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MAIN RESULTS

2A. Passelègue & D. Stehlé  --  low communication threshold fully homomorphic encryption

Contribution #1

Cryptanalysis of the BS23* Threshold-FHE with moderate decryption modulus

⇒ All known (general-purpose) Threshold-FHE’s need exponential decr. modulus

Contribution #2

Construction of a Threshold-FHE with tiny decryption modulus…

… for the (specific) case where the computing party is not corrupted. 

* K. Boudgoust, P. Scholl: Simple threshold 

(fully homomorphic encryption) from LWE 

with polynomial modulus. ASIACRYPT’23

Disclaimer: we only look at the 𝑁-out-of-𝑁 case
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THRESHOLD-FHE
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Th-FHE: sk is shared between users

• Protects sk

• Enables secure multi-party computations*

• Allows to thresholdize cryptographic constructions** 
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* G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikun-

tanathan, D. Wichs. Multiparty computation with low 

communication, computation and interaction via 

threshold FHE. EUROCRYPT’12

** D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, 

P. Rasmussen, A. Sahai. Threshold cryptosystems from

threshold fully homomorphic encryption. CRYPTO’18
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Adversary can:

➢ corrupt 𝑁 − 1 users

➢ request encr. of ptxts 

➢ request evaluations on generated ctxts

➢ request decr. of any generated ctxt 
     (unless its ptxt trivially solves the challenge)

Adervsary’s challenge: distinguish between 

the encryptions of two ptxts of its choice

(we actually consider simulation-based security)

Side note: for 𝑁 = 1 user, this matches the IND-CPA-D security notion from LM21*.

* B. Li, D. Micciancio. On the security of 

homomorphic encryption on approximate 

numbers. EUROCRYPT’21



THRESHOLD-FHE: GENERAL DESIGN
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Start from an FHE scheme, with ciphertexts of the form:

ct = 𝑎, 𝑏 :  𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

• 𝑎, 𝑏 can be over  ℤ𝑞 (LWE)  or  𝑅𝑞 (Ring-LWE),  and  𝑒  is small

• Ecd can be most/least/… significant bits

Split the key as

sk = ෍  sk𝑖

PartDec ct, sk𝑖

sh𝑖 ≔  𝑎 ⋅ sk𝑖 + 𝑒𝑖

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)



HOW LARGE SHOULD THE FLOODING BE?
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ct = 𝑎, 𝑏 :  𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍  sk𝑖

The size of 𝑒𝑖  drives the choice of  𝑞  during decryption  

    ⇒ drives amount of communication in decryption

(if need be, we can switch to a large 𝑞 just before decryption*) 

* M. Dahl, D. Demmler, S. El Kazdadi, A. Meyre, J.-B. Orfila, 

D. Rotaru, N. Smart, S. Tap, M. Walter. Noah’s ark: Efficient 

threshold-FHE using noise flooding. WAHC’23 

PartDec ct, sk𝑖

sh𝑖  ≔  𝑎 ⋅ sk𝑖 + 𝑒𝑖

                                       

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)
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6A. Passelègue & D. Stehlé  --  low communication threshold fully homomorphic encryption

ct = 𝑎, 𝑏 :  𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍  sk𝑖

The size of 𝑒𝑖  drives the choice of  𝑞  during decryption  

    ⇒ drives amount of communication in decryption

(if need be, we can switch to a large 𝑞 just before decryption*) 

No 𝒆𝒊:  𝑒𝑖 = 0
Adversary can recover  sk𝑖

* M. Dahl, D. Demmler, S. El Kazdadi, A. Meyre, J.-B. Orfila, 

D. Rotaru, N. Smart, S. Tap, M. Walter. Noah’s ark: Efficient 

threshold-FHE using noise flooding. WAHC’23 

Exponential 𝒆𝒊:  𝑒𝑖 ≥ 2𝜆 ⋅ |𝑒|
We can simulate the adversary’s view 

PartDec ct, sk𝑖

sh𝑖  ≔  𝑎 ⋅ sk𝑖 + 𝑒𝑖

                                       

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)
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ct = 𝑎, 𝑏 :  𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

No 𝒆𝒊: 𝑒𝑖 = 0
Adversary can recover sk𝑖

Exponential 𝒆𝒊:  𝑒𝑖 ≥ 2𝜆 ⋅ |𝑒|
We can simulate the adversary’s view 

Very small 𝒆𝒊: 𝑒𝑖 ≈ poly 𝜆 ⋅ |𝑒|
Adversary can “average-out” 𝑒𝑖 in  sℎ𝑖

What about moderate 𝒆𝒊?

