LOW COMMUNICATION THRESHOLD FULLY HOMOMORPHIC ENCRYPTION

Alain Passelègue & <u>Damien Stehlé</u>

KOLKATA --- DECEMBER 13, 2024

Eprint 2024/1984

* K. Boudgoust, P. Scholl: Simple threshold (fully homomorphic encryption) from LWE with polynomial modulus. ASIACRYPT'23

MAIN RESULTS

Contribution #1

Cryptanalysis of the BS23* Threshold-FHE with moderate decryption modulus

⇒ All known (general-purpose) Threshold-FHE's need **exponential** decr. modulus

Contribution #2

Construction of a Threshold-FHE with **tiny** decryption modulus...

... for the (specific) case where the computing party is not corrupted.

Disclaimer: we only look at the *N*-out-of-*N* case

THRESHOLD-FHE

THRESHOLD-FHE

THRESHOLD-FHE

* G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, D. Wichs. Multiparty computation with low communication, computation and interaction via threshold FHE. EUROCRYPT'12 ** D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim,

P. Rasmussen, A. Sahai. Threshold cryptosystems from threshold fully homomorphic encryption. CRYPTO'18

Th-FHE: sk is shared between users

- Protects sk
- Enables secure multi-party computations*
- Allows to thresholdize cryptographic constructions**

* B. Li, D. Micciancio. On the security of homomorphic encryption on approximate numbers. EUROCRYPT'21

THRESHOLD-FHE: SECURITY (INFORMAL)

Adversary can:

- > corrupt N 1 users
- request encr. of ptxts
- request evaluations on generated ctxts
- request decr. of any generated ctxt (unless its ptxt trivially solves the challenge)

Adervsary's challenge: distinguish between the encryptions of two ptxts of its choice

(we actually consider simulation-based security)

Side note: for N = 1 user, this matches the IND-CPA-D security notion from LM21^{*}.

THRESHOLD-FHE: GENERAL DESIGN

Start from an FHE scheme, with ciphertexts of the form:

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

- a, b can be over \mathbb{Z}_q (LWE) or R_q (Ring-LWE), and e is small
- Ecd can be most/least/... significant bits

* M. Dahl, D. Demmler, S. El Kazdadi, A. Meyre, J.-B. Orfila, D. Rotaru, N. Smart, S. Tap, M. Walter. Noah's ark: Efficient threshold-FHE using noise flooding. WAHC'23

HOW LARGE SHOULD THE FLOODING BE?

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

The size of e_i drives the choice of q during decryption \Rightarrow drives amount of communication in decryption

(if need be, we can switch to a large q just before decryption*)

* M. Dahl, D. Demmler, S. El Kazdadi, A. Meyre, J.-B. Orfila, D. Rotaru, N. Smart, S. Tap, M. Walter. Noah's ark: Efficient threshold-FHE using noise flooding. WAHC'23

HOW LARGE SHOULD THE FLOODING BE?

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

The size of e_i drives the choice of q during decryption \Rightarrow drives amount of communication in decryption

(if need be, we can switch to a large q just before decryption*)

No e_i : $e_i = 0$ Adversary can recover sk_i **Exponential** e_i : $|e_i| \ge 2^{\lambda} \cdot |e|$ We can simulate the adversary's view

HOW LARGE SHOULD THE FLOODING BE?

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

No e_i : $e_i = 0$ Adversary can recover sk_i **Exponential** e_i : $|e_i| \ge 2^{\lambda} \cdot |e|$ We can simulate the adversary's view

Very small e_i : $|e_i| \approx \text{poly}(\lambda) \cdot |e|$ Adversary can "average-out" e_i in sh_i What about moderate e_i ? $|e_i| \approx \text{poly}(Q_{dec}) \cdot |e|$ $(Q_{dec} \text{ is the number of decr. queries})$

CAN MODERATE FLOODING WORK?

