
Revisiting Pairing-Friendly Curves with
Embedding Degrees 10 and 14

Yu Dai 1 Debiao He2 Cong Peng2 Zhijian Yang1 Chang-An Zhao3

1School of Mathematics and Statistics, Wuhan University, Wuhan, China.

2School of Cyber Science and Engineering, Wuhan University, Wuhan, China.

3School of Mathematics, Sun Yat-sen University, Guangzhou, China.

Talk at the Asiacrypt 2024.

Background

Elliptic curves

𝑃
𝑄

𝑅

𝑃 + 𝑄

Figure 1: Group law on elliptic curvea

aThis picture comes from Luca De Feo’s github.

An elliptic curve E over 𝔽𝑝 with 𝑝 > 3 can
be defined by an equation
𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏.

• 𝐸(�̄�𝑝) forms an addition group.

• 𝑗(𝐸) = 1728 4𝑎3
4𝑎3+27𝑏2 .

• #𝐸(𝔽𝑝) = 𝑝 + 1 − 𝑡, where |𝑡| ≤ 2√𝑝.

• If 𝑡 ≠ 0, then 𝐸 is ordinary.

• Cryptographic applications:#𝐸(𝔽𝑝)
has a large prime divisor 𝑟.

1

Pairings on elliptic curves

A cryptographic pairing on elliptic curves

𝑒 ∶ 𝔾1 × 𝔾2 → 𝔾𝑇 ,
where 𝑒 is bilinear and non-degenerate.

Figure 2: pairinga

aThis picture is provided by Diego.F Aranha.

• 𝔾1 = 𝐸(𝔽𝑝)[𝑟].

• 𝔾2 = 𝐸(𝔽𝑝𝑘)[𝑟] ∩ (𝜋 − [𝑝]).

• 𝔾𝑇 = {𝜇 ∈ 𝔽𝑝𝑘 |𝜇𝑟 = 1}.

2

Pairings on elliptic curves

A cryptographic pairing on elliptic curves

𝑒 ∶ 𝔾1 × 𝔾2 → 𝔾𝑇 ,
where 𝑒 is bilinear and non-degenerate.

Figure 3: pairinga

aThis picture is provided by Diego.F Aranha.

• 𝔾1 = 𝐸(𝔽𝑝)[𝑟].

• 𝔾2 = 𝐸(𝔽𝑝𝑘)[𝑟] ∩ (𝜋 − [𝑝]).

• 𝔾𝑇 = {𝜇 ∈ 𝔽𝑝𝑘 |𝜇𝑟 = 1}.

3

Building blocks

A cryptographic pairing on elliptic curves

𝑒 ∶ 𝔾1 × 𝔾2 → 𝔾𝑇 .

Main building blocks in pairings-based protocols:

• Hashing to 𝔾1 and 𝔾2.

• group exponentiations in 𝔾1, 𝔾2 and 𝔾𝑇 .

• subgroup membership testing for 𝔾1, 𝔾2 and 𝔾𝑇 .

• pairing computation.

Pairing-friendly curves: small values of 𝑘 and 𝜌 = log 𝑝/ log 𝑟.

4

Optimal pairing

Optimal pairing

𝑒 ∶ 𝔾1 × 𝔾2 → 𝔾𝑇 ,

(𝑃 , 𝑄)→(
𝐿

∏
𝑖=0

𝑓𝑝𝑖

𝑐𝑖,𝑄(𝑃)⋅
𝐿−1
∏
𝑖=0

ℓ[𝑠𝑖+1]𝑄,[𝑐𝑖𝑝𝑖]𝑄(𝑃)
𝜈[𝑠𝑖]𝑄(𝑃))

(𝑝𝑘−1)
𝑟

• 𝑓𝑚,𝑄: a rational function with divisor

𝑑𝑖𝑣(𝑓𝑚,𝑄) = 𝑚(𝑄) − ([𝑚]𝑄) − (𝑚 − 1)(𝒪𝐸).

• ℓ[𝑖]𝑅,[𝑗]𝑅: straight line passing through [𝑖]𝑅 and [𝑗]𝑅.

• 𝜈[𝑖+𝑗]𝑅: a vertical line passing through [𝑖 + 𝑗]𝑅.

• c = (𝑐0, 𝑐1, ⋯ , 𝑐𝐿) ∈ ℤ𝐿+1 with ∑𝐿
𝑖=0 𝑐𝑖𝑝𝑖 ≡ 0 mod 𝑟.

• 𝑠𝑖 = ∑𝐿
𝑗=𝑖 𝑐𝑗𝑝𝑗.

