

Revisiting Pairing-Friendly Curves with Embedding Degrees 10 and 14

Yu Dai¹ Debiao He² Cong Peng² Zhijian Yang¹ Chang-An Zhao³

¹School of Mathematics and Statistics, Wuhan University, Wuhan, China.

²School of Cyber Science and Engineering, Wuhan University, Wuhan, China.

³School of Mathematics, Sun Yat-sen University, Guangzhou, China.

Talk at the Asiacrypt 2024.

Background

Elliptic curves

Figure 1: Group law on elliptic curve^a

An elliptic curve E over \mathbb{F}_p with p > 3 can be defined by an equation $y^2 = x^3 + ax + b.$

• $E(\bar{\mathbb{F}}_p)$ forms an addition group.

•
$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$
.

- $\bullet \ \ \#E(\mathbb{F}_p)=p+1-t \text{, where } |t|\leq 2\sqrt{p}.$
- If $t \neq 0$, then E is ordinary.
- Cryptographic applications: $\#E(\mathbb{F}_p)$ has a large prime divisor r.

^aThis picture comes from Luca De Feo's github.

A cryptographic pairing on elliptic curves

$$e:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_T,$$

where e is bilinear and non-degenerate.

Figure 2: pairing^a

 $\bullet \ \mathbb{G}_1 = E(\mathbb{F}_p)[r].$

•
$$\mathbb{G}_2 = E(\mathbb{F}_{p^k})[r] \cap (\pi - [p]).$$

$$\bullet \ \mathbb{G}_T = \{ \mu \in \mathbb{F}_{p^k} | \mu^r = 1 \}.$$

^aThis picture is provided by Diego.F Aranha.

A cryptographic pairing on elliptic curves

$$e:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_T,$$

where e is bilinear and non-degenerate.

^aThis picture is provided by Diego.F Aranha.

 $\bullet \ \mathbb{G}_1 = E(\mathbb{F}_p)[r].$

$$\bullet \ \ \mathbb{G}_2 = E(\mathbb{F}_{p^k})[r] \cap (\pi-[p]).$$

$$\bullet \ \mathbb{G}_T = \{ \mu \in \mathbb{F}_{p^k} | \mu^r = 1 \}.$$

A cryptographic pairing on elliptic curves

```
e:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_T.
```

Main building blocks in pairings-based protocols:

- Hashing to \mathbb{G}_1 and \mathbb{G}_2 .
- group exponentiations in \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_T .
- subgroup membership testing for \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_T .
- pairing computation.

Pairing-friendly curves: small values of k and $\rho = \log p / \log r$.

Optimal pairing

Optimal pairing

$$\begin{split} e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T, \\ (P,Q) \! \to \! \left(\prod_{i=0}^L f_{c_i,Q}^{p^i}(P) \! \cdot \! \prod_{i=0}^{L-1} \frac{\ell_{[s_{i+1}]Q,[c_ip^i]Q}(P)}{\nu_{[s_i]Q}(P)} \right)^{\! \frac{(p^k-1)^2}{r}} \end{split}$$

• $f_{m,Q}$: a rational function with divisor

$$div(f_{m,Q})=m(Q)-([m]Q)-(m-1)(\mathcal{O}_E).$$

- $\ell_{[i]R,[j]R}$: straight line passing through [i]R and [j]R.
- $\nu_{[i+j]R}$: a vertical line passing through [i+j]R.
- $\mathbf{c} = (c_0, c_1, \cdots, c_L) \in \mathbb{Z}^{L+1}$ with $\sum_{i=0}^L c_i p^i \equiv 0 \mod r$.

•
$$s_i = \sum_{j=i}^L c_j p^j$$
.

The shortest target vector satisfies that $\|\mathbf{c}\| \approx r^{1/\varphi(k)}$.

Miller's algorithm

Algorithm 1 MILLERLOOP(x, Q, P)

Efficient implementation of Miller's algorithm:

- Optimal pairing $\rightarrow \log r/\varphi(k)$ iterations.
- Fast point operation in projective coordinates.
- Denominator elimination $\rightarrow \nu_R$ can be ignored if $2 \mid k$.

