Toward Full n-bit Security and Nonce Misuse Resistance of Block Cipherbased MACs

Wonseok Choi¹, Jooyoung Lee², Yeongmin Lee³

¹Purdue University ²KAIST ³DESILO Inc.

ASIACRYPT 2024

Message Authentication Codes (MACs)

For a shared key K, $T = MAC_K(M)$ where M is a message and T is a tag $Ver_K(M, T) = 1$ if it is valid

Nonce-based MAC

- Wegman-Carter (WC)[WC81] : $T = H_{k_h}(M) \bigoplus F_k(N)$
- \bullet *H* is a universal hash function and *F* is a pseudorandom function (PRF)
- The forging advantage is ve in nonce respecting setting
	- $v = #$ of verification queries, ϵ = collision probability of H

This is vulnerable if a single nonce is repeated ◦ This is called nonce misuse

Nonce-misuse Resistant MACs

Cogliati and Seurin [CS16] proposed EWCDM which is secure up to $O(2^{2n/3})$ MAC queries and $O(2^n)$ verification queries in nonce-respecting setting \circ *n* is size of block cipher

◦ EWCDM is birthday bound secure in nonce-misuse setting, which is tight

Faulty Nonce Model

Dutta et al. proposed nEHtM [DNT19] which is secure up to $O(2^{2n/3})$ MAC queries and $O(2^n)$ verification queries in nonce-respecting setting

In nonce-misuse setting, it enjoys graceful degradation with respect to the number of faulty queries

- A MAC query is called faulty query if the nonce is reused
- μ : # of faulty queries

Choi et al. proved its $\frac{3n}{4}$ 4 -bit MAC security [CLLL20]

Generalized MAC Constructions

Chen et al. [CMP21] categorized nonce-based MACs that use two block cipher calls and one universal hash function call

- \circ $C = E_{k'}(E_k(A) \oplus B)$
- \circ A, B, C are functions of $H_{k_h}(M)$, N and T

They proved six constructions has $\frac{3n}{4}$ 4 -bit PRF security in nonce-respecting setting $\sim F_{B_2}^{\rm EDM}$, $F_{B_3}^{\rm EDM}$, $F_{B_4}^{\rm EDM}$, $F_{B_5}^{\rm EDM}$, $F_{B_2}^{\rm SOP}$ and $F_{B_3}^{\rm SOP}$

◦ Four constructions still achieve beyond birthday bound in nonce-misuse setting

However, security tightness is still open

BBB Nonce-based MACs

BBB Nonce-based MACs

 $F_{B_2}^{\rm SOP}$ (nEHtM₂)

Contributions

when $2^{n/4} \leq \mu \leq 2^{n/2}$ in a similar way to [15].

Security of Pseudorandom Function

A keyed function $C : \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

 \overline{C} is secure PRF if it cannot be distinguished from a random function

 \circ Adversary A interacts with oracle (C_k with random k or a random function)

MAC Security

A MAC algorithm $F : \mathcal{K} \times \mathcal{N} \times \mathcal{M} \rightarrow \mathcal{T}$

 F is a secure MAC if an adversary cannot forge a tag of an arbitrary message

- Adversary A interacts with oracle Auth_k and Ver_k with random key k
- Goal of an adversary is to get accept from the verification algorithm (no redundant query!)

 $\mathrm{Adv}_{F}^{\text{MAC}}(\mathcal{A}) = \Pr[\mathcal{A}^F \text{ forges}]$

- Upper bound: a distinguishing advantage between $S_0 = (Rand, Rej)$ and $S_1 = (Auth_k, Ver_k)$
- Rand : random oracle
- Rej : always return reject

Coefficient-H Technique

Adversary records all information from the oracle in a transcript τ

- A transcript τ is called attainable transcript when $p_{S_0}(\tau) > 0$
- Θ : set of attainable transcript

