

One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures

Technical University

of Denmark

Carsten Baum, Ward Beullens, **Shibam Mukherjee**, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy, Peter Scholl

10th December 2024

KNOW

Center

So Far...

NIST post-quantum digital signature algorithm finalists (2022)

Dilithium (Lattice) Falcon (Lattice) SPHINCS+ (Stateless-hash)

2-out-of-3 based on Lattice hardness assumption!

Symmetric primitives use well studied structures

Allows quicker long-term confidence!

SPHINCS+ [9] Signature Size

L1 – 7.8 kB L3 – 16.2 kB L5 – 29.7 kB

New NIST post-quantum signature additional around (2023)

Primarily focus on non-lattice hardness assumption!

So Far... (Cont.)

Post Quantum Signatures based on symmetric primitives based on MPCitH and VOLEitH paradigm (L1)

So Far... (FAEST at a high level)

- Signer knows a sk used in signing the message m
- Signer proves to the verifier in ZK

"I know $sk \in \{0,1\}^{\lambda}$ such that $OWF_{sk}(x) = y$, where x and y are pk"

- Verifier verifies the signature (ZK proof) with the corresponding pk
- Zero-Knowledge proof in VOLE-in-the-Head (VOLEitH) paradigm Quicksilver proof [8]
- Non-interactive proof with Fiat-Shamir transformation
- Currently in the Round-2 of NIST additional PQ digital signature process

A Vole (Wikipedia)

Our Contributions

- Faster and smaller FAESTER(-EM) signature
- Optimized one tree Batched all-but-one Vector Commitment (BAVC) Signature size reduction for the same signing runtime
- Uniform keys
 Zero input S-Box now possible
- Degree-7 constraints in proof system Smaller signature with AES as OWF
- Use of optimized OWFs like Rain [4] and MQ [7]
 - Even smaller and faster VOLEitH signatures
- Extensive parameter exploration for future improvement directions

Batched all-but-one Vector Commitment (BAVC)

- AVCs use Merkle Trees to generate the "in-the-head OWF computation shares"
- τ tree repetitions required to reach λ bit security soundness
- Each repetition requires $log(2^d)$ communication, where d is the depth of the tree
- Example: 4 field elements communicated

Optimizing BAVC

- Use one big tree
- Interleave the random seeds from the τ trees
- Rejection sampling when selecting the points to open Security preserved as proof-of-work required!
- Less than $\tau \times log(2^d)$ communication
- Example: 3 field elements communicated

Optimized BAVC

Uniform AES keys in FAESTER(-EM)

• AES S-box is the non-linear function

 $S: x \mapsto x^{254} \in F_{2^8}$

- Prover proves y = S(x)
- Degree-2 constraint check xy = 1
- Problems
 - x and y must be non-zero!
 - Key restriction such that S-box has non-zero inputs only
 - Rejection sampling
 - 1-2 bits loss in *sk* entropy

Uniform AES keys in FAESTER(-EM) (Cont.)

Key Observation! (Solution)

- $xy^2 = y \wedge x^2y = x$
- Checks
 - $x = 0 \land y != 0$
 - $y = 0 \land x != 0$
- Degree-3 constraint? More Communication?
- Squaring is linear in F_2
- Proof size stays the same!

FAEST-d7

- Prove AES via Degree-7 constrains, variant of the Quicksilver proof system
- Express AES S-Box as Degree-7 circuits over F₂
 - $S: x \mapsto x^{254} \in F_{2^8}$
 - 254 has a hamming weight of 7!
- Combine with meet-in-the-middle approach
- · Prover only commits to every other AES round instead of every round
 - Reduction in non-linear communication
 - **5% reduction** in signature size
- Improved Signature Sizes (L1)
 - FAEST-d7 4.7 kB (FAEST 5 kB)
 - FAESTER-d7 4.3 kB (FAESTER 4.5 kB)

Signatures with Optimized OWFs (MandaRain)

- MPCitH and VOLEitH signatures use OWFs to proof knowledge of the *sk*
- Small number of non-linear operations in OWFs is "ideal"
 - Reduces the signature size
- MPCitH/VOLEitH friendly Rain [4] OWF
 - Block cipher
 - $S: x \mapsto x^{-1} \in F_{2^{\lambda}}$
- Rain₃ with 3 rounds (2 non-linear const.)
- Rain₄ with 4 rounds (3 non-linear const.) More conservative!
- One of the smallest signature size
 2.8 kB (Rain₃ L1)
- Very fast signing and verification time
 0.34 ms (Rain₃ L1)

Mandarin (Wikipedia)

Signatures with Optimized OWFs (KuMQuat)

- MQ problem as OWF for VOLEitH signature
- $F \in MQ_{n,m,q}$ is a multivariate map over F_q with *n* variables and *m* equations

 $(y_i \coloneqq x^{\mathsf{T}} \cdot \mathbf{A}_i \cdot x + b_i^{\mathsf{T}} \cdot x)_{i \in [m]}$ Non-Linear operation!

