
LOW COMMUNICATION THRESHOLD

FULLY HOMOMORPHIC ENCRYPTION

ALAIN PASSELÈGUE & DAMIEN STEHLÉ

KOLKATA --- DECEMBER 13, 2024

Eprint 2024/1984

MAIN RESULTS

2A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

Contribution #1

Cryptanalysis of the BS23* Threshold-FHE with moderate decryption modulus

⇒ All known (general-purpose) Threshold-FHE’s need exponential decr. modulus

Contribution #2

Construction of a Threshold-FHE with tiny decryption modulus…

… for the (specific) case where the computing party is not corrupted.

* K. Boudgoust, P. Scholl: Simple threshold

(fully homomorphic encryption) from LWE

with polynomial modulus. ASIACRYPT’23

Disclaimer: we only look at the 𝑁-out-of-𝑁 case

THRESHOLD-FHE

3

𝑚

evk

ct𝑖 𝑖

Performs computations
on the 𝑚𝑖’s underlying

the ct𝑖’s

Server

ct = Eval
evk; 𝑓;

ct𝑖 𝑖

sk

User

Decrypts

FHE

A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

THRESHOLD-FHE

3

𝑚

evk

ct𝑖 𝑖

Performs computations
on the 𝑚𝑖’s underlying

the ct𝑖’s

Server

ct = Eval
evk; 𝑓;

ct𝑖 𝑖

sk

User

Decrypts

FHE

evk

ct𝑖 𝑖

Performs computations
on the 𝑚𝑖’s underlying

the ct𝑖’s

Server

ct = Eval
evk; 𝑓;

ct𝑖 𝑖 sk1

Users

Jointly decrypt
1- PartDec: computes decr. shares
2- FinDec: combines the decr. shares

Th-FHE

𝑚

sk2

sk3

A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

THRESHOLD-FHE

3

𝑚

Th-FHE: sk is shared between users

• Protects sk

• Enables secure multi-party computations*

• Allows to thresholdize cryptographic constructions**

evk

ct𝑖 𝑖

Performs computations
on the 𝑚𝑖’s underlying

the ct𝑖’s

Server

ct = Eval
evk; 𝑓;

ct𝑖 𝑖

sk

User

Decrypts

FHE

evk

ct𝑖 𝑖

Performs computations
on the 𝑚𝑖’s underlying

the ct𝑖’s

Server

ct = Eval
evk; 𝑓;

ct𝑖 𝑖 sk1

Users

Jointly decrypt
1- PartDec: computes decr. shares
2- FinDec: combines the decr. shares

Th-FHE

𝑚

sk2

sk3

A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

* G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikun-

tanathan, D. Wichs. Multiparty computation with low

communication, computation and interaction via

threshold FHE. EUROCRYPT’12

** D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim,

P. Rasmussen, A. Sahai. Threshold cryptosystems from

threshold fully homomorphic encryption. CRYPTO’18

THRESHOLD-FHE: SECURITY (INFORMAL)

4

evk

ct𝑖 𝑖

Performs computations
on the 𝑚𝑖’s underlying

the ct𝑖’s

Server

ct = Eval
evk; 𝑓;

ct𝑖 𝑖 sk1

Users

Jointly decrypt
1- PartDec: computes decr. shares
2- FinDec: combines the decr. shares

Th-FHE

𝑚

sk2

sk3

A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

Adversary can:

➢ corrupt 𝑁 − 1 users

➢ request encr. of ptxts

➢ request evaluations on generated ctxts

➢ request decr. of any generated ctxt
 (unless its ptxt trivially solves the challenge)

Adervsary’s challenge: distinguish between

the encryptions of two ptxts of its choice

(we actually consider simulation-based security)

Side note: for 𝑁 = 1 user, this matches the IND-CPA-D security notion from LM21*.

