code-Based Zero-Knowledge from VOLE-in-the-Head and Their Applications: Simpler, Faster, and Smaller
	Slide 2
	Slide 3: Zero Knowledge Proofs
	Slide 4: Code-Based Zero Knowledge Protocols
	Slide 5: Code-Based Zero Knowledge Protocols
	Slide 6: Difficulties in Designing Code-Based Privacy-Preserving Systems
	Slide 7
	Slide 8
	Slide 9: VOLE-based Zero Knowledge Proof
	Slide 10: VOLE-based Zero Knowledge Proof
	Slide 11: VOLE-based Zero Knowledge Proof
	Slide 12: VOLE-based Zero Knowledge Proof
	Slide 13: VOLE-based Zero Knowledge Proof
	Slide 14: VOLE-in-the-Head
	Slide 15
	Slide 16: Summary of Our Contributions
	Slide 17: ZK for Proving the Correctness of a Regular Encoding Process
	Slide 18: ZK for Proving the Correctness of a Regular Encoding Process
	Slide 19: ZK for Proving the Correctness of a Regular Encoding Process
	Slide 20: ZK for Proving the Correctness of a Regular Encoding Process
	Slide 21
	Slide 22: ZK for Proving the Correctness of a Regular Encoding Process
	Slide 23: ZK for Proving the Correctness of a Regular Encoding Process
	Slide 24: ZK Arguments of Knowledge of a Valid Opening
	Slide 25
	Slide 26: ZK Arguments of Knowledge of an Accumulated Value
	Slide 27: ZK Arguments of Knowledge of an Accumulated Value
	Slide 28: ZK Arguments of Knowledge of an Accumulated Value
	Slide 29: ZK Arguments of Knowledge of an Accumulated Value
	Slide 30: ZK Arguments of Knowledge of a Plaintext
	Slide 31: ZK Arguments of Knowledge of a Plaintext
	Slide 32
	Slide 33: Ring Signatures [NTWZ19AC]
	Slide 34: Our Ring Signatures
	Slide 35: Group Signatures [NTWZ19AC]
	Slide 36: Our Group Signatures
	Slide 37: Fully Dynamic Attribute-Based Signatures [LNP+24PKC]
	Slide 38: Our Fully Dynamic Attribute-Based Signatures
	Slide 39: Comparison with Other Post-Quantum Constructions
	Slide 40: A Standard Signature from VOLEitH
	Slide 41: Comparison with the Scheme [CLY+24]
	Slide 42: Thank you Q & A
	Slide 43: Remarks
	Slide 44: ZK Arguments of Knowledge of an Accumulated Value
	Slide 45: ZK Arguments of Knowledge of an Accumulated Value
	Slide 46: ZK Arguments of Knowledge of an Accumulated Value
	Slide 47: ZK Arguments of Knowledge of an Accumulated Value