Most of mainstream pairing-friendly curves can be parameterized by polynomials.

family	k	p	r	t
BN	12	$36z^4 + 36z^3 + 24z^2 + 6z + 1$	$36z^4 + 36z^3 + 18z^2 + 6z + 1$	$6z^2 + 1$
BLS12	12	$(z-1)^2(z^4-z^2+1)/3+z\\$	$z^4 - z^2 + 1$	z+1
BW13	13	$(z+1)^2(z^{26}-z^{13}+1)/3-z^{27}\\$	$\Phi_{78}(z)$	$-z^{14} + z + 1$

- the seed *z* should guarantee *p* and *r* are prime (or *r* has a large prime divisor).
- the sizes of p and r depend on the selected security level.

Parameters

Pairing-friendly curves at around 128-bit security level under the attack of the variant of number field sieve(NFS):

curve	seed z	$\lceil \log_2 p \rceil$	$\lceil \log_2 r \rceil$	$\lceil \log_2 p^k \rceil$	$DL \operatorname{cost} \operatorname{in} \mathbb{F}_{p^k}$
	optimistic	curves			
BLS12-381	$-2^{63}-2^{62}-2^{60}-2^{57}-2^{48}-2^{16}$	381	255	4569	126
BN-382	$-2^{94}-2^{78}-2^{67}-2^{64}-2^{48}-1$	382	382	4584	126
	conservativ	e curves			
BLS12-446	$-2^{74} - 2^{73} - 2^{63} - 2^{57} - 2^{50} - 2^{17} - 1$	446	299	5376	132
BN446	$2^{110} + 2^{36} + 1$	446	446	5376	132
BW13-310	$-2^{11} - 2^7 - 2^5 - 2^4 \\$	310	267	4027	140

Parameters

Pairing-friendly curves at around 128-bit security level under the attack of the variant of number field sieve(NFS):

curve	seed z	$\lceil \log_2 p \rceil$	$\lceil \log_2 r \rceil$	$\lceil \log_2 p^k \rceil$	$DL \operatorname{cost} \operatorname{in} \mathbb{F}_{p^k}$
	optimistic	curves			
BLS12-381	$-2^{63}-2^{62}-2^{60}-2^{57}-2^{48}-2^{16}$	381	255	4569	126
BN-382	$-2^{94}-2^{78}-2^{67}-2^{64}-2^{48}-1$	382	382	4584	126
	conservativ	e curves			
BLS12-446	$-2^{74} - 2^{73} - 2^{63} - 2^{57} - 2^{50} - 2^{17} - 1$	446	299	5376	132
BN446	$2^{110} + 2^{36} + 1$	446	446	5376	132
BW13-310	$-2^{11} - 2^7 - 2^5 - 2^4 \\$	310	267	4027	140

How to choose pairing-friendly curves:

- BLS12-381: fast pairing for non-conservative curves.
- BLS12-446: fast pairing for conservative curves.
- BW13-310: fast group exponentiation in \mathbb{G}_1 .

The performance difference of pairing computation between BW13-310 and BN446 is slight. More details for pairing computation on BW13-310:

- The point doubling/addition is costly as \mathbb{G}_2 is defined over $\mathbb{F}_{p^{13}}$.
- The trick of denominator elimination is not suitable any more.
- The length of Miller loop can be reduced to around $\log r/(2\varphi(k))$.

The performance difference of pairing computation between BW13-310 and BN446 is slight. More details for pairing computation on BW13-310:

- The point doubling/addition is costly as \mathbb{G}_2 is defined over $\mathbb{F}_{p^{13}}$.
- The trick of denominator elimination is not suitable any more.
- The length of Miller loop can be reduced to around $\log r/(2\varphi(k))$.

Question

Are there pairing-friendly curves with such that the Miller loop can be performed in $\log r/(2\varphi(k))$ iterations, and the trick of denominator elimination applies as well?

Yes! Pairing-friendly curves with embedding degrees 10 and 14.

