Toward Full n-bit Security and Nonce Misuse Resistance of Block Cipherbased MACs

Wonseok Choi¹, Jooyoung Lee², **Yeongmin Lee³**

¹Purdue University ²KAIST ³DESILO Inc.

ASIACRYPT 2024

Message Authentication Codes (MACs)

For a shared key $K, T = MAC_K(M)$ where M is a message and T is a tag Ver_K(M, T) = 1 if it is valid

Nonce-based MAC

Wegman-Carter (WC)[WC81] : $T = H_{k_h}(M) \oplus F_k(N)$

- H is a universal hash function and F is a pseudorandom function (PRF)
- $^{\rm o}$ The forging advantage is $v\epsilon$ in nonce respecting setting
 - v = # of verification queries, $\epsilon =$ collision probability of H

This is vulnerable if a single nonce is repeated • This is called nonce misuse

Nonce-misuse Resistant MACs

Cogliati and Seurin [CS16] proposed EWCDM which is secure up to $O(2^{2n/3})$ MAC queries and $O(2^n)$ verification queries in nonce-respecting setting • n is size of block cipher

• EWCDM is birthday bound secure in nonce-misuse setting, which is tight

Faulty Nonce Model

Dutta et al. proposed nEHtM [DNT19] which is secure up to $O(2^{2n/3})$ MAC queries and $O(2^n)$ verification queries in nonce-respecting setting

In nonce-misuse setting, it enjoys graceful degradation with respect to the number of faulty queries

- A MAC query is called faulty query if the nonce is reused
- μ : # of faulty queries

Choi et al. proved its $\frac{3n}{4}$ -bit MAC security [CLLL20]

Generalized MAC Constructions

Chen et al. [CMP21] categorized nonce-based MACs that use two block cipher calls and one universal hash function call

- $C = E_{k'}(E_k(A) \oplus B)$
- A, B, C are functions of $H_{k_h}(M)$, N and T

They proved six constructions has $\frac{3n}{4}$ -bit PRF security in nonce-respecting setting • $F_{B_2}^{\text{EDM}}$, $F_{B_4}^{\text{EDM}}$, $F_{B_4}^{\text{EDM}}$, $F_{B_7}^{\text{SoP}}$ and $F_{B_2}^{\text{SoP}}$

• Four constructions still achieve beyond birthday bound in nonce-misuse setting

However, security tightness is still open

BBB Nonce-based MACs

BBB Nonce-based MACs

 $F_{B_3}^{\text{SoP}}$

Contributions

MAC	NR	NM	Tightness	Hash assumption	References
WC	2^n	0	tight	\mathbf{CR}	[29]
EWCDM	$2^{3n/4}$	$2^{n/2}$	-	\mathbf{CR}	[12, 13]
$F_{B_3}^{ m EDM}$	$2^{3n/4}$	$2^{n/2}$	-	CR	[9]
$F_{B_2}^{ m SoP}$	$2^{3n/4}$	$2^{3n/4} \ (\mu \le 2^{n/4})$	-	\mathbf{CR}	[9]
$F_{B_3}^{ m SoP}$	$2^{3n/4}$	$2^{3n/4} \ (\mu \le 2^{n/4})$	-	\mathbf{CR}	[9]
$F_{B_4}^{ m EDM}$	$2^{3n/4}$	$2^{3n/4} \ (\mu < 2^{n/2})$	\mathbf{tight}	\mathbf{CR}	[9], Section 6
$F_{B_5}^{\rm EDM}$	$2^{3n/4}$	$2^{3n/4} \ (\mu < 2^{n/2})$	\mathbf{tight}	CR	[9], Section 6
EWCDM	2^n	$2^{n/2}$	\mathbf{tight}	\mathbf{CR}	Section 4
$F_{B_3}^{ m EDM}$	2^n	$2^{n/2}$	\mathbf{tight}	\mathbf{CR}	Section 4
$F_{B_2}^{ m SoP}$	2^n	$2^n/\mu \ (\mu \leq 2^{n/2})^{\dagger}$	tight (NR)	MCR	Section 5
$F_{B_3}^{ m SoP}$	2^n	$2^n/\mu \ (\mu \leq 2^{n/2})^{\dagger}$	tight (NR)	MCR	Section 5
† In this paper, we proved the security bound for $\mu \leq 2^{n/4}$, while the same bound is obtained					

when $2^{n/4} \leq \mu \leq 2^{n/2}$ in a similar way to [15].