The shortest target vector satisfies that ‖c‖≈ 𝑟1/𝜑(𝑘). 5

Miller’s algorithm

Algorithm 1 MILLERLOOP(𝑥, 𝑄, 𝑃)

Input: 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2, 𝑥 = ∑⌊𝑙𝑜𝑔2𝑥⌋
𝑖=0 𝑥𝑖2𝑖

Output: 𝑓𝑥,𝑄(𝑃)
1: 𝑇 ← 𝑄, 𝑓 ← 1
2: for 𝑖 = ⌊log2 𝑥⌋ − 1 downto 0 do
3: 𝑓 ← 𝑓2 ⋅ ℓ𝑇,𝑇 (𝑃)

𝜈2𝑇 (𝑃) , 𝑇 ⟵ 2𝑇
4: if 𝑥𝑖 = 1 then
5: 𝑓 ← 𝑓 ⋅ ℓ𝑇,𝑄(𝑃)

𝜈𝑇+𝑄(𝑃) , 𝑇 ← 𝑇 + 𝑄
return 𝑓

Efficient implementation of Miller’s algorithm:

• Optimal pairing→ log 𝑟/𝜑(𝑘) iterations.

• Fast point operation in projective coordinates.

• Denominator elimination→ 𝜈𝑅 can be ignored if 2 ∣ 𝑘.

6

Pairing-friendly curves

Most of mainstream pairing-friendly curves can be parameterized by polyno-
mials.

family 𝑘 𝑝 𝑟 𝑡
BN 12 36𝑧4 +36𝑧3 +24𝑧2 +6𝑧+1 36𝑧4 +36𝑧3 +18𝑧2 +6𝑧+1 6𝑧2 + 1

BLS12 12 (𝑧 − 1)2(𝑧4 − 𝑧2 + 1)/3 + 𝑧 𝑧4 − 𝑧2 + 1 𝑧 + 1
BW13 13 (𝑧 + 1)2(𝑧26 − 𝑧13 + 1)/3 − 𝑧27 Φ78(𝑧) −𝑧14 + 𝑧 + 1

• the seed 𝑧 should guarantee 𝑝 and 𝑟 are prime (or 𝑟 has a large prime
divisor).

• the sizes of 𝑝 and 𝑟 depend on the selected security level.

7

Parameters

Pairing-friendly curves at around 128-bit security level under the attack of
the variant of number field sieve(NFS):

curve seed 𝑧 ⌈log2 𝑝⌉ ⌈log2 𝑟⌉ ⌈log2 𝑝𝑘⌉ DL cost in 𝔽𝑝𝑘

optimistic curves

BLS12-381 −263 − 262 − 260 − 257 − 248 − 216 381 255 4569 126

BN-382 −294 − 278 − 267 − 264 − 248 − 1 382 382 4584 126

conservative curves

BLS12-446 −274 −273 −263 −257 − 250 −217 −1 446 299 5376 132

BN446 2110 + 236 + 1 446 446 5376 132
BW13-310 −211 − 27 − 25 − 24 310 267 4027 140

How to choose pairing-friendly curves:

• BLS12-381: fast pairing for non-conservative curves.

• BLS12-446: fast pairing for conservative curves.

• BW13-310: fast group exponentiation in 𝔾1.

8

Parameters

Pairing-friendly curves at around 128-bit security level under the attack of
the variant of number field sieve(NFS):

curve seed 𝑧 ⌈log2 𝑝⌉ ⌈log2 𝑟⌉ ⌈log2 𝑝𝑘⌉ DL cost in 𝔽𝑝𝑘

optimistic curves

BLS12-381 −263 − 262 − 260 − 257 − 248 − 216 381 255 4569 126

BN-382 −294 − 278 − 267 − 264 − 248 − 1 382 382 4584 126

conservative curves

BLS12-446 −274 −273 −263 −257 − 250 −217 −1 446 299 5376 132

BN446 2110 + 236 + 1 446 446 5376 132
BW13-310 −211 − 27 − 25 − 24 310 267 4027 140

How to choose pairing-friendly curves:

• BLS12-381: fast pairing for non-conservative curves.

• BLS12-446: fast pairing for conservative curves.

• BW13-310: fast group exponentiation in 𝔾1.

8

BW13-310

The performance difference of pairing computation between BW13-310 and
BN446 is slight. More details for pairing computation on BW13-310:

• The point doubling/addition is costly as 𝔾2 is defined over 𝔽𝑝13 .

• The trick of denominator elimination is not suitable any more.

• The length of Miller loop can be reduced to around log 𝑟/(2𝜑(𝑘)).

Question
Are there pairing-friendly curves with such that the Miller loop can be per-
formed in log 𝑟/(2𝜑(𝑘)) iterations, and the trick of denominator elimination
applies as well?

Yes! Pairing-friendly curves with embedding degrees 10 and 14.

9

BW13-310

The performance difference of pairing computation between BW13-310 and
BN446 is slight. More details for pairing computation on BW13-310:

• The point doubling/addition is costly as 𝔾2 is defined over 𝔽𝑝13 .

• The trick of denominator elimination is not suitable any more.

• The length of Miller loop can be reduced to around log 𝑟/(2𝜑(𝑘)).

Question
Are there pairing-friendly curves with such that the Miller loop can be per-
formed in log 𝑟/(2𝜑(𝑘)) iterations, and the trick of denominator elimination
applies as well?

Yes! Pairing-friendly curves with embedding degrees 10 and 14.