* B. Li, D. Micciancio. On the security of

homomorphic encryption on approximate

numbers. EUROCRYPT’21

THRESHOLD-FHE: GENERAL DESIGN

5A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

Start from an FHE scheme, with ciphertexts of the form:

ct = 𝑎, 𝑏 : 𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

• 𝑎, 𝑏 can be over ℤ𝑞 (LWE) or 𝑅𝑞 (Ring-LWE), and 𝑒 is small

• Ecd can be most/least/… significant bits

Split the key as

sk = ෍ sk𝑖

PartDec ct, sk𝑖

sh𝑖 ≔ 𝑎 ⋅ sk𝑖 + 𝑒𝑖

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

HOW LARGE SHOULD THE FLOODING BE?

6A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

ct = 𝑎, 𝑏 : 𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍ sk𝑖

The size of 𝑒𝑖 drives the choice of 𝑞 during decryption

 ⇒ drives amount of communication in decryption

(if need be, we can switch to a large 𝑞 just before decryption*)

* M. Dahl, D. Demmler, S. El Kazdadi, A. Meyre, J.-B. Orfila,

D. Rotaru, N. Smart, S. Tap, M. Walter. Noah’s ark: Efficient

threshold-FHE using noise flooding. WAHC’23

PartDec ct, sk𝑖

sh𝑖 ≔ 𝑎 ⋅ sk𝑖 + 𝑒𝑖

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

HOW LARGE SHOULD THE FLOODING BE?

6A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

ct = 𝑎, 𝑏 : 𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍ sk𝑖

The size of 𝑒𝑖 drives the choice of 𝑞 during decryption

 ⇒ drives amount of communication in decryption

(if need be, we can switch to a large 𝑞 just before decryption*)

No 𝒆𝒊: 𝑒𝑖 = 0
Adversary can recover sk𝑖

* M. Dahl, D. Demmler, S. El Kazdadi, A. Meyre, J.-B. Orfila,

D. Rotaru, N. Smart, S. Tap, M. Walter. Noah’s ark: Efficient

threshold-FHE using noise flooding. WAHC’23

Exponential 𝒆𝒊: 𝑒𝑖 ≥ 2𝜆 ⋅ |𝑒|
We can simulate the adversary’s view

PartDec ct, sk𝑖

sh𝑖 ≔ 𝑎 ⋅ sk𝑖 + 𝑒𝑖

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

HOW LARGE SHOULD THE FLOODING BE?

7A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

ct = 𝑎, 𝑏 : 𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

No 𝒆𝒊: 𝑒𝑖 = 0
Adversary can recover sk𝑖

Exponential 𝒆𝒊: 𝑒𝑖 ≥ 2𝜆 ⋅ |𝑒|
We can simulate the adversary’s view

Very small 𝒆𝒊: 𝑒𝑖 ≈ poly 𝜆 ⋅ |𝑒|
Adversary can “average-out” 𝑒𝑖 in sℎ𝑖

What about moderate 𝒆𝒊?

𝑒𝑖 ≈ poly 𝑄𝑑𝑒𝑐 ⋅ |𝑒|

(𝑄𝑑𝑒𝑐 is the number of decr. queries)

Split the key as

sk = ෍ sk𝑖

PartDec ct, sk𝑖

sh𝑖 ≔ 𝑎 ⋅ sk𝑖 + 𝑒𝑖

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

CAN MODERATE FLOODING WORK?

8A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

ct = 𝑎, 𝑏 : 𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍ sk𝑖

PartDec ct, sk𝑖

 sh𝑖 ≔ 𝑎 ⋅ sk𝑖 + 𝑒𝑖

𝑒𝑖 ≈ poly 𝑄𝑑𝑒𝑐 ⋅ |𝑒|

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

ASY22*: When used to thresholdize a

signature scheme, this can be proved

secure using Rényi Divergence

* S. Agrawal, D. Stehlé, A. Yadav. Round-

optimal lattice-based threshold signatures,

revisited. ICALP’22

** B. Li, D. Micciancio, M. Schultz, J. Sorrell.

Securing approximate homomorphic

encryption using differential privacy. CRYPTO’22

LMSS22** attack, e.g. using BFV:

• Encrypt (10,10) or (0,0)
• Perform an inner product with 1, −1
• In both cases, the result is 0

• But the noise is larger for (10,10)

⇒ Gives a poly
1

𝑄𝑑𝑒𝑐
 dist. advantage

THE BS23 APPROACH

9A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

ct = 𝑎, 𝑏 : 𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍ sk𝑖

** K. Boudgoust, P. Scholl: Simple threshold

(fully homomorphic encryption) from LWE with

polynomial modulus. ASIACRYPT’23

LMSS22: The decryption noise may

carry information on past computations,

including the challenge plaintexts

BS23* (informal): Assuming the FHE scheme

is circuit-private, then the threshold FHE

scheme is secure with moderate noise

Circuit privacy: the distribution of the decryption

noise does not depend on past computations,

even if sk is given to the adversary

ASY22: When used to thresholdize a

signature scheme, this can be proved

secure using Rényi Divergence

PartDec ct, sk𝑖

 sh𝑖 ≔ 𝑎 ⋅ sk𝑖 + 𝑒𝑖

𝑒𝑖 ≈ poly 𝑄𝑑𝑒𝑐 ⋅ |𝑒|

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

CONTRIBUTION #1: CRYPTANALYSIS OF BS23

10A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

Assumption 1: the scheme allows “Rescale”

ct = 𝑎, 𝑏 : 𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

ct′ = 𝑎′, 𝑏′ =
𝑞′

𝑞
𝑎 ,

𝑞′

𝑞
𝑏 [𝑞′] with 𝑞′ ≪ 𝑞

We have

 𝑎′ ⋅ sk + 𝑏′ ≈ Ecd 𝑚 + 𝑒𝑟𝑛𝑑 ⋅ sk ,

where 𝑒𝑟𝑛𝑑 =
𝑞′

𝑞
𝑎 is known

We are given ct∗ = 𝑎∗, 𝑏∗ : 𝑎∗ ⋅ sk + 𝑏∗ = Ecd 𝑚𝛽 + 𝑒 [𝑞]

We want to distinguish 𝛽 = 0 from 𝛽 = 1

CONTRIBUTION #1: CRYPTANALYSIS OF BS23

10A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

Assumption 1: the scheme allows “Rescale”

ct = 𝑎, 𝑏 : 𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

ct′ = 𝑎′, 𝑏′ =
𝑞′

𝑞
𝑎 ,

𝑞′

𝑞
𝑏 [𝑞′] with 𝑞′ ≪ 𝑞

We have

 𝑎′ ⋅ sk + 𝑏′ ≈ Ecd 𝑚 + 𝑒𝑟𝑛𝑑 ⋅ sk ,

where 𝑒𝑟𝑛𝑑 =
𝑞′

𝑞
𝑎 is known

Assumption 2: “nice” homomorphic mult. noise

ct1 = 𝑎1, 𝑏1 : 𝑎1 ⋅ sk + 𝑏1 = Ecd 𝑚1 + 𝑒1 [𝑞]
ct2 = 𝑎2, 𝑏2 : 𝑎2 ⋅ 𝑠𝑘 + 𝑏2 = Ecd 𝑚2 + 𝑒2 [𝑞]

ct× = 𝑎×, 𝑏× : 𝑎× ⋅ sk + 𝑏× = Ecd 𝑚1 ⋅ 𝑚2 + 𝑒× [𝑞′]

with

𝑒× ≈ 𝑚1 ⋅ 𝑒2 + 𝑚2 ⋅ 𝑒1

BFV and CKKS can be parametrized to fit

We are given ct∗ = 𝑎∗, 𝑏∗ : 𝑎∗ ⋅ 𝑠𝑘 + 𝑏∗ = Ecd 𝑚𝛽 + 𝑒 [𝑞]

We want to distinguish 𝛽 = 0 from 𝛽 = 1

CONTRIBUTION #1: CRYPTANALYSIS OF BS23

11A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

We are given ct∗ = 𝑎∗, 𝑏∗ : 𝑎∗ ⋅ sk + 𝑏∗ = Ecd 𝑚𝛽 + 𝑒 [𝑞]

