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Homomorphic encryption

The choice of TFHE at Ravel

ä The concept of fully homomorphic encryption (FHE),
established since 1978 and advanced by Craig Gentry in 2009,
has seen limited application due to its previously prohibitive
costs.

ä Recently, several startups are developing FHE libraries, with
Ravel Technology focusing specifically on privacy-preserving
targeted advertising and confidential data analytics.

ä Ravel’s decision to build on the TFHE scheme is driven by
two main factors:
(i) Lattice-based cryptography offers post-quantum security.
(ii) TFHE features one of the fastest bootstrapping processes
compared to other schemes (at least in terms of latency).
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FHE with ring variants (TFHE/FHEW)

The technique was introduced in several key papers:

1 L. Ducas and D. Micciancio. FHEW: Bootstrapping
homomorphic encryption in less than a second. Eurocrypt
2015. This paper introduced fast bootstrapping techniques for
the FHEW scheme.

2 I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less
than 0.1 seconds. Asiacrypt 2016. This work further
optimized bootstrapping, reducing the time significantly.

3 I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.
TFHE: Fast Fully Homomorphic Encryption over the Torus.
Journal of Cryptology, 2020. This paper established the TFHE
scheme and its performance benefits.
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Adding homomorphic comparison to FHE

Homomorphic encryption on large integers

Ravel is developing homomorphic algorithms for large integers
(32-bits or 64-bits) to enable various computations.

Addition, multiplication, comparison

Plain (a1, a2)
+,×,≤−−−−→ a1 + a1 × a2 ≤ a2 Plain output

Encrypt ↓ ↑ Decrypt

Ciphers (c1, c2)
⊕,⊗,≤−−−−→ c1 ⊕ c1 ⊗ c2 ≤ c2 Cipher output

Of course, practical FHE implementations should offer more
homomorphic functions.
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The torus and its discretized version

Definition (Discretized torus for messages)

Let P ≥ 3 be an odd integer. The structure of the discrete torus
TP is inherited from (ZP ,+,×), with privileged representative

i mods P ∈
{
− (P − 1)/2, ..., (P − 1)/2

}
The discrete torus TP ⊂ T = [−1

2 ,
1
2) +Z is defined by TP = 1

PZP :

TP =
{
− (P − 1)/(2P), ..., (P − 1)/(2P)

}
+ Z

Note that TP is a ring [isomomorphic to (ZP ,+,×)] :
1 the addition in TP is inherited from T, that is to say

∀(x , y) ∈ TP × TP , x + y ≡ x + y mod 1

2 the multiplication is inherited from ZP :

∀(x , y) ∈ TP × TP , x × y = (Px)× y mod 1
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Residue Number System (I)

Consider an integer p > 2 of the form

p =
κ∏

i=1

pi

where the pi ≥ 3 are pairwise coprime ∀i 6= j , pi ∧ pj = 1. Elements

µ ∈ Tp :=
1

p
Zp =

{
− (p − 1)/(2p), · · · , (p − 1)/2p

}
+ Z

may be represented unambiguously (Chinese Remainder Theorem)
by their coordinates

(µ1, . . . , µκ) ∈ Tp1 × · · · × Tpκ

where, for all i = 1, . . . , κ,

Tpi :=
1

pi
Zpi =

{
− (pi − 1)/(2pi ), . . . , (pi − 1)/(2pi )

}
+ Z

and µi = (pµ mod pi )/pi or equivalently µi = pµ/pi mod 1.
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Residue Number System (II)

The Chinese Remainder Theorem states that the map

Φ : Tp → Tp1 × · · · × Tpκ

µ 7→ (µ1, · · · , µκ) =
(pµ
p1

mod 1, · · · , pµ
pκ

mod 1
)

is an isomorphism with inverse

Φ−1 : Tp1 × · · · × Tpκ → Tp

(µ1, · · · , µκ) 7→ µ =
κ∑

i=1

viµi mod 1

where the (ui , vi ) satisfy uipi + vi
p
pi

= 1 for i = 1, · · · , κ (Bezout).

Encoding

A message µ ∈ Tp is encoded by its “residues” µi = pµ
pi

mod 1 for
i = 1, · · · , κ. Note that all + and × operations can be done on
residues in parallel.
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Encryption/decryption schemes in T

Assume LWE problem on Zq is secure and assimilate T ≡ 1
qZq.