9

Curves with embedding degrees
10 and 14

Curve parameters and pairing formulas

Freeman, Scott and Teske construct a list of pairing-friendly curves with em-
bedding degrees 10 and 14.

family-𝑘 𝑗(𝐸) 𝑝 𝑟 𝑡
Cyclo(6.3)-10 1728 1

4 (𝑧14 − 2𝑧12 + 𝑧10 + 𝑧4 + 2𝑧2 + 1) Φ20(𝑧) 𝑧2 + 1
Cyclo(6.5)- 10 1728 1

4 (𝑧12 −𝑧10 +𝑧8 −5𝑧6 +5𝑧4 −4𝑧2 +4) Φ20(𝑧) −𝑧6 +𝑧4 −𝑧2 +2
Cyclo(6.6)-10 0 1

3 (𝑧3 − 1)2(𝑧10 − 𝑧5 + 1) + 𝑧3 Φ30(𝑧) 𝑧3 + 1
Cyclo(6.3)-14 1728 1

4 (𝑧18 − 2𝑧16 + 𝑧14 + 𝑧4 + 2𝑧2 + 1) Φ28(𝑧) 𝑧2 + 1
Cyclo(6.6)-14 0 1

3 (𝑧 − 1)2(𝑧14 − 𝑧7 + 1) + 𝑧15 Φ42(𝑧) 𝑧8 − 𝑧 + 1

family-𝑘 short vector optimal pairing

Cyclo(6.3)-10 [𝑧2, −1, 0, 0] (𝑓𝑧2,𝑄(𝑃))(𝑝10−1)/𝑟

Cyclo(6.5)-10 [−1, 𝑧2, 0, 0] (𝑓𝑧2,𝑄(𝑃))(𝑝10−1)/𝑟

Cyclo(6.6)-10 [𝑧, 0, −1, 𝑧2] (𝑓𝑧,𝑄(𝑃) ⋅ 𝑓𝑝3

𝑧2,𝑄(𝑃) ⋅ ℓ𝜋7(𝑄),𝜋3([𝑧2]𝑄)(𝑃))(𝑝10−1)/𝑟

Cyclo(6.3)-14 [𝑧2, −1, 0, 0, 0, 0] (𝑓𝑧2,𝑄(𝑃))(𝑝14−1)/𝑟

Cyclo(6.6)-14 [𝑧2, 𝑧, 1, 0, 0, 0] (𝑓𝑧2,𝑄(𝑃) ⋅ 𝑓𝑝
𝑧,𝑄(𝑃) ⋅ ℓ𝜋2(𝑄),𝜋([𝑧]𝑄)(𝑃))(𝑝14−1)/𝑟

10

Curve parameters and pairing formulas

Freeman, Scott and Teske construct a list of pairing-friendly curves with em-
bedding degrees 10 and 14.

family-𝑘 𝑗(𝐸) 𝑝 𝑟 𝑡
Cyclo(6.3)-10 1728 1

4 (𝑧14 − 2𝑧12 + 𝑧10 + 𝑧4 + 2𝑧2 + 1) Φ20(𝑧) 𝑧2 + 1
Cyclo(6.5)- 10 1728 1

4 (𝑧12 −𝑧10 +𝑧8 −5𝑧6 +5𝑧4 −4𝑧2 +4) Φ20(𝑧) −𝑧6 +𝑧4 −𝑧2 +2
Cyclo(6.6)-10 0 1

3 (𝑧3 − 1)2(𝑧10 − 𝑧5 + 1) + 𝑧3 Φ30(𝑧) 𝑧3 + 1
Cyclo(6.3)-14 1728 1

4 (𝑧18 − 2𝑧16 + 𝑧14 + 𝑧4 + 2𝑧2 + 1) Φ28(𝑧) 𝑧2 + 1
Cyclo(6.6)-14 0 1

3 (𝑧 − 1)2(𝑧14 − 𝑧7 + 1) + 𝑧15 Φ42(𝑧) 𝑧8 − 𝑧 + 1

family-𝑘 short vector optimal pairing

Cyclo(6.3)-10 [𝑧2, −1, 0, 0] (𝑓𝑧2,𝑄(𝑃))(𝑝10−1)/𝑟

Cyclo(6.5)-10 [−1, 𝑧2, 0, 0] (𝑓𝑧2,𝑄(𝑃))(𝑝10−1)/𝑟

Cyclo(6.6)-10 [𝑧, 0, −1, 𝑧2] (𝑓𝑧,𝑄(𝑃) ⋅ 𝑓𝑝3

𝑧2,𝑄(𝑃) ⋅ ℓ𝜋7(𝑄),𝜋3([𝑧2]𝑄)(𝑃))(𝑝10−1)/𝑟

Cyclo(6.3)-14 [𝑧2, −1, 0, 0, 0, 0] (𝑓𝑧2,𝑄(𝑃))(𝑝14−1)/𝑟

Cyclo(6.6)-14 [𝑧2, 𝑧, 1, 0, 0, 0] (𝑓𝑧2,𝑄(𝑃) ⋅ 𝑓𝑝
𝑧,𝑄(𝑃) ⋅ ℓ𝜋2(𝑄),𝜋([𝑧]𝑄)(𝑃))(𝑝14−1)/𝑟

10

New pairing formulas

Efficiently computable endomorphisms on ordinary curves:

• the Frobenius map: 𝜋 ∶ (𝑥, 𝑦) → (𝑥𝑝, 𝑦𝑝).