We want to distinguish 𝛽 = 0 from 𝛽 = 1

Enc 1
Rescale

Enc(1)

noise ≈ 𝑒𝑟𝑛𝑑 ⋅ sk
with known 𝑒𝑟𝑛𝑑

If Eval ends up with Enc 𝐴 ,

we post-process as follows:

CONTRIBUTION #1: CRYPTANALYSIS OF BS23

11A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

We are given ct∗ = 𝑎∗, 𝑏∗ : 𝑎∗ ⋅ sk + 𝑏∗ = Ecd 𝑚𝛽 + 𝑒 [𝑞]

We want to distinguish 𝛽 = 0 from 𝛽 = 1

Enc 1
Rescale

noise ≈ 𝐴 ⋅ 𝑒𝑟𝑛𝑑 ⋅ sk
if 𝐴 is large

Enc 𝐴

Multiply

Enc(1)

Enc 𝐴

noise ≈ 𝑒𝑟𝑛𝑑 ⋅ sk
with known 𝑒𝑟𝑛𝑑

If Eval ends up with Enc 𝐴 ,

we post-process as follows:

CONTRIBUTION #1: CRYPTANALYSIS OF BS23

11A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

We are given ct∗ = 𝑎∗, 𝑏∗ : 𝑎∗ ⋅ sk + 𝑏∗ = Ecd 𝑚𝛽 + 𝑒 [𝑞]

We want to distinguish 𝛽 = 0 from 𝛽 = 1

1. If the initial scheme is circuit-private,

 then so is the modified scheme

2. Request encryption and decryption of MSB 𝑎∗

3. Recover 𝑒× ≈ MSB 𝑎∗ ⋅ 𝑒𝑟𝑛𝑑 ⋅ sk

4. Compute 𝑒× + 𝑒𝑟𝑛𝑑 ⋅ 𝑏∗ ≈ ernd ⋅ Ecd 𝑚𝛽

5. As the decr. modulus is small, we can distinguish

Enc 1
Rescale

noise ≈ 𝐴 ⋅ 𝑒𝑟𝑛𝑑 ⋅ sk
if 𝐴 is large

Enc 𝐴

Multiply

Enc(1)

Enc 𝐴

noise ≈ 𝑒𝑟𝑛𝑑 ⋅ sk
with known 𝑒𝑟𝑛𝑑

If Eval ends up with Enc 𝐴 ,

we post-process as follows:

FORGETTING HISTORY REQUIRES RANDOMNESS

12A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

Deeper issue with the BS23 approach:

• Current circuit-privacy techniques require the server to inject randomness

• But the server is potentially a corrupted user ⇒ not random to the adversary

FORGETTING HISTORY REQUIRES RANDOMNESS

12A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

Deeper issue with the BS23 approach:

• Current circuit-privacy techniques require the server to inject randomness

• But the server is potentially a corrupted user ⇒ not random to the adversary

We propose an noncolluding-server variant of Threshold-FHE

evk

ct𝑖 𝑖

Server

sk1

Users

Jointly decrypt
1- PartDec: computes decr. shares
2- FinDec: combines the decr. shares

Th-FHE

𝑚

sk2

sk3

ct = Eval
evk; 𝑓;

ct𝑖 𝑖

ct

evk

ct𝑖 𝑖

Server

sk1

Users

Jointly decrypt
2- PartDec: computes decr. shares
3- FinDec: combines the decr. shares

Noncolluding-Server Th-FHE

𝑚

sk2

sk3

ct = Eval
evk; 𝑓;

ct𝑖 𝑖

1- ServerDec(ct)

DOES THE MODEL MAKE SENSE?

13A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

evk

ct𝑖 𝑖

Server

sk1

Users

Jointly decrypt

2- PartDec: computes decr. shares
3- FinDec: combines the decr. shares

Uncorrupted-Server Th-FHE

𝑚

sk2

sk3

ct = Eval
evk; 𝑓;

ct𝑖 𝑖

1- ServerDec(ct)

This depends on applications!