Curves with embedding degrees 10 and 14

Curve parameters and pairing formulas

Freeman, Scott and Teske construct a list of pairing-friendly curves with embedding degrees $10 \ {\rm and} \ 14.$

family- k	j(E)	p	r	t
Cyclo(6.3)-10	1728	$\tfrac{1}{4}(z^{14}-2z^{12}+z^{10}+z^4+2z^2+1)$	$\Phi_{20}(z)$	$z^2 + 1$
Cyclo(6.5)- 10	1728	$\tfrac{1}{4}(z^{12}\!-\!z^{10}\!+\!z^8\!-\!5z^6\!+\!5z^4\!-\!4z^2\!+\!4)$	$\Phi_{20}(z)$	$\!-\!z^6\!+\!z^4\!-\!z^2\!+\!2$
Cyclo(6.6)-10	0	$\tfrac{1}{3}(z^3-1)^2(z^{10}-z^5+1)+z^3$	$\Phi_{30}(z)$	$z^{3} + 1$
Cyclo(6.3)-14	1728	$\tfrac{1}{4}(z^{18}-2z^{16}+z^{14}+z^4+2z^2+1)$	$\Phi_{28}(z)$	$z^{2} + 1$
Cyclo(6.6)-14	0	$\tfrac{1}{3}(z-1)^2(z^{14}-z^7+1)+z^{15}$	$\Phi_{42}(z)$	z^8-z+1

Curve parameters and pairing formulas

Freeman, Scott and Teske construct a list of pairing-friendly curves with embedding degrees $10 \ {\rm and} \ 14.$

family- k	j(E)	p	r	t
Cyclo(6.3)-10	1728	$\tfrac{1}{4}(z^{14}-2z^{12}+z^{10}+z^4+2z^2+1)$	$\Phi_{20}(z)$	$z^2 + 1$
Cyclo(6.5)- 10	1728	$\tfrac{1}{4}(z^{12}\!-\!z^{10}\!+\!z^8\!-\!5z^6\!+\!5z^4\!-\!4z^2\!+\!4)$	$\Phi_{20}(z)$	$\!-\!z^6\!+\!z^4\!-\!z^2\!+\!2$
Cyclo(6.6)-10	0	$\tfrac{1}{3}(z^3-1)^2(z^{10}-z^5+1)+z^3$	$\Phi_{30}(z)$	$z^{3} + 1$
Cyclo(6.3)-14	1728	$\tfrac{1}{4}(z^{18}-2z^{16}+z^{14}+z^4+2z^2+1)$	$\Phi_{28}(z)$	$z^2 + 1$
Cyclo(6.6)-14	0	$\tfrac{1}{3}(z-1)^2(z^{14}-z^7+1)+z^{15}$	$\Phi_{42}(z)$	$z^8 - z + 1$

family- k	short vector	optimal pairing
Cyclo(6.3)-10	$[z^2, -1, 0, 0]$	$\left(f_{z^2,Q}(P)\right)^{(p^{10}-1)/r}$
Cyclo(6.5)-10	$[-1, z^2, 0, 0]$	$\left(f_{z^2,Q}(P) \right)^{(p^{10}-1)/r}$
Cyclo(6.6)-10	$[z, 0, -1, z^2]$	$\big(f_{z,Q}(P)\cdot f_{z^2,Q}^{p^3}(P)\cdot \ell_{\pi^7(Q),\pi^3([z^2]Q)}(P)\big)^{(p^{10}-1)/r}$
Cyclo(6.3)-14	$[z^2,-1,0,0,0,0]$	$\left(f_{z^2,Q}(P) \right)^{(p^{14}-1)/r}$
Cyclo(6.6)-14	$[z^2, z, 1, 0, 0, 0]$	$\left(f_{z^2,Q}(P) \cdot f_{z,Q}^p(P) \cdot \ell_{\pi^2(Q),\pi([z]Q)}(P)\right)^{(p^{14}-1)/r}$

Efficiently computable endomorphisms on ordinary curves:

- the Frobenius map: $\pi:(x,y)\to (x^p,y^p).$
- $\begin{array}{l} \bullet \ \, \mbox{the GLV map:} \\ \tau: \begin{cases} (x,y) \rightarrow (\omega \cdot x,y), \quad \ \ j(E)=0, \omega^2+\omega+1=0 \ \mbox{mod} \ p; \\ (x,y) \rightarrow (-x,i \cdot y), \quad \ \ j(E)=1728, i^2+1=0 \ \mbox{mod} \ p. \end{cases}$

