On Security Proofs of Existing Equivalence Class Signature Schemes

Balthazar Bauer¹, Georg Fuchsbauer², Fabian Regen²

¹UVSQ ²TU Wien

Asiacrypt 2024 Kolkata, 11 December 24

Defined over (additive) Group (\mathbb{G}, p, g)

Message space $(\mathbb{G}^*)^2$ partitioned by

$$m \sim m' : \Leftrightarrow \exists \mu \in \mathbb{Z}_p^* : m = \mu \cdot m'$$

Defined over (additive) Group (\mathbb{G}, p, g)

Message space $(\mathbb{G}^*)^2$ partitioned by

$$m \sim m' : \Leftrightarrow \exists \mu \in \mathbb{Z}_p^* : m = \mu \cdot m'$$

Equivalence classes for $m = (\alpha \cdot g, \beta \cdot g)$

Defined over (additive) Group (\mathbb{G}, p, g)

Message space $(\mathbb{G}^*)^2$ partitioned by

$$m \sim m' : \Leftrightarrow \exists \mu \in \mathbb{Z}_p^* : m = \mu \cdot m'$$

Equivalence classes for $m = (\alpha \cdot g, \beta \cdot g)$

Class hiding:

given m, m' decide if $m \sim m'$

An *EQS* scheme consists of four p.p.t. algorithms:

- Keygen() \rightarrow (sk, pk)
- $\mathsf{Sign}(sk,m) \to \sigma$
- Verify $(pk, m, \sigma) \rightarrow 0$ or 1
- Adapt $(pk, m, \sigma, \mu \in \mathbb{Z}_p^*) \to \text{signature on } \mu \cdot m$.

• Adapt $(pk, m, \sigma, \mu \in \mathbb{Z}_p^*) \to \text{signature on } \mu \cdot m$.

• Adapt $(pk, m, \sigma, \mu \in \mathbb{Z}_p^*) \to \text{signature on } \mu \cdot m$.

$$m := (1 \cdot g, 1 \cdot g)$$

 $\sigma := \mathsf{Sign}_{sk}(m)$

$$\sigma' := \mathsf{Adapt}(pk, m, \sigma, 4)$$

Game UNF:

Game UNF:

$$\mathcal{F} \text{ wins } :\Leftrightarrow \mathsf{Verify}(pk, m^*, \sigma^*) \land m^* \not\sim m_i$$

Game UNF:

 $\mathcal{F} \text{ wins } :\Leftrightarrow \mathsf{Verify}(pk, m^*, \sigma^*) \land m^* \not\sim m_i$

assuming **CH**: non falsifiable

Game UNF:

$$\mathcal{F} \text{ wins } :\Leftrightarrow \mathsf{Verify}(pk, m^*, \sigma^*) \land m^* \not\sim m_i$$

Scheme *unforgeable* if $Adv_{\mathcal{F}}^{\mathsf{UNF}} := \Pr[\mathcal{F} \text{ wins}] \approx 0$

Alice

$$h = \alpha \cdot g \in \mathbb{G}^*$$

$$\mu_j \leftarrow \mathbb{Z}_p^*$$

$$h = \alpha \cdot g \in \mathbb{G}^*$$

Alice I am
$$m_j = (\mu_j \cdot g, \mu_j \cdot h)$$
 Party j

Party
$$j$$

$$\mu_j \leftarrow \mathbb{Z}_p^*$$

Alice

$$h = \alpha \cdot g \in \mathbb{G}^*$$

$$\lim_{j \to \infty} m_j = (\mu_j \cdot g, \mu_j \cdot h)$$

Party j

credential σ_j on m_j

$$\mu_j \leftarrow \mathbb{Z}_p^*$$

Alice

$$h = \alpha \cdot g \in \mathbb{G}^*$$

$$\lim_{j \to \infty} m_j = (\mu_j \cdot g, \mu_j \cdot h)$$

Party j

credential σ_j on m_j

Party *i*

$$\mu_j \leftarrow \mathbb{Z}_p^*$$

Alice

$$h = \alpha \cdot g \in \mathbb{G}^*$$

 $\mathsf{Iam} \quad m_j = (\mu_j \cdot g, \underline{\mu_j \cdot h})$

Party j

credential σ_i on m_j

$$\mu_i \leftarrow \mathbb{Z}_p^*$$

I am $(\mu_i \cdot g, \mu_i \cdot h)$

my credential is $\mathsf{Adapt}(pk_j, m_j, \sigma_j, \mu_i/\mu_j)$

Party *i*

Alice
$$\lim_{h \to \infty} \frac{\mu_j \leftarrow \mathbb{Z}_p^*}{\lim_{h \to \infty} \frac{1}{g} = \lim_{h \to \infty} \frac{m_j = (\mu_j \cdot g, \mu_j \cdot h)}{\lim_{h \to \infty} \frac{1}{g} = \lim_{h \to \infty} \frac$$

$$\mu_i \leftarrow \mathbb{Z}_p^*$$
 I am $(\mu_i \cdot g, \mu_i \cdot h)$

my credential is $\mathsf{Adapt}(pk_j, m_j, \sigma_j, \mu_i/\mu_j)$

Party *i*

Class hiding: m_i looks random, Adapt guarantees credential looks random

Cryptographic concepts constructed from EQS:

• Attribute-based credentials [FHS19, DHS15, HS21]

Cryptographic concepts constructed from EQS:

- Attribute-based credentials [FHS19, DHS15, HS21]
- Blind signatures [FHS15, FHKS16, Han23]

Cryptographic concepts constructed from EQS:

- Attribute-based credentials [FHS19, DHS15, HS21]
- Blind signatures [FHS15, FHKS16, Han23]
- Group signatures [DS16, CS20, DS18, BHKS18]

Cryptographic concepts constructed from EQS:

- Attribute-based credentials [FHS19, DHS15, HS21]
- Blind signatures [FHS15, FHKS16, Han23]
- Group signatures [DS16, CS20, DS18, BHKS18]
- Verifiably encrypted signatures [HRS15],
 access-control-encryption [FGKO17], sanitizable signatures
 [BLL+19], privacy-preserving incentive systems [BEK+20],
 mix nets [ST21], anonymous counting tokens [BRS23],
 policy-compliant signatures [BSW23], e-voting [Poi23], . . .

- Original [FHS19] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model

- Original [FHS19] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model
- Relaxed unforgeability notion [FG18]:
 - but: too weak for many applications

- Original [FHS19] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model
- Relaxed unforgeability notion [FG18]:
 - but: too weak for many applications
- CRS model [KSD19] $(\sigma \in \mathbb{G}^8 \times \hat{\mathbb{G}}^9)$, [CLP22] $(\sigma \in \mathbb{G}^9 \times \hat{\mathbb{G}}^4)$
 - but: anonymity relies on trusted CRS

- Original [FHS19] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model
- Relaxed unforgeability notion [FG18]:
 - but: too weak for many applications
- CRS model [KSD19] $(\sigma \in \mathbb{G}^8 \times \hat{\mathbb{G}}^9)$, extKerMDH

[CLP22]
$$(\sigma \in \mathbb{G}^9 \times \hat{\mathbb{G}}^4)$$

- but: anonymity relies on trusted CRS

SXDH

Is there a scheme satisfying the original notion with a proof from a non-interactive assumption?

Is there a scheme satisfying the original notion with a proof from a non-interactive assumption?

No such scheme can exist [BFR24]

Is there a scheme satisfying the original notion with a proof from a non-interactive assumption?

No such scheme can exist [BFR24]

Impossibility result does not apply to schemes in the CRS model

want EQS from standard assumptions ⇒ need CRS?

Is there a scheme satisfying the original notion with a proof from a non-interactive assumption?

No such scheme can exist [BFR24]

Impossibility result does not apply to schemes in the CRS model

want EQS from standard assumptions ⇒ need CRS?

proofs of CRS-based schemes are flawed!

Game UNF

Game UNF

Game 1

$$\mathsf{Adv}^{\mathsf{UNF}} \leq \epsilon_1 + \ldots + \epsilon_6 + \mathsf{Adv}^{\mathsf{Game 6}}$$

 $\leq \mathsf{Adv}^{\mathsf{SXDH}} + \epsilon$

 \mathcal{F} wins : \Leftrightarrow Verify $(pk, m^*, \sigma^*) \land m^* \not\sim m_i$

 \mathcal{F} wins : $\Leftrightarrow \mathsf{Verify'}(pk, m^*, \sigma^*) \land m^* \not\sim m_i$

$$\mathcal{F} \text{ wins } :\Leftrightarrow \mathsf{Verify'}(pk, m^*, \sigma^*) \land m^* \not\sim m_i$$

$$|\mathsf{Adv}^{\mathsf{UNF}} - \mathsf{Adv}^{\mathsf{Game 1}}| \leq \mathsf{Adv}^{\mathsf{SXDH}}$$

 \mathcal{F} wins : \Leftrightarrow Verify' $(pk, m^*, \sigma^*) \land m^* \not\sim m_i$

$$\mathcal{F}$$
 wins : \Leftrightarrow Verify' $(pk, m^*, \sigma^*) \land m^* \not\sim m_i$
$$\mathsf{Adv}^{\mathsf{Game}\ 1} = \mathsf{Adv}^{\mathsf{Game}\ 2}$$

 \mathcal{F} wins : $\Leftrightarrow \mathsf{Verify''}(pk, m^*, \sigma^*) \land m^* \not\sim m_i$

$$\mathcal{F} \text{ wins } :\Leftrightarrow \mathsf{Verify''}(pk, m^*, \sigma^*) \land m^* \not\sim m_i$$

$$\mathcal{F} \text{ wins } :\Leftrightarrow \mathsf{Verify''}(pk, m^*, \sigma^*) \land m^* \not\sim m_i$$

probability can change arbitrarily!

$$\mathcal{F}$$
 wins : \Leftrightarrow Verify" $(pk, m^*, \sigma^*) \land m^* \not\sim m_i$
$$|\mathsf{Adv}^{\mathsf{Game 3}} - \mathsf{Adv}^{\mathsf{Game 2}}| \gg \mathsf{negl}$$

Can this be fixed?