• the GLV map:

𝜏 ∶ {
(𝑥, 𝑦) → (𝜔 ⋅ 𝑥, 𝑦), 𝑗(𝐸) = 0, 𝜔2 + 𝜔 + 1 = 0 mod 𝑝;
(𝑥, 𝑦) → (−𝑥, 𝑖 ⋅ 𝑦), 𝑗(𝐸) = 1728, 𝑖2 + 1 = 0 mod 𝑝.

Main idea
Restricting the above two endomorphisms on 𝔾2 for our target curves, the
GLV map is not a power of the Frobenius map. More interesting, there
always exists an integer 𝑚 such that 𝜋𝑚𝜏(𝑄) = [𝑧]𝑄 for 𝔾2 ∈ 𝑄.

11

New pairing formulas

Efficiently computable endomorphisms on ordinary curves:

• the Frobenius map: 𝜋 ∶ (𝑥, 𝑦) → (𝑥𝑝, 𝑦𝑝).

• the GLV map:

𝜏 ∶ {
(𝑥, 𝑦) → (𝜔 ⋅ 𝑥, 𝑦), 𝑗(𝐸) = 0, 𝜔2 + 𝜔 + 1 = 0 mod 𝑝;
(𝑥, 𝑦) → (−𝑥, 𝑖 ⋅ 𝑦), 𝑗(𝐸) = 1728, 𝑖2 + 1 = 0 mod 𝑝.

Main idea
Restricting the above two endomorphisms on 𝔾2 for our target curves, the
GLV map is not a power of the Frobenius map. More interesting, there
always exists an integer 𝑚 such that 𝜋𝑚𝜏(𝑄) = [𝑧]𝑄 for 𝔾2 ∈ 𝑄.

11

New pairing formulas

Optimized formulas of the optimal pairing on pairing-friendly curves with
embedding degrees 10 and 14:

1. Rewrite 𝑓𝑧2,𝑄(𝑃) as
𝑓𝑧2,𝑄(𝑃) = 𝑓𝑧

𝑧,𝑄(𝑃) ⋅ 𝑓𝑧,[𝑧]𝑄(𝑃) = 𝑓𝑧
𝑧,𝑄(𝑃) ⋅ 𝑓𝑧,𝜋𝑚𝜏(𝑄)(𝑃)

= 𝑓𝑧
𝑧,𝑄(𝑃) ⋅ 𝑓𝑝𝑚

𝑧,𝑄(̂𝜏(𝑃))�
where ̂𝜏 is the dual of 𝜏 .

2. Raise the output of the Miller loop to a power of 𝑝𝑘−𝑚 such that the
exponent of 𝑓𝑧,𝑄(̂𝜏(𝑃)) is equal to 1.

family 𝑘 new pairing formula

Cyclo(6.3) 10 (𝑓𝑧⋅𝑝7

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)))(𝑝10−1)/𝑟

Cyclo(6.5) 10 (𝑓𝑧⋅𝑝3

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)))(𝑝10−1)/𝑟

Cyclo(6.6) 10 (𝑓1+𝑧⋅𝑝3

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)) ⋅ (𝑦𝑃 − 𝑦𝑄)𝑝7)(𝑝10−1)/𝑟

Cyclo(6.3) 14 (𝑓𝑧⋅𝑝10

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)))(𝑝14−1)/𝑟

Cyclo(6.6) 14 (𝑓1+𝑧⋅𝑝13

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)) ⋅ (𝑦𝑃 − 𝑦𝑄)𝑝)(𝑝14−1)/𝑟

12

New pairing formulas

Optimized formulas of the optimal pairing on pairing-friendly curves with
embedding degrees 10 and 14:

1. Rewrite 𝑓𝑧2,𝑄(𝑃) as
𝑓𝑧2,𝑄(𝑃) = 𝑓𝑧

𝑧,𝑄(𝑃) ⋅ 𝑓𝑧,[𝑧]𝑄(𝑃) = 𝑓𝑧
𝑧,𝑄(𝑃) ⋅ 𝑓𝑧,𝜋𝑚𝜏(𝑄)(𝑃)

= 𝑓𝑧
𝑧,𝑄(𝑃) ⋅ 𝑓𝑝𝑚

𝑧,𝑄(̂𝜏(𝑃))�
where ̂𝜏 is the dual of 𝜏 .