- $\mathbf{A}_{i} \in F_{q}^{n \times n}$ (randomly sampled upper triangular matrix)
- $b_i \in F_q^n$ (uniformly sampled vectors)
- $(\mathbf{A}_1, \dots, \mathbf{A}_m, b_1, \dots, b_m) \leftarrow \text{Generator(seed)}$
- Given $F \in MQ_{n,m,q}$ and $\mathbf{y} = (y_1, \dots, y_m)$, find x, such that $F(x) = \mathbf{y}$

Kumquat (Wikipedia)

Signatures with Optimized OWFs (KuMQuat) (Cont.)

• Signature scheme construction

 $\mathbf{sk} \leftarrow (x, \text{seed})$ $\mathbf{pk} \leftarrow (y, \text{seed})$

Chosen MQ versions

- MQ-2¹ with $q = 2^1$
- MQ-2⁸ with $q = 2^8$
- Direct field extension to 2^{λ}
- Smallest signature size among all NIST Round-1 VOLEitH and MPCitH signature schemes
 - **2.5 kB** (MQ-2¹ L1)
- Fast signing and verification time
 - **0.53 ms** (MQ-2¹ L1)
- More conservative MQ parameters possible without affecting the signature size considerably!

Benchmark (Highlights)

Scheme L1	Keygen (ms)	Sign (S/F) (ms)	Verify* (S/F) (ms)	Signature Size (S/F) (kB)
FAEST	0.0006	4.381 / 0.404	4.102 / 0.395	5006 / 6336
FAESTER	0.0006	3.282 / 0.433	4.467 / 0.610	4594 / 6052
FAEST-EM	0.0005	4.151 / 0.446	4.415 / 0.474	4566 / 5696
FAESTER-EM	0.0005	3.005 / 0.422	4.386 / 0.609	4170 / 5444
FAEST-d7	-	-	-	4790 / 6020
FAESTER-d7	-	-	-	4374 / 5732
MandaRain-3	0.0018	2.8 / 0.346	5.895 / 0.807	2890 / 3588
MandaRain-4	0.0026	2.876 / 0.371	6.298 / 0.817	3052 / 3876
KuMQuat-2 ¹	0.173	4.305 / 0.539	4.107 / 0.736	2555 / 3028
KuMQuat-2 ⁸	0.174	3.599 / 0.4	4.053 / 0.623	2890 / 3588

S and F are the slow and the fast versions, respectively.

* When not using one big tree optimization, sign/verify times are same!

Benchmark (in-house comparison)

Benchmark (NIST Round-1 comparison)

Signature names are according to the NIST Additional Signature Round-1 submissions

https://eprint.iacr.org/2024/490

Questions?

Bibliography

[1] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D. and Zaverucha, G., 2017, October. Post-quantum zero-knowledge and signatures from symmetric-key primitives. In *Proceedings* of the 2017 acm sigsac conference on computer and communications security (pp. 1825-1842).

[2] de Saint Guilhem, C.D., De Meyer, L., Orsini, E. and Smart, N.P., 2019, August. BBQ: using AES in picnic signatures. In *International Conference on Selected Areas in Cryptography* (pp. 669-692). Cham: Springer International Publishing.

[3] Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P. and Zaverucha, G., 2021, May. Banquet: short and fast signatures from AES. In *IACR International Conference on Public-Key Cryptography* (pp. 266-297). Cham: Springer International Publishing.

[4] Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M. and Zaverucha, G., 2022, November. Shorter signatures based on tailor-made minimalist symmetric-key crypto. In *Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security* (pp. 843-857).

[5] Kales, D. and Zaverucha, G., 2022. Efficient lifting for shorter zero-knowledge proofs and post-quantum signatures. *Cryptology ePrint Archive*.

Bibliography

[6] Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Orsini, E., Roy, L. and Scholl, P., 2023, August. Publicly verifiable zero-knowledge and post-quantum signatures from vole-in-the-head. In *Annual International Cryptology Conference* (pp. 581-615). Cham: Springer Nature Switzerland.

[7] Benadjila, R., Feneuil, T. and Rivain, M., 2024, July. MQ on my mind: Post-quantum signatures from the nonstructured multivariate quadratic problem. In 2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P) (pp. 468-485). IEEE.