𝑒𝑖 ≈ poly 𝑄𝑑𝑒𝑐 ⋅ |𝑒|

(𝑄𝑑𝑒𝑐 is the number of decr. queries)

Split the key as

sk = ෍  sk𝑖

PartDec ct, sk𝑖

sh𝑖  ≔  𝑎 ⋅ sk𝑖 + 𝑒𝑖

                                       

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)



CAN MODERATE FLOODING WORK?
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ct = 𝑎, 𝑏 :  𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍  sk𝑖

PartDec ct, sk𝑖

    sh𝑖  ≔  𝑎 ⋅ sk𝑖 + 𝑒𝑖

𝑒𝑖 ≈ poly 𝑄𝑑𝑒𝑐 ⋅ |𝑒|

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

ASY22*: When used to thresholdize a 

signature scheme, this can be proved 

secure using Rényi Divergence

* S. Agrawal, D. Stehlé, A. Yadav. Round-

optimal lattice-based threshold signatures, 

revisited. ICALP’22

** B. Li, D. Micciancio, M. Schultz, J. Sorrell. 

Securing approximate homomorphic 

encryption using differential privacy. CRYPTO’22

LMSS22** attack, e.g. using BFV:

• Encrypt  (10,10)  or   (0,0)
• Perform an inner product with  1, −1
• In both cases, the result is 0

• But the noise is larger for  (10,10) 

⇒ Gives a  poly
1

𝑄𝑑𝑒𝑐
  dist. advantage



THE BS23 APPROACH
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ct = 𝑎, 𝑏 :  𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍  sk𝑖

** K. Boudgoust, P. Scholl: Simple threshold 

(fully homomorphic encryption) from LWE with 

polynomial modulus. ASIACRYPT’23

LMSS22: The decryption noise may 

carry information on past computations, 

including the challenge plaintexts

BS23* (informal): Assuming the FHE scheme 

is circuit-private, then the threshold FHE 

scheme  is secure with moderate noise

Circuit privacy: the distribution of the decryption 

noise does not depend on past computations, 

even if   sk   is given to the adversary

ASY22: When used to thresholdize a 

signature scheme, this can be proved 

secure using Rényi Divergence

PartDec ct, sk𝑖

    sh𝑖  ≔  𝑎 ⋅ sk𝑖 + 𝑒𝑖

𝑒𝑖 ≈ poly 𝑄𝑑𝑒𝑐 ⋅ |𝑒|

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)



CONTRIBUTION #1: CRYPTANALYSIS OF BS23
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Assumption 1:   the scheme allows “Rescale”

ct = 𝑎, 𝑏 :  𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

ct′ = 𝑎′, 𝑏′ =
𝑞′

𝑞
𝑎 ,

𝑞′

𝑞
𝑏 [𝑞′] with 𝑞′ ≪ 𝑞 

We have

 𝑎′ ⋅ sk + 𝑏′ ≈ Ecd 𝑚 + 𝑒𝑟𝑛𝑑 ⋅ sk , 

where  𝑒𝑟𝑛𝑑 = 
𝑞′

𝑞
𝑎  is known 

We are given ct∗ = 𝑎∗, 𝑏∗ :  𝑎∗ ⋅ sk + 𝑏∗ = Ecd 𝑚𝛽 + 𝑒 [𝑞]

We want to distinguish 𝛽 = 0 from 𝛽 = 1



CONTRIBUTION #1: CRYPTANALYSIS OF BS23
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Assumption 1:   the scheme allows “Rescale”

ct = 𝑎, 𝑏 :  𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

ct′ = 𝑎′, 𝑏′ =
𝑞′

𝑞
𝑎 ,

𝑞′

𝑞
𝑏 [𝑞′] with 𝑞′ ≪ 𝑞 

We have

 𝑎′ ⋅ sk + 𝑏′ ≈ Ecd 𝑚 + 𝑒𝑟𝑛𝑑 ⋅ sk , 

where  𝑒𝑟𝑛𝑑 = 
𝑞′

𝑞
𝑎  is known 

Assumption 2:   “nice” homomorphic mult. noise

ct1 = 𝑎1, 𝑏1 :  𝑎1 ⋅ sk + 𝑏1 = Ecd 𝑚1 + 𝑒1 [𝑞]
ct2 = 𝑎2, 𝑏2 :  𝑎2 ⋅ 𝑠𝑘 + 𝑏2 = Ecd 𝑚2 + 𝑒2 [𝑞]

ct× = 𝑎×, 𝑏× :  𝑎× ⋅ sk + 𝑏× = Ecd 𝑚1 ⋅ 𝑚2 + 𝑒× [𝑞′]

with

𝑒× ≈ 𝑚1 ⋅ 𝑒2 + 𝑚2 ⋅ 𝑒1

BFV and CKKS can be parametrized to fit

We are given ct∗ = 𝑎∗, 𝑏∗ :  𝑎∗ ⋅ 𝑠𝑘 + 𝑏∗ = Ecd 𝑚𝛽 + 𝑒 [𝑞]

We want to distinguish 𝛽 = 0 from 𝛽 = 1
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We are given ct∗ = 𝑎∗, 𝑏∗ :  𝑎∗ ⋅ sk + 𝑏∗ = Ecd 𝑚𝛽 + 𝑒 [𝑞]

We want to distinguish 𝛽 = 0 from 𝛽 = 1

Enc 1
Rescale

Enc(1)

noise ≈ 𝑒𝑟𝑛𝑑 ⋅ sk 
with known 𝑒𝑟𝑛𝑑

If Eval ends up with  Enc 𝐴 , 

we post-process as follows:
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We want to distinguish 𝛽 = 0 from 𝛽 = 1