Efficiently computable endomorphisms on ordinary curves:

- the Frobenius map: $\pi:(x,y)\to (x^p,y^p).$
- $\begin{array}{l} \bullet \ \, \mbox{the GLV map:} \\ \tau: \begin{cases} (x,y) \rightarrow (\omega \cdot x,y), \quad \ \ j(E)=0, \omega^2+\omega+1=0 \ \mbox{mod} \ p; \\ (x,y) \rightarrow (-x,i \cdot y), \quad \ \ j(E)=1728, i^2+1=0 \ \mbox{mod} \ p. \end{cases}$

Main idea

Restricting the above two endomorphisms on \mathbb{G}_2 for our target curves, the GLV map is not a power of the Frobenius map. More interesting, there always exists an integer m such that $\pi^m \tau(Q) = [z]Q$ for $\mathbb{G}_2 \in Q$.

New pairing formulas

Optimized formulas of the optimal pairing on pairing-friendly curves with embedding degrees 10 and 14:

1. Rewrite $f_{z^2,Q}(P)$ as $f_{z^2,Q}(P) = f_{z,Q}^z(P) \cdot f_{z,[z]Q}(P) = f_{z,Q}^z(P) \cdot f_{z,\pi^m\tau(Q)}(P)$ $= f_{z,Q}^z(P) \cdot f_{z,Q}^{p^m}(\hat{\tau}(P))$

where $\hat{\tau}$ is the dual of τ .

New pairing formulas

Optimized formulas of the optimal pairing on pairing-friendly curves with embedding degrees 10 and 14:

1. Rewrite $f_{z^2,Q}(P)$ as $f_{z^2,Q}(P) = f_{z,Q}^z(P) \cdot f_{z,[z]Q}(P) = f_{z,Q}^z(P) \cdot f_{z,\pi^m\tau(Q)}(P)$ $= f_{z,Q}^z(P) \cdot f_{z,Q}^{p^m}(\hat{\tau}(P))$

where $\hat{\tau}$ is the dual of τ .

2. Raise the output of the Miller loop to a power of p^{k-m} such that the exponent of $f_{z,Q}(\hat{\tau}(P))$ is equal to 1.

New pairing formulas

Optimized formulas of the optimal pairing on pairing-friendly curves with embedding degrees 10 and 14:

1. Rewrite $f_{z^2,Q}(P)$ as $f_{z^2,Q}(P) = f_{z,Q}^z(P) \cdot f_{z,[z]Q}(P) = f_{z,Q}^z(P) \cdot f_{z,\pi^m\tau(Q)}(P)$ $= f_{z,Q}^z(P) \cdot f_{z,Q}^{p^m}(\hat{\tau}(P))$

where $\hat{\tau}$ is the dual of τ .

2. Raise the output of the Miller loop to a power of p^{k-m} such that the exponent of $f_{z,Q}(\hat{\tau}(P))$ is equal to 1.

family	k	new pairing formula
Cyclo(6.3)	10	$\left(f_{z,Q}^{z\cdot p^7}(P) \cdot f_{z,Q}(\hat{\tau}(P))\right)^{(p^{10}-1)/r}$
Cyclo(6.5)	10	$(f_{z,Q}^{z\cdot p^3}(P) \cdot f_{z,Q}(\hat{\tau}(P)))^{(p^{10}-1)/r}$
Cyclo(6.6)	10	$ (f_{z,Q}^{1+z\cdot p^3}(P) \cdot f_{z,Q}(\hat{\tau}(P)) \cdot (y_P - y_Q)^{p^7})^{(p^{10}-1)/r} $
Cyclo(6.3)	14	$\left(f_{z,Q}^{z,p^{10}}(P) \cdot f_{z,Q}(\hat{\tau}(P))\right)^{(p^{14}-1)/r}$
Cyclo(6.6)	14	$ (f_{z,Q}^{1+z \cdot p^{13}}(P) \cdot f_{z,Q}(\hat{\tau}(P)) \cdot (y_P - y_Q)^p)^{(p^{14}-1)/r} $

Shared Miller's algorithm

The computation of $f_{z,Q}^{z \cdot p^{k-m}}(P) \cdot f_{z,Q}(\hat{\tau}(P))$ can be performed in a shared Miller's algorithm at around $\log z \approx \log r/2(\varphi(k))$ iterations.