Coefficient-H Technique (informal) If there exists ϵ_{bad} *,* ϵ_{good} *such that 1)* for a set of bad transcripts $\Theta_{bad} \subset \Theta$, $\sum_{\tau \in \Theta_{bad}} p_{\mathcal{S}_0}(\tau) \leq \epsilon_{bad}$ *2)* with $\tau \notin \Theta_{bad}$, $\frac{ps_1(\tau)}{ps_1(\tau)}$ $\frac{\mu_{S_1}(t)}{p_{S_0}(\tau)} \geq 1 - \epsilon_{good}$ *Then,* $||P_{S_0} - P_{S_1}|| \leq \epsilon_{bad} + \epsilon_{good}$

Mirror Theory

From the transcript τ , we obtain

$$
\gamma^{=} = \begin{cases} P(N_1) \oplus Q(T_1) = X_1 \\ \vdots \\ P(N_q) \oplus Q(T_q) = X_q \end{cases} \text{ and } \gamma^{\neq} = \begin{cases} P(N'_1) \oplus Q(T'_1) \neq X'_1 \\ \vdots \\ P(N'_v) \oplus Q(T'_v) \neq X'_v \end{cases}
$$

Mirror theory: estimate the number of solutions to system of equations and inequalities

$$
p_{S_1}(\tau) = \frac{h(\gamma^=,\gamma^*) = (\# \text{ of } P \text{ and } Q \text{ satisfying } \gamma^= \text{ and } \gamma^*)}{(\# \text{ of } P \text{ and } Q)}
$$

Transcript Graph

From a transcript τ , we construct a graph $\mathcal{G} = (\mathcal{V} = \mathcal{V}_1 \sqcup \mathcal{V}_2, \mathcal{E}^{\pm} \sqcup \mathcal{E}^{\pm})$

An equation is represented by a solid edge and an inequality is represented by a dotted edge

 ξ_{max} : the maximum component size

 $P(N_1) \bigoplus Q(T_1) = X_1$ $P(N_2) \bigoplus Q(T_1) = X_2$ $P(N_2) \bigoplus Q(T_2) \neq X_3$ $P(N_3) \bigoplus Q(T_3) \neq X_4$

Transcript Graph

Some transcript graph might lead to contradiction

- The graph contains a cycle such that label sum is not $0 \rightarrow$ non-cyclic
- The graph contains a path such that label sum is $0 \rightarrow \text{non-degeneracy}$
- If the graph contains too long trail, it is hard to analyze
- The graph contains a cycle with one inequality with label sum is 0

Mirror Theory for two permutations

In EC23, Cogliati et al. improved mirror theory for one permutation with only equations [CDN23] ◦ We refined the mirror theory for two permutations

If γ ⁼ is non-cyclic and non-degeneracy, $\xi_{\rm max}^2 \leq 2^{n/2}$ and $q\xi_{\rm max}^2 \leq 2^n$, then

$$
h(\gamma^=)\geq \frac{(2^n-2)_{|\mathcal{V}_1|}(2^n-2)_{|\mathcal{V}_2|}}{(2^n)^q}
$$

Adding Inequalities

From the transcript τ , we obtain

$$
\gamma^{=} = \begin{cases} P(N_1) \oplus Q(T_1) = X_1 \\ \vdots \\ P(N_q) \oplus Q(T_q) = X_q \end{cases} \text{ and } \gamma^{\neq} = \begin{cases} P(N_1') \oplus Q(T_1') \neq X_1' \\ \vdots \\ P(N_{\nu}') \oplus Q(T_{\nu}') \neq X_{\nu}' \end{cases}
$$

If γ ⁼ and γ ^{\neq} contains no contradiction, then

$$
\frac{h(\gamma^=,\gamma^*)}{h(\gamma^=)} \ge 1 - \frac{2\nu}{2^n}
$$

Bad events

We define bad events if transcript τ violate the condition

- ∘ bad1 ↔ $\xi_{\text{max}}^2 \leq 2^{n/2}$ and $q\xi_{\text{max}}^2 \leq 2^n$
- \circ bad2 ↔ non-cyclic
- bad3 \leftrightarrow non-degeneracy

In the nonce respecting setting, there is no cycle

◦ There is no bad2

In the nonce respecting setting, there is no length 3 path

◦ The probability that there exists a length 2 path such that label sum is 0

Bad events

What is the probability to have bad1?