[8] Yang, K., Sarkar, P., Weng, C. and Wang, X., 2021, November. Quicksilver: Efficient and affordable zeroknowledge proofs for circuits and polynomials over any field. In *Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security* (pp. 2986-3001).

[9] Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J. and Schwabe, P., 2019, November. The SPHINCS+ signature framework. In *Proceedings of the 2019 ACM SIGSAC conference on computer and communications security* (pp. 2129-2146).

[10] Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Majenz, C., Mukherjee, S., Orsini, E., Ramacher, S., Rechberger, C., Roy, L. and Scholl, P., 2023. *FAEST: algorithm specifications*. Technical report, National Institute of Standards and Technology.

Bibliography

[11] Kim, S., Ha, J., Son, M., Lee, B., Moon, D., Lee, J., Lee, S., Kwon, J., Cho, J., Yoon, H. and Lee, J., 2023. *The aimer signature scheme*. Technical report. NIST.

[12] Kales, D. and Zaverucha, G., Improving the performance of the Picnic signature scheme. IACR TCHES, 2020 (4): 154–188, 2020 [online]

Additional Slides

Description		FAEST			FAEST-EM	
λ	AES-128	AES-192	AES-256	AES-EM-128	AES-EM-192	AES-EM-256
No. of S-Boxes in key expansion	40	32	52	0	0	0
No. of S-Boxes in encryption	160	192	224	160	288	448
Total no. of \mathbb{F}_{2^8} constraints	200	416	500	160	288	448
		FAESTER			FAESTER-EM	
λ	AES-128	AES-192	AES-256	AES-EM-128	AES-EM-192	AES-EM-256
No. of S-Boxes in key expansion	40	32	52	0	0	0
No. of S-Boxes in encryption	160	192	224	160	288	448
Total no. of \mathbb{F}_{2^8} constraints	200	416	500	160	288	488
		MandaRain-3			MandaRain-4	
λ	Rain-3-128	Rain-3-192	Rain-3-256	Rain-4-128	Rain-4-192	Rain-4-256
No. of S-Boxes in encryption	3	3	3	4	4	4
Total no. of $\mathbb{F}_{2^{\lambda}}$ constraints	3	3	3	4	4	4
		KuMQuat-2 ¹			KuMQuat-2 ⁸	
λ	$MQ-\mathbb{F}_{2^1}-L1$	$MQ-\mathbb{F}_{2^1}-L3$	$MQ-\mathbb{F}_{2^1}-L5$	$MQ-\mathbb{F}_{2^8}-L1$	$MQ-\mathbb{F}_{2^8}-L3$	$MQ-\mathbb{F}_{2^8}-L5$
Total no. of \mathbb{F}_{2^n} constraints	152	224	320	48	72	96

Table 1: Non-linear complexity of VOLEitH signature schemes using different OWFs.

Table 2: VOLEitH signature schemes and their parameters. We denote the signature schemes as SCHEME- $\lambda_{s/f}$. l is the number of VOLE correlations required for the NIZK proof. w and T_{open} are the values for the optimized BAVC as described in Section 3.1. τ is the number of VOLE repetitions determining the choice between s (slow) and f (fast) versions. k_0 and k_1 are bit lengths of small VOLEs. B is the padding parameter affecting the security of the VOLE check. Secret key (sk), public key (pk) and signature sizes are in bytes.