* S. Agrawal, D. Stehlé, A. Yadav. Roundoptimal lattice-based threshold signatures, revisited. ICALP'22

** B. Li, D. Micciancio, M. Schultz, J. Sorrell. Securing approximate homomorphic encryption using differential privacy. CRYPTO'22

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

Split the key as $sk = \sum sk_i$ PartDec (ct, sk_i) $sh_i \coloneqq a \cdot sk_i + e_i$

 $|e_i| \approx \text{poly}(Q_{dec}) \cdot |e|$

FinDec $(ct, (sh_i)_i)$ Dcd $(\sum sh_i + b)$

ASY22*: When used to thresholdize a signature scheme, this can be proved secure using Rényi Divergence

LMSS22** attack, e.g. using BFV:

- Encrypt (10,10) or (0,0)
- Perform an inner product with (1, -1)
- In both cases, the result is 0
- But the noise is larger for (10,10)

 \Rightarrow Gives a poly $\left(\frac{1}{Q_{dec}}\right)$ dist. advantage

** K. Boudgoust, P. Scholl: Simple threshold (fully homomorphic encryption) from LWE with polynomial modulus. ASIACRYPT'23

THE BS23 APPROACH

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

ASY22: When used to thresholdize a signature scheme, this can be proved secure using Rényi Divergence

LMSS22: The decryption noise may carry **information on past computations**, including the challenge plaintexts BS23* (informal): Assuming the FHE scheme is **circuit-private**, then the threshold FHE scheme is secure with moderate noise

Circuit privacy: the distribution of the decryption noise does not depend on past computations, even if sk is given to the adversary

We are given $ct^* = (a^*, b^*)$: $a^* \cdot sk + b^* = Ecd(m_\beta) + e$ [q] We want to distinguish $\beta = 0$ from $\beta = 1$

Assumption 1: the scheme allows "Rescale"

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$ \downarrow $ct' = (a', b') = \left(\left\lfloor \frac{q'}{q} a \right\rfloor, \left\lfloor \frac{q'}{q} b \right\rfloor \right) [q'] \text{ with } q' \ll q$

We have

 $a' \cdot sk + b' \approx Ecd(m) + e_{rnd} \cdot sk$, where $e_{rnd} = \left\{\frac{q'}{q}a\right\}$ is **known**

We are given $ct^* = (a^*, b^*)$: $a^* \cdot sk + b^* = Ecd(m_\beta) + e$ [q] We want to distinguish $\beta = 0$ from $\beta = 1$

Assumption 1: the scheme allows "Rescale"

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

 $\operatorname{ct}' = (a', b') = \left(\left\lfloor \frac{q'}{q} a \right\rfloor, \left\lfloor \frac{q'}{q} b \right\rfloor \right) \quad [q'] \text{ with } q' \ll q$

We have

 $a' \cdot sk + b' \approx Ecd(m) + e_{rnd} \cdot sk$, where $e_{rnd} = \left\{\frac{q'}{q}a\right\}$ is **known** Assumption 2: "nice" homomorphic mult. noise

 $ct_{1} = (a_{1}, b_{1}): a_{1} \cdot sk + b_{1} = Ecd(m_{1}) + e_{1} [q]$ $ct_{2} = (a_{2}, b_{2}): a_{2} \cdot sk + b_{2} = Ecd(m_{2}) + e_{2} [q]$ $ct_{\times} = (a_{\times}, b_{\times}): a_{\times} \cdot sk + b_{\times} = Ecd(m_{1} \cdot m_{2}) + e_{\times} [q']$ with $e_{\times} \approx m_{1} \cdot e_{2} + m_{2} \cdot e_{1}$

BFV and CKKS can be parametrized to fit

We are given $\operatorname{ct}^* = (a^*, b^*)$: $a^* \cdot \operatorname{sk} + b^* = \operatorname{Ecd}(m_\beta) + e[q]$ We want to distinguish $\beta = 0$ from $\beta = 1$