Algorithm 2 Computing $f_{z,Q}^{z:p^{k-m}}(P) \cdot f_{z,Q}(\hat{\tau}(P))$

 $\begin{array}{l} \mbox{Require:} \ P\in \mathbb{G}_1, Q\in \mathbb{G}_2, z=\sum_{i=0}^L z_i\cdot 2^i \ \mbox{with} \ z_i\in\{-1,0,1\} \\ \mbox{Ensure:} \ f^{z,p^{k-m}}_{z,Q}(P)\cdot f_{z,Q}(\hat{\tau}(P)) \end{array}$

Five candidate curves

The best seed z can guarantee that:

- the size of \mathbb{F}_{p^k} is large enough to resist the attacks of the variant of NFS.
- the sum of bit length and Hamming weight (in non-adjacent form) of the selected seed z is as small as possible.
- the selected prime p satisfies that $p \equiv 1 \mod k$.

The best seed z can guarantee that:

- the size of \mathbb{F}_{p^k} is large enough to resist the attacks of the variant of NFS.
- the sum of bit length and Hamming weight (in non-adjacent form) of the selected seed z is as small as possible.
- the selected prime p satisfies that $p \equiv 1 \mod k$.

CUINA	family-k seed ~		r	p	p^k	DL cost
curve	Tarrity-1	3660 ž	bits	bits	bits	in \mathbb{F}_{p^k}
BW10-480	Cyclo(6.5)-10	$2^5 + 2^{14} + 2^{15} + 2^{18} + 2^{36} + 2^{40}$	321	480	4791	128
BW10-511	Cyclo(6.6)-10	$2^7 + 2^{13} + 2^{26} - 2^{32}$	256	511	5101	150
BW10-512	Cyclo(6.3)-10	$1 + 2^3 + 2^{17} + 2^{32} + 2^{35} + 2^{36} \\$	294	512	5111	129
BW14-351	Cyclo(6.6)-14	$2^6 - 2^{12} - 2^{14} - 2^{22}$	265	351	4908	149
BW14-382	Cyclo(6.3)-14	$1 + 2^{10} + 2^{13} - 2^{16} + 2^{19} + 2^{21} \\$	256	382	5338	129

Remark1: The candidate curves are conservative 128-bit secure.

Remark2: The candidate curves are collectively called BW curves since they are essentially generated using the Brezing-Weng method.

Recall that the first pairing group $\mathbb{G}_1 = E(\mathbb{F}_p)[r]$. There exists an efficiently computable endomorphism on \mathbb{G}_1 :

$$\tau: \begin{cases} (x,y) \rightarrow (\omega \cdot x,y), & j(E) = 0, \omega^2 + \omega + 1 = 0 \bmod p; \\ (x,y) \rightarrow (-x,i \cdot y), & j(E) = 1728, i^2 + 1 = 0 \bmod p. \end{cases}$$

The operations in \mathbb{G}_1 :

- group exponentiation in \mathbb{G}_1 : log r/2 iterations by using GLV method.
- membership testing for \mathbb{G}_1 : log r/2 iterations with a fixed scalar.
- hashing to \mathbb{G}_1 : hashing to $E(\mathbb{F}_p)$ + cofactor clearing.

cofactor clearing for \mathbb{G}_1

The process of cofactor clearing for \mathbb{G}_1 :

$$E(\mathbb{F}_p) \xrightarrow{m_1} E(\mathbb{F}_p)[n_1 \cdot r] \to E(\mathbb{F}_p)[r] = \mathbb{G}_1$$

where $E(\mathbb{F}_p)\cong \mathbb{Z}_{m_1}\oplus \mathbb{Z}_{m_1\cdot n_1\cdot r}.$