2. Raise the output of the Miller loop to a power of 𝑝𝑘−𝑚 such that the
exponent of 𝑓𝑧,𝑄(̂𝜏(𝑃)) is equal to 1.

family 𝑘 new pairing formula

Cyclo(6.3) 10 (𝑓𝑧⋅𝑝7

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)))(𝑝10−1)/𝑟

Cyclo(6.5) 10 (𝑓𝑧⋅𝑝3

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)))(𝑝10−1)/𝑟

Cyclo(6.6) 10 (𝑓1+𝑧⋅𝑝3

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)) ⋅ (𝑦𝑃 − 𝑦𝑄)𝑝7)(𝑝10−1)/𝑟

Cyclo(6.3) 14 (𝑓𝑧⋅𝑝10

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)))(𝑝14−1)/𝑟

Cyclo(6.6) 14 (𝑓1+𝑧⋅𝑝13

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)) ⋅ (𝑦𝑃 − 𝑦𝑄)𝑝)(𝑝14−1)/𝑟

12

New pairing formulas

Optimized formulas of the optimal pairing on pairing-friendly curves with
embedding degrees 10 and 14:

1. Rewrite 𝑓𝑧2,𝑄(𝑃) as
𝑓𝑧2,𝑄(𝑃) = 𝑓𝑧

𝑧,𝑄(𝑃) ⋅ 𝑓𝑧,[𝑧]𝑄(𝑃) = 𝑓𝑧
𝑧,𝑄(𝑃) ⋅ 𝑓𝑧,𝜋𝑚𝜏(𝑄)(𝑃)

= 𝑓𝑧
𝑧,𝑄(𝑃) ⋅ 𝑓𝑝𝑚

𝑧,𝑄(̂𝜏(𝑃))�
where ̂𝜏 is the dual of 𝜏 .

2. Raise the output of the Miller loop to a power of 𝑝𝑘−𝑚 such that the
exponent of 𝑓𝑧,𝑄(̂𝜏(𝑃)) is equal to 1.

family 𝑘 new pairing formula

Cyclo(6.3) 10 (𝑓𝑧⋅𝑝7

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)))(𝑝10−1)/𝑟

Cyclo(6.5) 10 (𝑓𝑧⋅𝑝3

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)))(𝑝10−1)/𝑟

Cyclo(6.6) 10 (𝑓1+𝑧⋅𝑝3

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)) ⋅ (𝑦𝑃 − 𝑦𝑄)𝑝7)(𝑝10−1)/𝑟

Cyclo(6.3) 14 (𝑓𝑧⋅𝑝10

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)))(𝑝14−1)/𝑟

Cyclo(6.6) 14 (𝑓1+𝑧⋅𝑝13

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)) ⋅ (𝑦𝑃 − 𝑦𝑄)𝑝)(𝑝14−1)/𝑟
12

Shared Miller’s algorithm

The computation of 𝑓𝑧⋅𝑝𝑘−𝑚

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃)) can be performed in a shared
Miller’s algorithm at around log 𝑧 ≈ log 𝑟/2(𝜑(𝑘)) iterations.

Algorithm 2 Computing 𝑓𝑧⋅𝑝𝑘−𝑚

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃))
Require: 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2, 𝑧 = ∑𝐿

𝑖=0 𝑧𝑖 ⋅ 2𝑖 with 𝑧𝑖 ∈ {−1, 0, 1}
Ensure: 𝑓𝑧⋅𝑝𝑘−𝑚

𝑧,𝑄 (𝑃) ⋅ 𝑓𝑧,𝑄(̂𝜏(𝑃))

1: 𝑇 ← 𝑄, 𝑓 ← 1, tab← [], 𝑗 ← 0
2: for 𝑖 = 𝐿 − 1 down to 0 do
3: 𝑓 ←𝑓2 ⋅ ℓ𝑇,𝑇 (𝑃), tab[𝑗]←ℓ𝑇,𝑇 (̂𝜏(𝑃))
4: 𝑇 ⟵ 2𝑇 , 𝑗 ← 𝑗 + 1
5: if 𝑧𝑖 = 1 then
6: 𝑓 ←𝑓⋅ℓ𝑇,𝑄(𝑃),tab[𝑗]←ℓ𝑇,𝑄(̂𝜏(𝑃))
7: 𝑇 ← 𝑇 + 𝑄, 𝑗 ← 𝑗 + 1
8: elif 𝑧𝑖 = −1 then
9: 𝑓←𝑓⋅ℓ𝑇,−𝑄(𝑃), tab[𝑗]←ℓ𝑇,−𝑄(̂𝜏(𝑃))
10: 𝑇 ← 𝑇 −𝑄, 𝑗 ←𝑗+1
11: end if

12: end for
13: 𝑔 ← 𝑓𝑝𝑘−𝑚 , ℎ ← 𝑔, 𝑗 ← 0
14: for 𝑖 = 𝐿 − 1 down to 0 do
15: ℎ ← ℎ2⋅tab[𝑗], 𝑗 ← 𝑗 + 1
16: if 𝑧𝑖 = 1 then
17: ℎ ← ℎ ⋅ 𝑔⋅tab[𝑗], 𝑗 ← 𝑗 + 1
18: elif 𝑧𝑖 = −1 then
19: ℎ ← ℎ ⋅ ̄𝑔⋅tab[𝑗], 𝑗 ← 𝑗 + 1
20: end if
21: end for
22: return ℎ

13

Five candidate curves

The best seed 𝑧 can guarantee that:

• the size of 𝔽𝑝𝑘 is large enough to resist the attacks of the variant of NFS.

• the sum of bit length and Hamming weight (in non-adjacent form) of
the selected seed 𝑧 is as small as possible.