Security of Pseudorandom Function

A keyed function $C : \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$

 ${\cal C}$ is secure PRF if it cannot be distinguished from a random function

• Adversary \mathcal{A} interacts with oracle (C_k with random k or a random function)

MAC Security

A MAC algorithm $F : \mathcal{K} \times \mathcal{N} \times \mathcal{M} \to \mathcal{T}$

F is a secure MAC if an adversary cannot forge a tag of an arbitrary message

- Adversary $\mathcal A$ interacts with oracle Auth_k and Ver_k with random key k
- Goal of an adversary is to get accept from the verification algorithm (no redundant query!)

 $\operatorname{Adv}_{F}^{\operatorname{MAC}}(\mathcal{A}) = \Pr[\mathcal{A}^{F} \text{ forges}]$

- Upper bound: a distinguishing advantage between $S_0 = (\text{Rand}, \text{Rej})$ and $S_1 = (\text{Auth}_k, \text{Ver}_k)$
- Rand : random oracle
- Rej : always return reject

Coefficient-H Technique

Adversary records all information from the oracle in a transcript τ

- A transcript τ is called attainable transcript when $p_{S_0}(\tau) > 0$
- $\circ~\Theta$: set of attainable transcript

 $\begin{array}{l} \textbf{Coefficient-H Technique (informal)} \\ \text{If there exists } \epsilon_{bad}, \epsilon_{good} \text{ such that} \\ 1) \text{ for a set of bad transcripts } \Theta_{bad} \subset \Theta, \sum_{\tau \in \Theta_{bad}} p_{\mathcal{S}_0}(\tau) \leq \epsilon_{bad} \\ 2) \text{ with } \tau \notin \Theta_{bad}, \frac{p_{\mathcal{S}_1}(\tau)}{p_{\mathcal{S}_0}(\tau)} \geq 1 - \epsilon_{good} \\ \text{Then,} \\ \left\| P_{\mathcal{S}_0} - P_{\mathcal{S}_1} \right\| \leq \epsilon_{bad} + \epsilon_{good} \end{array}$

From the transcript τ , we obtain

$$\gamma^{=} = \begin{cases} P(N_{1}) \bigoplus Q(T_{1}) = X_{1} \\ \vdots \\ P(N_{q}) \bigoplus Q(T_{q}) = X_{q} \end{cases} \text{ and } \gamma^{\neq} = \begin{cases} P(N_{1}') \bigoplus Q(T_{1}') \neq X_{1}' \\ \vdots \\ P(N_{\nu}') \bigoplus Q(T_{\nu}') \neq X_{\nu}' \end{cases}$$

Mirror theory: estimate the number of solutions to system of equations and inequalities

$$p_{S_1}(\tau) = \frac{h(\gamma^{=}, \gamma^{\neq}) = (\# \text{ of } P \text{ and } Q \text{ satisfying } \gamma^{=} \text{ and } \gamma^{\neq})}{(\# \text{ of } P \text{ and } Q)}$$

From a transcript τ , we construct a graph $\mathcal{G} = (\mathcal{V} = \mathcal{V}_1 \sqcup \mathcal{V}_2, \mathcal{E}^= \sqcup \mathcal{E}^{\neq})$

An equation is represented by a solid edge and an inequality is represented by a dotted edge

 ξ_{\max} : the maximum component size

 $P(N_1) \bigoplus Q(T_1) = X_1$ $P(N_2) \bigoplus Q(T_1) = X_2$ $P(N_2) \bigoplus Q(T_2) \neq X_3$

 $P(N_3) \bigoplus Q(T_3) \neq X_4$

Transcript Graph

Some transcript graph might lead to contradiction

- $\,\circ\,$ The graph contains a cycle such that label sum is not 0 \rightarrow non-cyclic
- The graph contains a path such that label sum is $0 \rightarrow \text{non-degeneracy}$
- If the graph contains too long trail, it is hard to analyze
- The graph contains a cycle with one inequality with label sum is 0

Mirror Theory for two permutations

In EC23, Cogliati et al. improved mirror theory for one permutation with only equations [CDN23]
 We refined the mirror theory for two permutations

If $\gamma^{=}$ is non-cyclic and non-degeneracy, $\xi^{2}_{max} \leq 2^{n/2}$ and $q\xi^{2}_{max} \leq 2^{n}$, then

$$h(\gamma^{=}) \ge \frac{(2^{n}-2)_{|\mathcal{V}_{1}|}(2^{n}-2)_{|\mathcal{V}_{2}|}}{(2^{n})^{q}}$$