Class hiding: hard to decide $m \sim m'$

can't check $m^* \not\sim m'$ efficiently!

Can this be fixed?

Class hiding: hard to decide $m \sim m'$

can't check $m^* \not\sim m'$ efficiently!

can't construct efficient reduction!

proof strategy does not work for EQS

Constructions of EQS

- Original [FHS19] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model
- Relaxed unforgeability notion [FG18]:
 - but: too weak for many applications
- CRS model [KSD19]($\sigma \in \mathbb{G}^8 \times \hat{\mathbb{G}}^9$), [CLP22] ($\sigma \in \mathbb{G}^9 \times \hat{\mathbb{G}}^4$)

but: anonymity relies on trusted CRS

Constructions of EQS

- Original [FHS19] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model
 - but: proof in algebraic group model
- Relaxed unforgeability notion [FG18]:
 - but: too weak for many applications
- CRS model [KSD19]($\sigma \in \mathbb{G}^8 \times \hat{\mathbb{G}}^9$),

$$[CLP22] (\sigma \in \mathbb{G}^9 \times \mathbb{G}^4)$$

but: anonymity relies on trusted CRS

Adversary (\mathbb{G}, p, g) Challenger

$$(\mathbb{G}, p, g)$$

Adversary
$$(\mathbb{G}, p, g)$$
 Challenger

$$X_1,\ldots,X_n\in\mathbb{G}$$

$$Y_1, \ldots, Y_n \in \mathbb{G}$$

Adversary (\mathbb{G}, p, g)

$$(\mathbb{G}, p, g)$$

$$\spadesuit \sim X_n$$

Adversary (\mathbb{G}, p, g)

$$(\mathbb{G}, p, g)$$

$$\heartsuit := \spadesuit + \clubsuit$$

Adversary (\mathbb{G}, p, g)

$$(\mathbb{G}, p, g)$$

Challenger

$$\heartsuit := \spadesuit + \clubsuit$$

$$\diamondsuit \sim \sum \alpha_i X_i$$

The Algebraic Group Model [FKL19]

$$(\mathbb{G}, p, g)$$

Adversary (\mathbb{G}, p, g) Challenger

$$X_1, \dots, X_n \in \mathbb{G}$$

The Algebraic Group Model [FKL19]

$$(\mathbb{G}, p, g)$$

Adversary (\mathbb{G}, p, g) Challenger

$$X_1,\ldots,X_n\in\mathbb{G}$$

$$Y \in \mathbb{G}$$

 \exists Extractor E finding α_i such that $Y = \sum_i \alpha_i X_i$

Definition.

with generator g

DL hard for

group G

$$y \leftarrow \mathbb{Z}_p$$
 yg
 y'

 \mathcal{A} wins if y = y'

Definition.

with generators g, \hat{g}

DL hard for bilinear group $\mathbb{G}, \hat{\mathbb{G}}$

$$y \leftarrow \mathbb{Z}_p$$
 $y\hat{g}$
 $y\hat{g}$
 y'

 \mathcal{A} wins if y = y'

Definition. (q_1, q_2) - "power"-DL hard for bilinear group $\mathbb{G}, \hat{\mathbb{G}}$ with generators g, \hat{g}

$$y \leftarrow \mathbb{Z}_p$$
 $yg, y^2g, \dots, y^{q_1}g$
 $y\hat{g}, y^2\hat{g}, \dots, y^{q_2}\hat{g}$
 y'

 \mathcal{A} wins if y = y'

Theorem. Let $q \in \mathbb{N}$ and \mathcal{A} be algebraic making q signing queries, then there exists \mathcal{B} such that

$$\mathsf{Adv}_{\mathbb{G},\mathcal{B}}^{(3q,q+1)\text{-DL}} \geq \mathsf{Adv}_{\mathsf{FHS},\mathcal{A}}^{\mathsf{UNF}} - \frac{4q+1}{p-1}$$

Theorem. Let $q \in \mathbb{N}$ and \mathcal{A} be algebraic making q signing queries, then there exists \mathcal{B} such that

$$\mathsf{Adv}_{\mathbb{G},\mathcal{B}}^{(3q,q+1)\text{-DL}} \geq \mathsf{Adv}_{\mathsf{FHS},\mathcal{A}}^{\mathsf{UNF}} - \frac{4q+1}{p-1}$$

(or from a slightly stronger assumption if not assuming random generators)

Thank you!

questions?