• the selected prime 𝑝 satisfies that 𝑝 ≡ 1 mod 𝑘.

curve family-𝑘 seed 𝑧 𝑟
bits

𝑝
bits

𝑝𝑘

bits
DL cost
in 𝔽𝑝𝑘

BW10-480 Cyclo(6.5)-10 25 + 214 + 215 + 218 + 236 + 240 321 480 4791 128

BW10-511 Cyclo(6.6)-10 27 + 213 + 226 − 232 256 511 5101 150

BW10-512 Cyclo(6.3)-10 1 + 23 + 217 + 232 + 235 + 236 294 512 5111 129

BW14-351 Cyclo(6.6)-14 26 − 212 − 214 − 222 265 351 4908 149

BW14-382 Cyclo(6.3)-14 1 + 210 + 213 − 216 + 219 + 221 256 382 5338 129

Remark1: The candidate curves are conservative 128-bit secure.

Remark2: The candidate curves are collectively called BW curves since they
are essentially generated using the Brezing-Weng method.

14

Five candidate curves

The best seed 𝑧 can guarantee that:

• the size of 𝔽𝑝𝑘 is large enough to resist the attacks of the variant of NFS.

• the sum of bit length and Hamming weight (in non-adjacent form) of
the selected seed 𝑧 is as small as possible.

• the selected prime 𝑝 satisfies that 𝑝 ≡ 1 mod 𝑘.

curve family-𝑘 seed 𝑧 𝑟
bits

𝑝
bits

𝑝𝑘

bits
DL cost
in 𝔽𝑝𝑘

BW10-480 Cyclo(6.5)-10 25 + 214 + 215 + 218 + 236 + 240 321 480 4791 128

BW10-511 Cyclo(6.6)-10 27 + 213 + 226 − 232 256 511 5101 150

BW10-512 Cyclo(6.3)-10 1 + 23 + 217 + 232 + 235 + 236 294 512 5111 129

BW14-351 Cyclo(6.6)-14 26 − 212 − 214 − 222 265 351 4908 149

BW14-382 Cyclo(6.3)-14 1 + 210 + 213 − 216 + 219 + 221 256 382 5338 129

Remark1: The candidate curves are conservative 128-bit secure.

Remark2: The candidate curves are collectively called BW curves since they
are essentially generated using the Brezing-Weng method.

14

The fist pairing group

Recall that the first pairing group 𝔾1 = 𝐸(𝔽𝑝)[𝑟]. There exists an efficiently
computable endomorphism on 𝔾1:

𝜏 ∶ {
(𝑥, 𝑦) → (𝜔 ⋅ 𝑥, 𝑦), 𝑗(𝐸) = 0, 𝜔2 + 𝜔 + 1 = 0 mod 𝑝;
(𝑥, 𝑦) → (−𝑥, 𝑖 ⋅ 𝑦), 𝑗(𝐸) = 1728, 𝑖2 + 1 = 0 mod 𝑝.

The operations in 𝔾1:

• group exponentiation in 𝔾1: log 𝑟/2 iterations by using GLV method.

• membership testing for 𝔾1: log 𝑟/2 iterations with a fixed scalar.

• hashing to 𝔾1: hashing to 𝐸(𝔽𝑝)+ cofactor clearing.

15

cofactor clearing for 𝔾1

The process of cofactor clearing for 𝔾1:

𝐸(𝔽𝑝)
𝑚1−−→ 𝐸(𝔽𝑝)[𝑛1 ⋅ 𝑟] −→ 𝐸(𝔽𝑝)[𝑟] = 𝔾1�

where 𝐸(𝔽𝑝) ≅ ℤ𝑚1
⊕ ℤ𝑚1⋅𝑛1⋅𝑟.

How to clear 𝑛1:

1. Determine the integer 𝜆1 such that 𝜏 = 𝜆1 in 𝐸(𝔽𝑝)[𝑛1 ⋅ 𝑟].

2. Applying the LLL algorithm, find a short vector a = (𝑎0, 𝑎1) such that
𝑎0 + 𝑎1 ⋅ 𝜆1 ≡ 0 mod 𝑛1 with max{log |𝑎0|, log |𝑎1|} ≈ log𝑛1/2.

3. Clearing the cofactor 𝑛1 by using the endomorphism 𝑎0 + 𝑎1𝜏 .

16

cofactor clearing for 𝔾1

The process of cofactor clearing for 𝔾1:

𝐸(𝔽𝑝)
𝑚1−−→ 𝐸(𝔽𝑝)[𝑛1 ⋅ 𝑟] −→ 𝐸(𝔽𝑝)[𝑟] = 𝔾1�

where 𝐸(𝔽𝑝) ≅ ℤ𝑚1
⊕ ℤ𝑚1⋅𝑛1⋅𝑟.

How to clear 𝑛1:

1. Determine the integer 𝜆1 such that 𝜏 = 𝜆1 in 𝐸(𝔽𝑝)[𝑛1 ⋅ 𝑟].

2. Applying the LLL algorithm, find a short vector a = (𝑎0, 𝑎1) such that
𝑎0 + 𝑎1 ⋅ 𝜆1 ≡ 0 mod 𝑛1 with max{log |𝑎0|, log |𝑎1|} ≈ log𝑛1/2.