EncryptLWEs(µ)

TLWE-encryption of µ ∈ T with secret key s ∈ Sn is defined as

c = TLWEs(µ) = (a, b) ∈ Tn+1 with


(a1, . . . , an)

$←− Tn

e ← N (0, σ2)
b = a · s + µ+ e

DecryptLWEs (c ,P)

TLWE-decryption of (a, b) ∈ Tn+1 with key s ∈ Sn is defined as

πP(b − a · s) ∈ TP

where πP is a projection on the discrete torus TP .
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Complete encoding/encryption of messages of Tp

µ ∈ Tpyx
Encoding (Residues) Decoding (Bezout)yx

((pµ) mod p1, · · · , (pµ) mod pκ) ∈ Zp1 × · · · × Zpκyx
Encoding Decodingyx(

pµ
p1

mod 1, · · · , pµpκ mod 1
)
∈ Tp1 × · · · × Tpκyx

Encryption Decryptionyx
(TLWEs(µ1), . . . ,TLWEs(µκ))
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Computing the sign in Tp homomorphically

Objective: Find an encryption of the sign of Tp1 × · · · × Tpκ

TLWEs(Sign ◦ Φ−1(µ1, · · · , µκ))

from the κ values ci = TLWEs(µi ) ∈ Tn+1, i = 1, · · · , κ.

Definition

Consider an element µ ∈ T ≡ R/Z. The sign of µ is the sign of its
residue modulo 1, i.e. the sign of the real µ′ = µ+ k ∈ [−1

2 ,
1
2)

with k ∈ Z

Sign(µ) =


−1 if ∃k ∈ Z, µ+ k ∈ [−1

2 , 0)
0 if ∃k ∈ Z, µ+ k = 0
1 if ∃k ∈ Z, µ+ k ∈ (0, 12)
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Preliminary remarks in the context of a RNS

The sign of µ ∈ T can not be determined solely from the signs of
its components (µ1, · · · , µκ). This can be seen on the following

Example : p1 = 3 and p2 = 5 (i.e. p = 15).

ä On the one hand, both

2

15
∈ T15 and

7

15
∈ T15

have positive signs by definition.

ä On the other hand, their components are respectively

(−1

3
,

2

5
) ∈ T3 × T5 and (

1

3
,

2

5
) ∈ T3 × T5

with signs (−1, 1) and (1, 1) respectively.

This shows that the value of µ has to some extent to be computed
through Φ−1 in order to evaluate its sign.
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Recomposing the message is not an option

We first note that

c = (a, b) =
κ∑

i=1

vi (ai , bi )

is an encrypted value of µ = Φ−1(µ1, . . . , µκ):

b − s · a =
κ∑

i=1

vi (bi − s · ai ) =
κ∑

i=1

vi (µi + ei ) = µ+ e.

If |ei | ≤ 1
2pi
, i = 1, · · · , κ, we have |e| ≤

∑κ
i=1 pi |ei | ≤

κ
2 which is

far too large for a correct decryption of µ ∈ TP .

Example: (p1, p2, p3, p4, p5, p6, p7) = (7, 11, 13, 15, 17, 19, 23)

If the ci all decrypts with probability > 1− 10−10, the probability
of a failed decryption of sign(µ) is greater than 0.5...
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Approximate sign function

Definition

Let 0 ≤ ε ≤ 1. The function gε is defined on the torus as follows

gε(µ) =


1 if µ ∈ [ ε2 ,

1
2 −

ε
2 ]

−1 if µ ∈ [−1
2 + ε

2 ,−
ε
2 ]

0 else

− ε
2

ε
20− 1

2
− 1

2
+ ε

2
1
2
− ε

2
1
2

−1 0 10 0

The function gε.
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Tolerance with respect to errors

Proposition

Let 3 ≤ p < p be an odd integer and assume that 0 < ε < 1
2(p+1) .

Consider a noisy value of µ ∈ T of the form

µ̃ = µ+ e mod 1 with |e| ≤ ε

2
.

The following statements hold

(i) if gε(µ̃) = 1, then sign(µ) = 1;

(ii) if gε(µ̃) = −1, then sign(µ) = −1;

(iii) if gε(µ̃) = 0, then pµ and µ have the same sign.
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Main idea: rescaling (i)

One can then consider the sequence of rescalings r = 0, 1, . . . ,

µ̃[r ] :=
κ∑

i=1

(prvi mod pi )µ̃i = prµ+ e [r ] mod 1,

with |e [r ]| =
∣∣∣ κ∑
i=1

(prvi mod pi ) ei

∣∣∣ ≤ ε

2
,

one has

(i) if ∀k ≤ r , gε(µ̃
[k]) = 0, then ∀k ≤ r + 1, sign(pkµ) = sign(µ)

(ii) if in addition, gε(µ̃
[r+1]) = +1 then sign(µ) = +1 .