Adding Inequalities

From the transcript τ , we obtain

$$\gamma^{=} = \begin{cases} P(N_{1}) \bigoplus Q(T_{1}) = X_{1} \\ \vdots \\ P(N_{q}) \bigoplus Q(T_{q}) = X_{q} \end{cases} \text{ and } \gamma^{\neq} = \begin{cases} P(N_{1}') \bigoplus Q(T_{1}') \neq X_{1}' \\ \vdots \\ P(N_{\nu}') \bigoplus Q(T_{\nu}') \neq X_{\nu}' \end{cases}$$

If γ^{\pm} and γ^{\neq} contains no contradiction, then

$$\frac{h(\gamma^{=},\gamma^{\neq})}{h(\gamma^{=})} \ge 1 - \frac{2\nu}{2^{n}}$$

Bad events

We define bad events if transcript τ violate the condition

- \circ bad1 ↔ $ξ_{\max}^2 \le 2^{n/2}$ and $q ξ_{\max}^2 \le 2^n$
- bad2 \leftrightarrow non-cyclic
- bad3 ↔ non-degeneracy

In the nonce respecting setting, there is no cycle

• There is no bad2

In the nonce respecting setting, there is no length 3 path

• The probability that there exists a length 2 path such that label sum is 0

Bad events

What is the probability to have bad1?

In case of EWCDM and $F_{B_3}^{\text{EDM}}$ • bad1: *n* multi-collision of *T*

In the ideal world, T is output of random function

• It is easy to compute

Multi-xor collision Resistance

In case of nEHtM₂ and $F_{B_3}^{SoP}$,

• bad1: *n* multi-collision of $H_{k_h}(M) \oplus N$

Bottleneck: we generally assume H is xor universal hash function

• $\Pr[k_h \leftarrow \mathcal{K}_h: H_{k_h}(x) \oplus H_{k_h}(x') = y] \le \epsilon$ for small ϵ

However, we need multi-xor-universality

• $\Pr[k_h \leftarrow \mathcal{K}_h: H_{k_h}(x_1) \oplus y_1 = \dots = H_{k_h}(x_n) \oplus y_n] \le \epsilon'$ for small ϵ'

• We want $\epsilon' \approx \epsilon^n$ but it does not hold generally

We proved the ISO standard CBC hash function enjoys $\epsilon' \approx \epsilon^n$

• structure graph technique [JN16]

Collect $2^{n/2}$ pairs of (N_i, M, T_i) and (N'_i, M', T'_i) such that $N^* = N_i \bigoplus N'_i$ is same

If $H_{k_h}(M) \bigoplus H_{k_h}(M') = N^*$, then $T_i = T_j \Rightarrow T'_i = T'_j$ $H_{k_h}(M) \bigoplus N_i = H_{k_h}(M') \bigoplus N'_i$ and $H_{k_h}(M) \bigoplus N_j = H_{k_h}(M') \bigoplus N'_j$ Adversary can find (i, j) with high probability

If $H_{k_h}(M) \bigoplus H_{k_h}(M') \neq N^*$ • The probability that finds (i, j) is negligible

By using $2 * 2^{3n/4}$ queries, the adversary can collect 2^n such pairs

Attack Sketch

Consider an adversary know the hash difference between two message M and M'

• $H_{k_h}(M) \oplus H_{k_h}(M') = Y$

1. Find two queries (N_1, M, T) and (N_2, M, T) by using $2^{n/2}$ queries • $E_k(N_1 \oplus H_{k_h}(M)) \oplus N_1 = E_k(N_2 \oplus H_{k_h}(M)) \oplus N_2$

- 2. Obtain $(N_1 \oplus Y, M', T')$
- 3. Output a valid forgery $(N_2 \oplus Y, M', T')$ since

$$E_k\left(N_1 \oplus Y \oplus H_{k_h}(M')\right) \oplus N_1 \oplus Y = E_k\left(N_2 \oplus Y \oplus H_{k_h}(M')\right) \oplus N_2 \oplus Y$$

Summary

Proved full security of nonce-based MACs

- *n*-bit MAC security of EWCDM and $F_{B_3}^{\text{EDM}}$ in nonce respecting setting
- *n*-bit MAC security of nEHtM₂ and $F_{B_3}^{SoP}$ in nonce respecting setting by assuming multi-xor-collision resistance
- graceful degradation for nEHtM₂ and $F_{B_3}^{SoP}$ in nonce misuse setting

Presented a matching forgery attack on $F_{B_4}^{\text{EDM}}$ and $F_{B_5}^{\text{EDM}}$ using $O(2^{3n/4})$ MAC queries

Thank you