3. Clearing the cofactor 𝑛1 by using the endomorphism 𝑎0 + 𝑎1𝜏 .

16

The second pairing group

The degree-2 twisted curve
For our target curves, there exists a twisted curve 𝐸′ over 𝔽𝑝𝑒 of degree 2
such that 𝐸′ ≅ 𝐸 over 𝔽𝑝𝑘 under a twisted map 𝜙, where 𝑒 = 𝑘/2.

The group 𝔾2 = 𝐸[𝑟]∩ker(𝜋−[𝑝]) can be efficiently represented as 𝐸′(𝔽𝑝𝑒)[𝑟].

The endomorphism on 𝔾2:

𝜏, 𝜋′ = 𝜙−1 ∘ 𝜋 ∘ 𝜙, Ψ = 𝜏 ∘ 𝜋′,

where the order of Ψ restricting on 𝔾2 is 2𝑘 (if 𝑗(𝐸) = 1728) or 3𝑘 (if 𝑗(𝐸) = 0).
The operations in 𝔾2:

• group exponentiation in 𝔾2: log 𝑟/(2𝜑(𝑘)) iterations by combining the
GLV and GLS methods.

• subgroup membership testing for 𝔾2: log 𝑟/(2𝜑(𝑘)) iterations with a
fixed scalar.

• hashing to 𝔾2: hashing to 𝐸′(𝔽𝑝𝑒)+ cofactor clearing.

17

The second pairing group

The degree-2 twisted curve
For our target curves, there exists a twisted curve 𝐸′ over 𝔽𝑝𝑒 of degree 2
such that 𝐸′ ≅ 𝐸 over 𝔽𝑝𝑘 under a twisted map 𝜙, where 𝑒 = 𝑘/2.

The group 𝔾2 = 𝐸[𝑟]∩ker(𝜋−[𝑝]) can be efficiently represented as 𝐸′(𝔽𝑝𝑒)[𝑟].
The endomorphism on 𝔾2:

𝜏, 𝜋′ = 𝜙−1 ∘ 𝜋 ∘ 𝜙, Ψ = 𝜏 ∘ 𝜋′,

where the order of Ψ restricting on 𝔾2 is 2𝑘 (if 𝑗(𝐸) = 1728) or 3𝑘 (if 𝑗(𝐸) = 0).

The operations in 𝔾2:

• group exponentiation in 𝔾2: log 𝑟/(2𝜑(𝑘)) iterations by combining the
GLV and GLS methods.

• subgroup membership testing for 𝔾2: log 𝑟/(2𝜑(𝑘)) iterations with a
fixed scalar.

• hashing to 𝔾2: hashing to 𝐸′(𝔽𝑝𝑒)+ cofactor clearing.

17

The second pairing group

The degree-2 twisted curve
For our target curves, there exists a twisted curve 𝐸′ over 𝔽𝑝𝑒 of degree 2
such that 𝐸′ ≅ 𝐸 over 𝔽𝑝𝑘 under a twisted map 𝜙, where 𝑒 = 𝑘/2.

The group 𝔾2 = 𝐸[𝑟]∩ker(𝜋−[𝑝]) can be efficiently represented as 𝐸′(𝔽𝑝𝑒)[𝑟].
The endomorphism on 𝔾2:

𝜏, 𝜋′ = 𝜙−1 ∘ 𝜋 ∘ 𝜙, Ψ = 𝜏 ∘ 𝜋′,

where the order of Ψ restricting on 𝔾2 is 2𝑘 (if 𝑗(𝐸) = 1728) or 3𝑘 (if 𝑗(𝐸) = 0).
The operations in 𝔾2:

• group exponentiation in 𝔾2: log 𝑟/(2𝜑(𝑘)) iterations by combining the
GLV and GLS methods.

• subgroup membership testing for 𝔾2: log 𝑟/(2𝜑(𝑘)) iterations with a
fixed scalar.

• hashing to 𝔾2: hashing to 𝐸′(𝔽𝑝𝑒)+ cofactor clearing.

17

The subgroup 𝔾′
0

Cyclotomic zero subgroup of 𝐸′

Define 𝔾′
0 = {𝑄 ∈ 𝐸′(𝔽𝑝𝑒)|Φ𝑘(𝜋′)(𝑄) = 𝒪𝐸′ }, where Φ𝑘 is the 𝑘−th

cyclotomic polynomial.

• 𝔾2 ⊆ 𝔾′
0 ⊆ 𝐸′(𝔽𝑝𝑒).

• the order of 𝔾′
0 is equal to #𝐸′(𝔽𝑝𝑒)⋅#𝐸(𝔽𝑝)

#𝐸(𝔽𝑝2) .

• Given a random point 𝑄 ∈ 𝐸′(𝔽𝑝𝑒), then 𝑅 = (𝜋′ + 1)𝑄 ∈ 𝔾′
0 as

Φ𝑘(𝜋′)(𝑅) = (𝜋′𝑒 + 1)𝑄 = 𝒪𝐸′ .