The process of cofactor clearing for \mathbb{G}_1 :

$$E(\mathbb{F}_p) \xrightarrow{m_1} E(\mathbb{F}_p)[n_1 \cdot r] \to E(\mathbb{F}_p)[r] = \mathbb{G}_1$$

where $E(\mathbb{F}_p)\cong \mathbb{Z}_{m_1}\oplus \mathbb{Z}_{m_1\cdot n_1\cdot r}.$

How to clear n_1 :

- 1. Determine the integer λ_1 such that $\tau = \lambda_1$ in $E(\mathbb{F}_p)[n_1 \cdot r]$.
- 2. Applying the LLL algorithm, find a short vector $\mathbf{a} = (a_0, a_1)$ such that $a_0 + a_1 \cdot \lambda_1 \equiv 0 \mod n_1$ with $\max\{\log |a_0|, \log |a_1|\} \approx \log n_1/2$.
- 3. Clearing the cofactor n_1 by using the endomorphism $a_0 + a_1 \tau$.

The second pairing group

The degree-2 twisted curve

For our target curves, there exists a twisted curve E' over \mathbb{F}_{p^e} of degree 2 such that $E' \cong E$ over \mathbb{F}_{p^k} under a twisted map ϕ , where e = k/2.

The group $\mathbb{G}_2 = E[r] \cap \ker(\pi - [p])$ can be efficiently represented as $E'(\mathbb{F}_{p^e})[r]$.

The second pairing group

The degree-2 twisted curve

For our target curves, there exists a twisted curve E' over \mathbb{F}_{p^e} of degree 2 such that $E' \cong E$ over \mathbb{F}_{p^k} under a twisted map ϕ , where e = k/2.

The group $\mathbb{G}_2 = E[r] \cap \ker(\pi - [p])$ can be efficiently represented as $E'(\mathbb{F}_{p^e})[r]$. The endomorphism on \mathbb{G}_2 :

$$\tau,\pi'=\phi^{-1}\circ\pi\circ\phi,\Psi=\tau\circ\pi',$$

where the order of Ψ restricting on \mathbb{G}_2 is 2k (if j(E) = 1728) or 3k (if j(E) = 0).

The second pairing group

The degree-2 twisted curve

For our target curves, there exists a twisted curve E' over \mathbb{F}_{p^e} of degree 2 such that $E' \cong E$ over \mathbb{F}_{p^k} under a twisted map ϕ , where e = k/2.

The group $\mathbb{G}_2 = E[r] \cap \ker(\pi - [p])$ can be efficiently represented as $E'(\mathbb{F}_{p^e})[r]$. The endomorphism on \mathbb{G}_2 :

$$\tau,\pi'=\phi^{-1}\circ\pi\circ\phi,\Psi=\tau\circ\pi',$$

where the order of Ψ restricting on \mathbb{G}_2 is 2k (if j(E) = 1728) or 3k (if j(E) = 0). The operations in \mathbb{G}_2 :

- group exponentiation in \mathbb{G}_2 : $\log r/(2\varphi(k))$ iterations by combining the GLV and GLS methods.
- subgroup membership testing for $\mathbb{G}_2{:}\log r/(2\varphi(k))$ iterations with a fixed scalar.
- hashing to 𝔅₂: hashing to E'(𝑘_{p^e})+ cofactor clearing.

Cyclotomic zero subgroup of E'

Define $\mathbb{G}_0'=\{Q\in E'(\mathbb{F}_{p^e})|\Phi_k(\pi')(Q)=\mathcal{O}_{E'}\},$ where Φ_k is the k-th cyclotomic polynomial.