In case of EWCDM and $F_{B_3}^{\rm EDM}$ \circ bad1: *n* multi-collision of T

In the ideal world, T is output of random function

◦ It is easy to compute

Multi-xor collision Resistance

In case of nEHtM₂ and $F_{B_3}^{\text{S0P}}$,

◦ bad1: *n* multi-collision of $H_{k_h}(M)$ ⊕ N

Bottleneck: we generally assume H is xor universal hash function

∘ Pr $\big[k_h \leftarrow \mathcal{K}_h : H_{k_h}(x) \oplus H_{k_h}(x') = y \big] \leq \epsilon$ for small ϵ

However, we need multi-xor-universality

$$
\text{or } \Pr[k_h \leftarrow \mathcal{K}_h : H_{k_h}(x_1) \oplus y_1 = \dots = H_{k_h}(x_n) \oplus y_n] \le \epsilon' \text{ for small } \epsilon'
$$

• We want $\epsilon' \approx \epsilon^n$ but it does not hold generally

We proved the ISO standard CBC hash function enjoys $\epsilon' \approx \epsilon^n$

◦ structure graph technique [JN16]

Attack Sketch

Collect $2^{n/2}$ pairs of (N_i, M, T_i) and (N'_i, M', T'_i) such that $N^* = N_i \oplus N'_i$ is same

If $H_{k_h}(M) \oplus H_{k_h}(M') = N^*$, then $T_i = T_j \Rightarrow T'_i = T'_j$ $\phi \circ H_{k} (M) \oplus N_i = H_{k} (M') \oplus N'_i$ and $H_{k} (M) \oplus N_j = H_{k} (M') \oplus N'_j$ \circ Adversary can find (i, j) with high probability

If $H_{k_h}(M) \oplus H_{k_h}(M') \neq N^*$ • The probability that finds (i, j) is negligible

By using $2 * 2^{3n/4}$ queries, the adversary can collect 2^n such pairs

Attack Sketch

Consider an adversary know the hash difference between two message M and M'

 \circ $H_{k_h}(M) \oplus H_{k_h}(M') = Y$

1. Find two queries (N_1, M, T) and (N_2, M, T) by using $2^{n/2}$ queries

- $E_k(N_1 \oplus H_{k_h}(M)) \oplus N_1 = E_k(N_2 \oplus H_{k_h}(M)) \oplus N_2$
- 2. Obtain $(N_1 \bigoplus Y, M', T')$
- 3. Output a valid forgery $(N_2 \bigoplus Y, M', T')$ since

 $E_k(N_1 \oplus Y \oplus H_{k_h}(M')) \oplus N_1 \oplus Y = E_k(N_2 \oplus Y \oplus H_{k_h}(M')) \oplus N_2 \oplus Y$

Summary

Proved full security of nonce-based MACs

- \cdot n-bit MAC security of EWCDM and $F_{B_3}^{\rm EDM}$ in nonce respecting setting
- ∘ *n*-bit MAC security of nEHtM₂ and $F_{B_3}^{\text{SoP}}$ in nonce respecting setting by assuming multi-xor-collision resistance
- \cdot graceful degradation for nEHtM₂ and $F_{B_3}^{\text{SOP}}$ in nonce misuse setting

Presented a matching forgery attack on $F_{B_4}^{\rm EDM}$ and $F_{B_5}^{\rm EDM}$ using $O\big(2^{3n/4}\big)$ MAC queries

Thank you