• OK if the group of users externalizes the computation to an outsider server

⇒ Somewhat trusted third party (may eavesdrop, may not collude)

• Not OK for the universal thresholdizer, which requires Eval to be deterministic

CONTRIBUTION #2: DOUBLE FLOOD & ROUND

14A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

ct = 𝑎, 𝑏 : 𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍ sk𝑖

PartDec ct, sk𝑖

sh𝑖 ≔ 𝑎 ⋅ 𝑠𝑘𝑖 + 𝑒𝑖

 Using tiny 𝑒_𝑖

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

ServerDec ct

Add Enc 0 to ct
Add exponential flooding to 𝑏-part

Rdm-Rescale to a 𝐩𝐨𝐥𝐲 𝝀 modulus

CONTRIBUTION #2: DOUBLE FLOOD & ROUND

14A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

ct = 𝑎, 𝑏 : 𝑎 ⋅ sk + 𝑏 = Ecd 𝑚 + 𝑒 [𝑞]

Split the key as

sk = ෍ sk𝑖

PartDec ct, sk𝑖

sh𝑖 ≔ 𝑎 ⋅ 𝑠𝑘𝑖 + 𝑒𝑖

 Using tiny 𝑒_𝑖

FinDec ct, sh𝑖 𝑖

Dcd (∑sh𝑖 + 𝑏)

ServerDec ct

Add Enc 0 to ct
Add exponential flooding to 𝑏-part

Rdm-Rescale to a 𝐩𝐨𝐥𝐲 𝝀 modulus

• Everything that users get and send is with a 𝐩𝐨𝐥𝐲 𝝀 modulus

• This requires exponential flooding, but only internally to the server

• Proof technique closely related to MS23*

* D. Micciancio, A. Suhl. Simulation-secure

threshold PKE from LWE with polynomial

modulus. eprint 2023/1728

WRAP-UP

15A. Passelègue & D. Stehlé -- low communication threshold fully homomorphic encryption

Contribution #1

Cryptanalysis of the BS23* Threshold-FHE with moderate decryption modulus

⇒ All known (general-purpose) Threshold-FHE’s need exponential decr. modulus

Contribution #2

Construction of a Threshold-FHE with tiny decryption modulus…

… for the (specific) case where the server is not colluding.

Open problems:

• Can we get general-purpose Threshold-FHE with poly 𝑄𝑑𝑒𝑐 decryption modulus?

• Can we weaken the noncolluding-server assumption?

QUESTIONS?

Eprint 2024/1984

{ alain.passelegue, damien.stehle } @ cryptolab.co.kr

	Introduction
	Slide 1: Low Communication Threshold Fully Homomorphic Encryption
	Slide 2: Main results
	Slide 3: THRESHOLD-FHE
	Slide 4: THRESHOLD-FHE
	Slide 5: THRESHOLD-FHE
	Slide 6: THRESHOLD-FHE: Security (Informal)
	Slide 7: THRESHOLD-FHE: General design
	Slide 8: How large should the flooding be?
	Slide 9: How large should the flooding be?
	Slide 10: How large should the flooding be?
	Slide 11: CAN moderate Flooding work?
	Slide 12: The BS23 aPPROACH
	Slide 13: Contribution #1: Cryptanalysis of BS23
	Slide 14: Contribution #1: Cryptanalysis of BS23
	Slide 15: Contribution #1: Cryptanalysis of BS23
	Slide 16: Contribution #1: Cryptanalysis of BS23
	Slide 17: Contribution #1: Cryptanalysis of BS23
	Slide 18: Forgetting History requires randomness
	Slide 19: Forgetting History requires randomness
	Slide 20: DOES THE MODEL MAKE SENSE?
	Slide 21: Contribution #2: Double Flood & round
	Slide 22: Contribution #2: Double Flood & round
	Slide 23: Wrap-UP

	Conclusion
	Slide 24