If Eval ends up with Enc(A), we post-process as follows:

Enc(1) Rescale Enc(1)

noise $\approx e_{rnd} \cdot sk$ with known e_{rnd}

We are given $\operatorname{ct}^* = (a^*, b^*)$: $a^* \cdot \operatorname{sk} + b^* = \operatorname{Ecd}(m_\beta) + e[q]$ We want to distinguish $\beta = 0$ from $\beta = 1$

We are given $ct^* = (a^*, b^*)$: $a^* \cdot sk + b^* = Ecd(m_\beta) + e$ [q] We want to distinguish $\beta = 0$ from $\beta = 1$

- 1. If the initial scheme is circuit-private, then so is the modified scheme
- 2. Request encryption and decryption of $MSB(a^*)$
- 3. Recover $e_{\times} \approx \text{MSB}(a^*) \cdot e_{rnd} \cdot \text{sk}$
- 4. Compute $e_{\times} + e_{rnd} \cdot b^* \approx e_{rnd} \cdot \operatorname{Ecd}(m_{\beta})$
- 5. As the decr. modulus is small, we can distinguish

FORGETTING HISTORY REQUIRES RANDOMNESS

Deeper issue with the BS23 approach:

- Current circuit-privacy techniques require the server to inject randomness
- But the server is potentially a corrupted user ⇒ not random to the adversary

FORGETTING HISTORY REQUIRES RANDOMNESS

Deeper issue with the BS23 approach:

- Current circuit-privacy techniques require the server to inject randomness
- But the server is potentially a corrupted user ⇒ not random to the adversary

We propose an noncolluding-server variant of Threshold-FHE

DOES THE MODEL MAKE SENSE?

This depends on applications!

- OK if the group of users externalizes the computation to an outsider server
 ⇒ Somewhat trusted third party (may eavesdrop, may not collude)
- Not OK for the universal thresholdizer, which requires Eval to be deterministic

CONTRIBUTION #2: DOUBLE FLOOD & ROUND

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

Split the key as

 $sk = \sum sk_i$

ServerDec (ct)

Add Enc(0) to ct Add exponential flooding to *b*-part Rdm-Rescale to a $poly(\lambda)$ modulus PartDec (ct, sk_i)

 $sh_i \coloneqq a \cdot sk_i + e_i$ Using **tiny** e_i FinDec $(ct, (sh_i)_i)$ Dcd $(\sum sh_i + b)$

* D. Micciancio, A. Suhl. Simulation-secure threshold PKE from LWE with polynomial modulus. eprint 2023/1728

CONTRIBUTION #2: DOUBLE FLOOD & ROUND

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

Split the key as

 $sk = \sum_{i=1}^{n} sk_i$

ServerDec (ct)

Add Enc(0) to ct Add exponential flooding to *b*-part Rdm-Rescale to a $poly(\lambda)$ modulus PartDec (ct, sk_i)

 $sh_i \coloneqq a \cdot sk_i + e_i$ Using **tiny** e_i FinDec $(ct, (sh_i)_i)$ Dcd $(\sum sh_i + b)$

Everything that users get and send is with a poly(λ) modulus

- This requires exponential flooding, but only internally to the server
- Proof technique closely related to MS23*

WRAP-UP

Contribution #1

Cryptanalysis of the BS23* Threshold-FHE with moderate decryption modulus

⇒ All known (general-purpose) Threshold-FHE's need **exponential** decr. modulus

Contribution #2

Construction of a Threshold-FHE with **tiny** decryption modulus...

... for the (specific) case where the server is not colluding.

Open problems:

- Can we get general-purpose Threshold-FHE with $poly(Q_{dec})$ decryption modulus?
- Can we weaken the noncolluding-server assumption?

QUESTIONS?

Eprint 2024/1984

{ alain.passelegue, damien.stehle } @ cryptolab.co.kr