Code-Based Zero-Knowledge from VOLE-in-the-Head and Their Applications: Simpler, Faster, and Smaller

ASIACRYPT 2024

Background

Zero Knowledge Proofs

- **Completeness**: Verifier always accepts a valid proof.
- Knowledge Soundness: If Verifier accepts a proof, then Prover must know a valid witness w.
- **Zero-Knowledge**: Verifier learns nothing about w except $(x, w) \in \mathcal{R}$.

Applications of zero-knowledge proofs

- Privacy-preserving systems such as:
 - Ring signatures (RS)
 - Group signatures (GS)
 - Attribute-based signatures (ABS), ...
- Standard signatures

Code-Based Zero Knowledge Protocols

Stern's ZK [Stern96]

- He = y
- *e* has some specific structure
- ✓ Standard Sig.

✓ Privacy-preserving Sig.

[NTW+19,NNS+21,BGK+ 23,LNP+24,WCD+24,...]

Large soundness error (2/3) 128-bit security: 219 times

256-bit security: 438 times

MPCitH [IKOS09]

- C(w) = 1
- Need a method to share *w*

VOLEitH [BBG+23]

•
$$C(w) = 1$$
 or
• $\begin{cases} f_1(w) = 0 \\ \dots \\ f_t(w) = 0 \end{cases}$

✓ Standard Sig. [FJR22, CCJ23, MGH+23, MHJ+23, FR23,BCC+24, ARV23,BFG+24,CLY+24,...]

Privacy-preserving Sig.

Code-Based Zero Knowledge Protocols

Stern's ZK [Stern96]

- He = y
- *e* has some specific structure

✓ Standard Sig.

 ✓ Privacy-preserving Sig.
 [NTW+19,NNS+21,BGK+ 23,LNP+24,WCD+24,...]

> Large soundness error (2/3) 128-bit security: 219 times 256-bit security: 438 times

MPCitH [IKOS09]

- C(w) = 1
- Need a method to share *w*

• C(w) = 1 or • $\begin{cases} f_1(w) = 0 \\ ... \\ f_t(w) = 0 \end{cases}$

VOLEitH [BBG+23]

✓ Standard Sig. [FJR22, CCJ23, MGH+23, MHJ+23, FR23,BCC+24, ARV23,BFG+24,CLY+24,...]

Privacy-preserving Sig.

Can we build code-based privacy-preserving systems from VOLEitH?

Difficulties in Designing Code-Based Privacy-Preserving Systems

- Nguyen et al. [NTW+19AC] built a Merkle-tree accumulator, which employs the following regular encoding.
- Toy Example, it maps c bits to 2^c bits.
 - (00) is encoded to (1000).
 - (01) is encoded to (0100).
 - (10) is encoded to (0010).
 - (11) is encoded to (0001).
- Nguyen et al. designed a dedicated Stern-type ZK for proving the correct regular encoding process.

- Unit Vectors

Difficulties in Designing Code-Based Privacy-Preserving Systems

- Nguyen et al. [NTW+19AC] built a Merkle-tree accumulator, which employs the following regular encoding.
- Toy Example, it maps c bits to 2^c bits.
 - (00) is encoded to (1000).
 - (01) is encoded to (0100).
 - (10) is encoded to (0010).
 - (11) is encoded to (0001).
- Nguyen et al. designed a dedicated Stern-type ZK for proving the correct regular encoding process.

- Unit Vectors

We aim to prove the correct regular encoding process within VOLEitH framework.

Recap: VOLEitH Proof System

Vector oblivious polynomial evaluation (VOPE):

Extension to prove degree-d polynomial constraints:

degree-separate form:
$$f(w_1, \dots, w_l) = \sum_{h \in [0,d]} g_h(w_1, \dots, w_l) = 0$$

B = $\sum_{h=0}^{d} g_h(K_1, \dots, K_l) \cdot \Delta^{d-h} = \sum_{h=0}^{d} g_h(M_1 + w_1 \cdot \Delta, \dots, M_l + w_l \cdot \Delta) \cdot \Delta^{d-h}$
know to \mathcal{V}
= $f(w_1, \dots, w_l) \cdot \Delta^d + A_0 + A_1 \cdot \Delta + \dots + A_{d-1} \cdot \Delta^{d-1}$
0 if \mathcal{P} is honest \mathcal{P} \mathcal{P} known to \mathcal{P}

VOLE-in-the-Head

• VOLE-ZK

• VOLE-in-the-Head: add public verifiability

Our Contributions

Summary of Our Contributions

- A novel ZK protocol for proving the correctness of a regular encoding process
- New ZK protocols for concrete code-based relations
 - ZK arguments of knowledge (ZKAoK) of a valid opening
 - ZKAoK of an accumulated value
 - ZKAoK of a plaintext
- Develop several code-based privacy-preserving primitives
 - Efficient RS, GS, and fully dynamic ABS (FDABS)
 - Achieve signature sizes two to three orders of magnitude smaller than Stern-type constructions
- New standard signature
 - Based on regular syndrome decoding problem
 - With "public key + signature size" 3.05 KB for 128-bit security