- $\bullet \ \ \mathbb{G}_2 \subseteq \mathbb{G}_0' \subseteq E'(\mathbb{F}_{p^e}).$
- the order of \mathbb{G}'_0 is equal to $\frac{\#E'(\mathbb{F}_{p^e})\cdot \#E(\mathbb{F}_p)}{\#E(\mathbb{F}_{p^2})}$.
- Given a random point $Q\in E'(\mathbb{F}_{p^e}),$ then $R=(\pi'+1)Q\in\mathbb{G}_0'$ as

$$\Phi_k(\pi')(R)=(\pi'^e+1)Q=\mathcal{O}_{E'}.$$

cofactor clearing for \mathbb{G}_2

The process of cofactor clearing for \mathbb{G}_2 :

$$E'(\mathbb{F}_{p^e}) \to \mathbb{G}'_0 \xrightarrow{m_2} E'(\mathbb{F}_{p^e})[n_2 \cdot r] \to \mathbb{G}_2,$$

where $\mathbb{G}_0'\cong\mathbb{Z}_{m_2}\oplus\mathbb{Z}_{m_2\cdot n_2\cdot r}$ for some integers m_2 and $n_2.$

cofactor clearing for \mathbb{G}_2

The process of cofactor clearing for \mathbb{G}_2 :

$$E'(\mathbb{F}_{p^e}) \to \mathbb{G}'_0 \xrightarrow{m_2} E'(\mathbb{F}_{p^e})[n_2 \cdot r] \to \mathbb{G}_2,$$

where $\mathbb{G}_0'\cong\mathbb{Z}_{m_2}\oplus\mathbb{Z}_{m_2\cdot n_2\cdot r}$ for some integers m_2 and $n_2.$

How to clear n_2 :

- 1. Determine the integer λ_2 such that $\Psi = \lambda_2$ in $E'(\mathbb{F}_{p^{k/2}})[n_2 \cdot r]$.
- 2. Applying the LLL algorithm, find $\mathbf{a}=(a_0,a_1,\cdots,a_{2\varphi(k)-1})$ such that

$$a_0+a_1\cdot\lambda_2+\dots+a_{2\varphi(k)-1}\cdot\lambda_2^{2\varphi(k)-1}\equiv 0 \bmod n_2$$

with $\max\{\log |a_i|\}\approx \log n_2/(2\varphi(k)).$

3. Clearing the cofactor n_2 by using the endomorphism

$$a_0+a_1\Psi+\dots+a_{2\varphi(k)-1}\Psi^{2\varphi(k)-1}.$$

The operations in \mathbb{G}_T :

- group exponentiation in \mathbb{G}_T : $\log r/\varphi(k)$ iterations by using the GLS method.
- subgroup membership testing for \mathbb{G}_T : $\log r/\varphi(k)$ iterations with a fixed exponent.

The operations in \mathbb{G}_T :

- group exponentiation in $\mathbb{G}_T : \log r/\varphi(k)$ iterations by using the GLS method.
- subgroup membership testing for \mathbb{G}_T : $\log r/\varphi(k)$ iterations with a fixed exponent.

Remark 1: Inversion in \mathbb{G}_T is almost free as it is equal to its conjugate.

Remark 2: Squaring in \mathbb{G}_T is slightly faster than the squaring in \mathbb{F}_{p^k} .

Implementation results

conservative curves: BLS12-446, BN-446, BW13-310 VS BW10-511, BW14-351

Target platform: Intel Core i9-12900K processor

Library: RELIC

Operation\Curve	BLS12-446	BN446	BW13-310	BW10-511	BW14-351
hashing to \mathbb{G}_1	327	149	125	621	204
hashing to \mathbb{G}_2	1630	1361	16699	11981	7236
exp in \mathbb{G}_1	541	791	268	592	362
exp in \mathbb{G}_2	918	1394	7247	4621	3531
exp in \mathbb{G}_T	1322	2243	1062	1476	1098
test in \mathbb{G}_1	389	8	269	723	345
test in \mathbb{G}_2	333	487	1176	1262	923
test in \mathbb{G}_T	372	540	223	586	384
ML	1554	2480	1719	2819	1600
FE	1835	1589	2579	3872	2337
Single pairing	3389	4069	4298	6691	3937
2-pairings	4439	5717	5640	9016	5205
5-pairings	7614	10532	9621	15621	9008
8-pairings	10790	15349	13603	22191	12811

Table 1: Timings in 10^3 cycles averaged over 10^4 executions.

https://github.com/eccdaiy39/BW10-14 eccdaiy39@gmail.com Thank you!