(iii) if in addition, gε(µ̃
[r+1]) = −1 then sign(µ) = −1.
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Main idea: rescaling (ii)

Lemma

Let p ≥ 3 be an odd integer, 0 < ε ≤ 1
2(p+1) and µ ∈ [−1

2 ,
1
2). The

following statements are satisfied:

(i) if µ ∈ [0, ε], then pµ ∈ [0, 12 − ε] and if µ ∈ (0, ε), then
pµ ∈ (0, 12 − ε)

(ii) µ ∈ [12 − ε,
1
2), then pµ ∈ [ε, 12)

−ε ε0− 1
2

− 1
2
+ ε 1

2
− ε 1

2

Rescaling
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Sequence of rescaled messages (i)

Lemma

Let us now consider the sequence prµ, r = 0, · · · ,+∞. The
following statements are satisfied:

(i) if µ ∈ (0, ε), then there exists r∗ ∈ N∗ such that

∀0 ≤ r < r∗, prµ ∈ (0, ε) and pr
∗
µ ∈ [ε,

1

2
− ε)

−ε ε0− 1
2

− 1
2
+ ε 1

2
− ε 1

2

prµ, r < r∗ pr
∗
µ

Case (i)
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Sequence of rescaled messages (ii)

Lemma

Let us now consider the sequence prµ, r = 0, · · · ,+∞. The
following statements are satisfied:

(i) . . .

(ii) if µ ∈ (12 − ε,
1
2), then there exists r∗ ∈ N∗ such that for all

0 ≤ r < r∗, one has prµ mod 1 ∈ (12 − ε,
1
2) and pr

∗
µ

mod 1 ∈ [ε, 12 − ε)

−ε ε0− 1
2

− 1
2
+ ε 1

2
− ε 1

2

prµ, r < r∗pr
∗
µ

Case (ii)
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Main result

Proposition

Let 3 ≤ p < p be odd integers and let 0 < ε ≤ 1
2(p+1) . Let µ ∈ Tp

and consider a sequence of real numbers µ̃[r ] ∈ T, defined for

r = 0, 1, . . . , rmax = 1 +
⌊

logp

(
p

p+1

)⌋
, and satisfying

|µ̃[r ] − prµ| ≤ ε.

Then, there exists 0 ≤ r∗ ≤ rmax such that

1 if µ > 0 then gε(µ̃
[r∗]) = 1 and for 0 ≤ r < r∗, gε(µ̃

[r ]) = 0;

2 if µ < 0 then gε(µ̃
[r∗]) = −1 and for 0 ≤ r < r∗, gε(µ̃

[r ]) = 0;

3 if µ = 0 then gε(µ̃
[r ]) = 0 for r ≥ 0,

where the function gε was introduced above.
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Weighting previous sequence gives the sign!

Let us consider the geometrically weighted sum

1

4

rmax∑
r=0

1

2k
gε(µ̃

[r ]) ∈ T2rmax+2

Then the sign of µ is obtained as

sign
(1

4

rmax∑
r=0

1

2k
gε(µ̃

[r ])
)

i.e.

sign(µ) = gε
(1

4

rmax∑
r=0

1

2k
gε(µ̃

[r ])
)
.

Our sign algorithm is then essentially the homomorphic
implementation of previous formula.
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Computational times of the sign in Tp

Parameters used identical for all operations ×,=,Sign,+.
Cleartexts are integers with 32 or 64 bits. All computations are
made on an average laptop with Ravel’s library.

Highlight example for 128 bits of security

Our algorithm delivers a correct result with a probability error
below 10−12 in less than 140 milliseconds for 32-bit integers.

Type Pfail × = Sign +

U32 1.e − 9 28.62ms 50.70ms 137.35ms 14.05µs
U32 1.e − 12 27.98ms 51.29ms 138.33ms 13.98µs

U64 1.e − 9 60.09ms 52.47ms 145.40ms 28.18µs
U64 1.e − 12 61.62ms 53.56ms 145.91ms 28.16µs

Figure: Times in ms (except for the addition) and 128 bits of security
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THANK YOU FOR YOUR ATTENTION
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