Regular Encoding Function RE: $\{0,1\}^c \rightarrow \{0,1\}^{2^c}$ **Input:** *c* bit binary vector $\mathbf{x} = (x_1, x_2, \dots, x_c)$ **Output:** 2^c bit unit vector $\mathbf{y} = (y_1, y_2, \dots, y_{2^c}) = \mathsf{RE}(\mathbf{x})$

Regular Encoding Function RE: $\{0,1\}^c \rightarrow \{0,1\}^{2^c}$ **Input:** *c* bit binary vector $\mathbf{x} = (x_1, x_2, \dots, x_c)$ **Output:** 2^c bit unit vector $\mathbf{y} = (y_1, y_2, \dots, y_{2^c}) = \mathsf{RE}(\mathbf{x})$

Regular Encoding Function RE: $\{0,1\}^c \rightarrow \{0,1\}^{2^c}$ **Input:** *c* bit binary vector $\mathbf{x} = (x_1, x_2, \dots, x_c)$ **Output:** 2^c bit unit vector $\mathbf{y} = (y_1, y_2, \dots, y_{2^c}) = \mathsf{RE}(\mathbf{x})$

Toy Example: c = 2

Toy Example: c = 2

Input		DE	Output			
<i>x</i> ₁	<i>x</i> ₂		y_1	y_2	<i>y</i> ₃	y_4
0	0		1	0	0	0
0	1		0	1	0	0
1	0		0	0	1	0
1	1		0	0	0	1

$$y_{1} = f_{(0,0)}(x_{1}, x_{2}) = (1 + x_{1}) \cdot (1 + x_{2})$$

$$y_{2} = f_{(0,1)}(x_{1}, x_{2}) = (1 + x_{1}) \cdot x_{2}$$

$$y_{3} = f_{(1,0)}(x_{1}, x_{2}) = x_{1} \cdot (1 + x_{2})$$

$$y_{4} = f_{(1,1)}(x_{1}, x_{2}) = x_{1} \cdot x_{2}$$

Toy Example: c = 2

Input		DE	Output			
x_1	<i>x</i> ₂		y_1	y_2	<i>y</i> ₃	y_4
0	0		1	0	0	0
0	1		0	1	0	0
1	0		0	0	1	0
1	1		0	0	0	1

$$y_{1} = f_{(0,0)}(x_{1}, x_{2}) = (1 + x_{1}) \cdot (1 + x_{2})$$

$$y_{2} = f_{(0,1)}(x_{1}, x_{2}) = (1 + x_{1}) \cdot x_{2}$$

$$y_{3} = f_{(1,0)}(x_{1}, x_{2}) = x_{1} \cdot (1 + x_{2})$$

$$y_{4} = f_{(1,1)}(x_{1}, x_{2}) = x_{1} \cdot x_{2}$$

 $y_j \triangleq f_{(j_1, \dots, j_c)}(x_1, \dots, x_c) = \prod_{i=1}^c (1 + j_i + x_i), \text{ where } (j_1, \dots, j_c) = bin(j-1)$

We have transformed the regular encoding process into 2^c degree-c c-variate polynomial relations.

Toy Example: c = 2

Input		DE		Out	put	
<i>x</i> ₁	<i>x</i> ₂		y_1	y_2	<i>y</i> ₃	y_4
0	0		1	0	0	0
0	1		0	1	0	0
1	0		0	0	1	0
1	1		0	0	0	1

 $y_i \triangleq f_{(j_1,\cdots,j_c)}(x_1,\cdots,x_c) = \prod_{i=1}^c f_{i=1}(x_i,\cdots,x_c)$

$$y_1 = f_{(0,0)}(x_1, x_2) = (1 + x_1) \cdot (1 + x_2)$$

$$y_2 = f_{(0,1)}(x_1, x_2) = (1 + x_1) \cdot x_2$$

$$y_3 = f_{(1,0)}(x_1, x_2) = x_1 \cdot (1 + x_2)$$

$$y_4 = f_{(1,1)}(x_1, x_2) = x_1 \cdot x_2$$

-1)

Thus, can be proven efficiently using VOLEitH proof system.

We have transformed the regular encoding process into 2^c degree-c c-variate polynomial relations.

ZK Arguments of Knowledge of a Valid Opening

ZK Arguments of Knowledge of a Valid Opening

ZK Arguments of Knowledge of a Plaintext

ZK Arguments of Knowledge of a Plaintext

Applications

Ring Signatures [NTWZ19AC]

Our Ring Signatures

We replace the stern-like ZK for the ring signature [NTWZ19AC] with our ZK, obtaining a new RS with much smaller signature sizes.