Enc 1
Rescale

noise ≈ 𝐴 ⋅ 𝑒𝑟𝑛𝑑 ⋅ sk
if 𝐴 is large 

Enc 𝐴

Multiply
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Enc 𝐴

noise ≈ 𝑒𝑟𝑛𝑑 ⋅ sk 
with known 𝑒𝑟𝑛𝑑

If Eval ends up with  Enc 𝐴 , 

we post-process as follows:



CONTRIBUTION #1: CRYPTANALYSIS OF BS23

11A. Passelègue & D. Stehlé  --  low communication threshold fully homomorphic encryption

We are given ct∗ = 𝑎∗, 𝑏∗ :  𝑎∗ ⋅ sk + 𝑏∗ = Ecd 𝑚𝛽 + 𝑒 [𝑞]

We want to distinguish 𝛽 = 0 from 𝛽 = 1

1. If the initial scheme is circuit-private, 

     then so is the modified scheme

2. Request encryption and decryption of MSB 𝑎∗

3. Recover   𝑒× ≈ MSB 𝑎∗ ⋅ 𝑒𝑟𝑛𝑑 ⋅ sk

4. Compute  𝑒× +  𝑒𝑟𝑛𝑑 ⋅ 𝑏∗  ≈  ernd ⋅ Ecd 𝑚𝛽

5. As the decr. modulus is small, we can distinguish

Enc 1
Rescale

noise ≈ 𝐴 ⋅ 𝑒𝑟𝑛𝑑 ⋅ sk
if 𝐴 is large 

Enc 𝐴

Multiply

Enc(1)

Enc 𝐴

noise ≈ 𝑒𝑟𝑛𝑑 ⋅ sk 
with known 𝑒𝑟𝑛𝑑

If Eval ends up with  Enc 𝐴 , 

we post-process as follows:



FORGETTING HISTORY REQUIRES RANDOMNESS
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Deeper issue with the BS23 approach: 

• Current circuit-privacy techniques require the server to inject randomness

• But the server is potentially a corrupted user     ⇒ not random to the adversary
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12A. Passelègue & D. Stehlé  --  low communication threshold fully homomorphic encryption

Deeper issue with the BS23 approach: 

• Current circuit-privacy techniques require the server to inject randomness

• But the server is potentially a corrupted user     ⇒ not random to the adversary

We propose an noncolluding-server variant of Threshold-FHE 
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ct = Eval
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DOES THE MODEL MAKE SENSE?
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evk

ct𝑖 𝑖

Server

sk1

Users

Jointly decrypt

2- PartDec: computes decr. shares 
3- FinDec: combines the decr. shares

Uncorrupted-Server Th-FHE

𝑚

sk2

sk3

ct = Eval
evk; 𝑓;

ct𝑖 𝑖  

1- ServerDec(ct)

This depends on applications!

• OK if the group of users externalizes the computation to an outsider server

⇒ Somewhat trusted third party (may eavesdrop, may not collude)

• Not OK for the universal thresholdizer, which requires Eval to be deterministic



CONTRIBUTION #2: DOUBLE FLOOD & ROUND
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ct = 𝑎, 𝑏 :  𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍  sk𝑖

PartDec ct, sk𝑖

sh𝑖 ≔  𝑎 ⋅ 𝑠𝑘𝑖 + 𝑒𝑖

    Using tiny 𝑒_𝑖

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

ServerDec ct

Add  Enc 0   to  ct
Add exponential flooding to  𝑏-part

Rdm-Rescale to a 𝐩𝐨𝐥𝐲 𝝀  modulus
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14A. Passelègue & D. Stehlé  --  low communication threshold fully homomorphic encryption

ct = 𝑎, 𝑏 :  𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍  sk𝑖

PartDec ct, sk𝑖

sh𝑖 ≔  𝑎 ⋅ 𝑠𝑘𝑖 + 𝑒𝑖

    Using tiny 𝑒_𝑖

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

ServerDec ct

Add  Enc 0   to  ct
Add exponential flooding to  𝑏-part

Rdm-Rescale to a 𝐩𝐨𝐥𝐲 𝝀  modulus

• Everything that users get and send is with a   𝐩𝐨𝐥𝐲 𝝀  modulus

• This requires exponential flooding, but only internally to the server

• Proof technique closely related to MS23*

* D. Micciancio, A. Suhl. Simulation-secure 

threshold PKE from LWE with polynomial 

modulus.  eprint 2023/1728



WRAP-UP
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Contribution #1

Cryptanalysis of the BS23* Threshold-FHE with moderate decryption modulus

⇒ All known (general-purpose) Threshold-FHE’s need exponential decr. modulus

Contribution #2

Construction of a Threshold-FHE with tiny decryption modulus…

… for the (specific) case where the server is not colluding. 

Open problems:  

• Can we get general-purpose Threshold-FHE with   poly 𝑄𝑑𝑒𝑐 decryption modulus?

• Can we weaken the noncolluding-server assumption?  



QUESTIONS? 

Eprint 2024/1984

{ alain.passelegue, damien.stehle }  @  cryptolab.co.kr  
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