18

cofactor clearing for 𝔾2

The process of cofactor clearing for 𝔾2:

𝐸′(𝔽𝑝𝑒) → 𝔾′
0

𝑚2−−→ 𝐸′(𝔽𝑝𝑒)[𝑛2 ⋅ 𝑟] → 𝔾2,
where 𝔾′

0 ≅ ℤ𝑚2
⊕ ℤ𝑚2⋅𝑛2⋅𝑟 for some integers 𝑚2 and 𝑛2.

How to clear 𝑛2:

1. Determine the integer 𝜆2 such that Ψ = 𝜆2 in 𝐸′(𝔽𝑝𝑘/2)[𝑛2 ⋅ 𝑟].

2. Applying the LLL algorithm, find a = (𝑎0, 𝑎1, ⋯ , 𝑎2𝜑(𝑘)−1) such that

𝑎0 + 𝑎1 ⋅ 𝜆2 + ⋯ + 𝑎2𝜑(𝑘)−1 ⋅ 𝜆2𝜑(𝑘)−1
2 ≡ 0 mod 𝑛2

with max{log |𝑎𝑖|} ≈ log𝑛2/(2𝜑(𝑘)).

3. Clearing the cofactor 𝑛2 by using the endomorphism

𝑎0 + 𝑎1Ψ + ⋯ + 𝑎2𝜑(𝑘)−1Ψ2𝜑(𝑘)−1.

19

cofactor clearing for 𝔾2

The process of cofactor clearing for 𝔾2:

𝐸′(𝔽𝑝𝑒) → 𝔾′
0

𝑚2−−→ 𝐸′(𝔽𝑝𝑒)[𝑛2 ⋅ 𝑟] → 𝔾2,
where 𝔾′

0 ≅ ℤ𝑚2
⊕ ℤ𝑚2⋅𝑛2⋅𝑟 for some integers 𝑚2 and 𝑛2.

How to clear 𝑛2:

1. Determine the integer 𝜆2 such that Ψ = 𝜆2 in 𝐸′(𝔽𝑝𝑘/2)[𝑛2 ⋅ 𝑟].

2. Applying the LLL algorithm, find a = (𝑎0, 𝑎1, ⋯ , 𝑎2𝜑(𝑘)−1) such that

𝑎0 + 𝑎1 ⋅ 𝜆2 + ⋯ + 𝑎2𝜑(𝑘)−1 ⋅ 𝜆2𝜑(𝑘)−1
2 ≡ 0 mod 𝑛2

with max{log |𝑎𝑖|} ≈ log𝑛2/(2𝜑(𝑘)).

3. Clearing the cofactor 𝑛2 by using the endomorphism

𝑎0 + 𝑎1Ψ + ⋯ + 𝑎2𝜑(𝑘)−1Ψ2𝜑(𝑘)−1.

19

The third pairing group

The operations in 𝔾𝑇 :

• group exponentiation in 𝔾𝑇 : log 𝑟/𝜑(𝑘) iterations by using the GLS
method.

• subgroup membership testing for 𝔾𝑇 : log 𝑟/𝜑(𝑘) iterations with a fixed
exponent.

Remark 1: Inversion in 𝔾𝑇 is almost free as it is equal to its conjugate.

Remark 2: Squaring in 𝔾𝑇 is slightly faster than the squaring in 𝔽𝑝𝑘 .

20

The third pairing group

The operations in 𝔾𝑇 :

• group exponentiation in 𝔾𝑇 : log 𝑟/𝜑(𝑘) iterations by using the GLS
method.

• subgroup membership testing for 𝔾𝑇 : log 𝑟/𝜑(𝑘) iterations with a fixed
exponent.

Remark 1: Inversion in 𝔾𝑇 is almost free as it is equal to its conjugate.

Remark 2: Squaring in 𝔾𝑇 is slightly faster than the squaring in 𝔽𝑝𝑘 .

20

Implementation results

conservative curves: BLS12-446, BN-446, BW13-310 VS BW10-511, BW14-351

Target platform: Intel Core i9-12900K processor

Library: RELIC

Operation\Curve BLS12-446 BN446 BW13-310 BW10-511 BW14-351

hashing to 𝔾1 327 149 125 621 204
hashing to 𝔾2 1630 1361 16699 11981 7236
exp in 𝔾1 541 791 268 592 362
exp in 𝔾2 918 1394 7247 4621 3531
exp in 𝔾𝑇 1322 2243 1062 1476 1098
test in 𝔾1 389 8 269 723 345
test in 𝔾2 333 487 1176 1262 923
test in 𝔾𝑇 372 540 223 586 384

ML 1554 2480 1719 2819 1600
FE 1835 1589 2579 3872 2337

Single pairing 3389 4069 4298 6691 3937
2-pairings 4439 5717 5640 9016 5205
5-pairings 7614 10532 9621 15621 9008
8-pairings 10790 15349 13603 22191 12811

Table 1: Timings in 103 cycles averaged over 104 executions. 21

https://github.com/eccdaiy39/BW10-14

eccdaiy39@gmail.com

Thank you!

21

https://github.com/eccdaiy39/BW10-14

	Background
	Curves with embedding degrees 10 and 14