	128-bit :	security	256-bit security		
Ring size	This paper (KB)	Stern-type (MB)	This paper (KB)	Stern-type (MB)	
2 ⁵	35.12	32.26	140.24	129.04	
27	45.12	43.93	180.25	175.74	
2 ¹⁰	60.13	61.44	240.26	245.78	
2 ¹⁵	85.14	90.63	340.28	362.51	
2 ²⁰	110.15	119.81	440.30	479.25	
2 ³⁰	160.17	178.18	640.34	712.72	

 $934 \times {\sim} 1140 \times$

Group Signatures [NTWZ19AC]

Our Group Signatures

We replace the stern-like ZK for the group signature scheme [NTWZ19AC] using our ZK, obtaining a new GS with much smaller signature sizes.

	128-bit :	security	256-bit security		
Group size	This paper (KB)	Stern-type (MB)	This paper (KB)	Stern-type (MB)	
2 ⁵	49.60	33.27	197.19	133.02	
27	59.60	44.94	237.19	179.72	
2 ¹⁰	74.59	52.45	297.18	249.76	
2 ¹⁵	99.58	91.63	397.16	366.50	
2 ²⁰	124.57	120.82	497.14	483.23	
2 ³⁰	174.55	179.18	687.10	716.70	

 $\mathbf{683}\times \mathbf{\sim}\mathbf{1053}\times \mathbf{}$

Fully Dynamic Attribute-Based Signatures [LNP+24PKC]

Our Fully Dynamic Attribute-Based Signatures

We replace the stern-like ZK for the FDABS scheme [LNP+24PKC] using our ZK, obtaining a new FDABS with much smaller signature sizes.

 2^{l} denotes the maximum number of attributes; *K* denotes the size of the circuit *P*.

(2 ^l , K)	128-bit :	security	256-bit security		
	This paper (KB)	Stern-type (MB)	This paper (KB)	Stern-type (MB)	
(210,29)	59.38	45.41	234.76	181.29	
(2 ¹⁰ ,2 ¹⁶)	186.38	52.20	488.76	194.87	
(2 ¹⁵ ,2 ⁹)	84.39	67.30	334.78	268.85	
(2 ¹⁵ ,2 ¹⁶)	211.39	74.08	588.78	282.43	
(2 ²⁰ ,2 ⁹)	109.40	89.18	434.80	356.40	
(2 ²⁰ ,2 ¹⁶)	236.40	95.97	688.80	369.98	

 $783 \times \sim 839 \times$

Comparison with Other Post-Quantum Constructions

- Focus on 128-bit security and ring/group size 2¹⁰.
- For FDABS, choose $2^{l} = 2^{10}$, K = 29.

Schemes		Code-based		Hash-based		
	This paper	Stern-	type	[KKW18]	[LN22]	
RS	60 KB	61 MB [NTW+19]	61 KB [LW24]	388 KB (240 KB)	13 KB	
GS	75 KB	63 MB [NTW+19]	121 KB* [LW24]	418 KB** (297 KB)	18 KB*	
FDABS	62 KB	46 MB [LNP+24]	-	-	-	

- * : They only achieve CPA-anonymity.
- **: It only achieves selfless anonymity

A Standard Signature from VOLEitH

A canonical paradigm in signatures

Fiat-Shamir

signatures

- Choose regular syndrome decoding problem Let $m = \frac{n}{c} \cdot 2^{c}$.
 - Verification key: $\mathbf{B} \in \{0,1\}^{n \times m}$ and $\mathbf{y} \in \{0,1\}^n$.
 - Secret Key: $\mathbf{x} \in \{0,1\}^m$ such that

$$\mathbf{B} \cdot \mathsf{RE}(\mathbf{x}) = \mathbf{y} \,. \tag{4}$$

 To sign a message: the signer proves knowledge of x that satisfies (4). This can be achieved using our ZK technique.

Comparison with the Scheme [CLY+24]

- [CLY+24] is also based on RSD problem.
- Different method to prove that a given vector is regular within VOLEitH framework.
- Note: they do not involve proving the regular encoding process.

Scheme parameters		Signature sizes in bytes					
		CLY+24	c = 2	<i>c</i> = 3	c = 4		
au = 14	$T_{open} = -$	4082	4572(+12.0%)	4026(-1.4%)	4040(-1.0%)		
	$T_{open} = 112$	3826	4316(+12.9%)	3770(-1.5%)	3784(-1.1%)		
au = 10	$T_{open} = -$	3510	3860(+10.0%)	3470(-1.1%)	3480(-0.9%)		
	$T_{open} = 102$	3094	3444(+11.3%)	3054(-1.3%)	3064(-1.0%)		

- Adapt optimizations from Baum et al. [BBM+24]: set the same value of Topen.
- When c = 3, slightly smaller signature size.