Signature Scheme	OWF $E_{sk}(x)$	l	w	T_{open}	au	$ au_0$	$ au_1$	k_0	k_1	sk size	pk size	sig. size
FAEST-128 _s	$AES128_{sk}(x)$	1600	_	_	11	7	4	12	11	16	32	5006
$FAEST-128_{f}$	$AES128_{sk}(x)$	1600	_	_	16	0	16	8	8	16	32	6336
FAEST-EM-128 _s	$\operatorname{AES128}_x(sk) \oplus sk$	1280	_	_	11	7	4	12	11	16	32	4566
$FAEST-EM-128_{f}$	$\operatorname{AES128}_{x}(sk) \oplus sk$	1280	_	_	16	0	16	8	8	16	32	5696
FAEST-d7-128s	$AES128_{sk}(x)$	800	_	_	11	7	4	12	11	16	32	4790
$FAEST-d7-128_{f}$	$AES128_{sk}(x)$	800	_	_	16	0	16	8	8	16	32	6020
FAESTER-128 _s	$AES128_{sk}(x)$	1600	7	102	11	0	11	11	11	16	32	4594
$FAESTER-128_{f}$	$AES128_{sk}(x)$	1600	8	110	16	8	8	8	7	16	32	6052
FAESTER-EM-128s	$\operatorname{AES128}_x(sk) \oplus sk$	1280	7	103	11	0	11	11	11	16	32	4170
$FAESTER-EM-128_{f}$	$\operatorname{AES128}_{x}(sk) \oplus sk$	1280	8	112	16	8	8	8	7	16	32	5444
FAESTER-d7-128s	$AES128_{sk}(x)$	800	5	102	11	0	11	11	11	16	32	4374
$FAESTER-d7-128_{f}$	$AES128_{sk}(x)$	800	6	110	16	8	8	8	7	16	32	5732
MandaRain-3-128 _s	Rain-3-128 $_{\rm sk}(x)$	384	7	100	11	7	4	12	11	16	32	2890
MandaRain-3-128 _f	Rain-3-128 $_{\rm sk}(x)$	384	8	108	16	0	16	8	8	16	32	3588
$MandaRain-4-128_s$	Rain-4-128 _{sk} (x)	512	7	101	11	7	4	12	11	16	32	3082
$MandaRain-4-128_{f}$	Rain-4-128 _{sk} (x)	512	8	110	16	0	16	8	8	16	32	3876
KuMQuat-2 ¹ -L1 _s	$MQ-2^1-L1_{sk}(x)$	152	7	99	11	7	4	12	11	19	35	2555
$KuMQuat-2^{1}-L1_{f}$	$MQ-2^{1}-L1_{sk}(x)$	152	4	102	16	0	16	8	8	19	35	3028
KuMQuat-2 ⁸ -L1 _s	MQ-2 ⁸ -L1 _{sk} (x)	384	7	100	11	7	4	12	11	48	64	2890
$KuMQuat-2^8-L1_f$	$MQ-2^8-L1_{sk}(x)$	384	4	108	16	0	16	8	8	48	64	3588

Instance	Seclvl	State	Rounds
Rain-3-128	L1	\mathbb{F}_2^{128}	3
Rain-3-192	L3	$\mathbb{F}_2^{\overline{1}92}$	3
Rain-3-256	L5	$\mathbb{F}_2^{\overline{256}}$	3
Rain-4-128	L1	\mathbb{F}_2^{128}	4
Rain-4-192	L3	$\mathbb{F}_2^{\overline{1}92}$	4
Rain-4-256	L5	\mathbb{F}_2^{256}	4

Table 3: Rain Parameters

Table 4: MQ Parameters

Instance	Seclvl	Field	m = n
MQ-2 ¹ -L1	L1	\mathbb{F}_{2^1}	152
MQ-2 ⁸ -L1	L1	\mathbb{F}_{2^8}	48
MQ-2 ¹ -L3	L3	\mathbb{F}_{2^1}	224
MQ-2 ⁸ -L3	L3	\mathbb{F}_{2^8}	72
MQ-2 ¹ -L5	L5	\mathbb{F}_{2^1}	320
MQ-2 ⁸ -L5	L5	\mathbb{F}_{2^8}	96

Figure 7: KuMQuat τ -signature size and runtime trade-off.

Table 5: Signing Time (ms), Verification Time (ms), and Signature Size (bytes) of different VOLEitH-based signature schemes (optimized implementations). Slow and fast versions are denoted with s and f respectively.

Scheme	Runtime in ms				Size in bytes			
	Keygen	Sign	Verify	sk	$\mathbf{p}\mathbf{k}$	Signature		
FAEST-128 _s	0.0006	4.381	4.102	16	32	5006		
$FAEST-128_{f}$	0.0005	0.404	0.395	16	32	6336		
$FAEST-EM-128_s$	0.0005	4.151	4.415	16	32	4566		
$FAEST-EM-128_{f}$	0.0005	0.446	0.474	16	32	5696		
$FAESTER-128_s$	0.0006	3.282	4.467	16	32	4594		
$FAESTER-128_{f}$	0.0005	0.433	0.610	16	32	6052		
FAESTER-EM-128 _s	0.0005	3.005	4.386	16	32	4170		
$FAESTER\text{-}EM\text{-}128_{\rm f}$	0.0005	0.422	0.609	16	32	5444		
$MandaRain-3-128_s$	0.0018	2.800	5.895	16	32	2890		
$MandaRain-3-128_{f}$	0.0018	0.346	0.807	16	32	3588		
$MandaRain-4-128_s$	0.0026	2.876	6.298	16	32	3052		
$MandaRain-4-128_{\rm f}$	0.0026	0.371	0.817	16	32	3876		
$KuMQuat-2^1-L1_s$	0.173	4.305	4.107	19	35	2555		
$KuMQuat-2^1-L1_f$	0.172	0.539	0.736	19	35	3028		
$KuMQuat-2^8-L1_s$	0.174	3.599	4.053	48	64	2890		
$KuMQuat-2^8-L1_f$	0.172	0.400	0.623	48	64	3588		