LOW COMMUNICATION THRESHOLD FULLY HOMOMORPHIC ENCRYPTION

ALAIN PASSELÈGUE & DAMIEN STEHLÉ

KOLKATA --- DECEMBER 13, 2024

Eprint 2024/1984

* K. Boudgoust, P. Scholl: Simple threshold (fully *homomorphic encryption) from LWE with polynomial modulus*. ASIACRYPT'23

MAIN RESULTS

Contribution #1

Cryptanalysis of the BS23* Threshold-FHE with **moderate** decryption modulus

⇒ All known (general-purpose) Threshold-FHE's need **exponential** decr. modulus

Contribution #2

Construction of a Threshold-FHE with **tiny** decryption modulus…

… for the (specific) case where the computing party is not corrupted.

Disclaimer: we only look at the N -out-of- N case

THRESHOLD-FHE

THRESHOLD-FHE

THRESHOLD-FHE

* G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, D. Wichs. Multiparty computation with low communication, computation and interaction via threshold FHE. EUROCRYPT'12

** D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. Rasmussen, A. Sahai. Threshold cryptosystems from threshold fully homomorphic encryption. CRYPTO'18

Th-FHE: sk is shared between users

- Protects sk
- Enables secure multi-party computations*
- Allows to thresholdize cryptographic constructions**

* B. Li, D. Micciancio. On the security of homomorphic encryption on approximate numbers. EUROCRYPT'21

THRESHOLD-FHE: SECURITY (INFORMAL)

Adversary can:

- \triangleright corrupt $N-1$ users
- ➢ request encr. of ptxts
- ➢ request evaluations on generated ctxts
- ➢ request decr. of any generated ctxt (unless its ptxt trivially solves the challenge)

Adervsary's challenge: distinguish between the encryptions of two ptxts of its choice

(we actually consider simulation-based security)

Side note: for $N = 1$ user, this matches the IND-CPA-D security notion from LM21^{*}.

THRESHOLD-FHE: GENERAL DESIGN

Start from an FHE scheme, with ciphertexts of the form:

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

• a, b can be over \mathbb{Z}_q (LWE) or R_q (Ring-LWE), and e is small

• Ecd can be most/least/… significant bits

* M. Dahl, D. Demmler, S. El Kazdadi, A. Meyre, J.-B. Orfila, D. Rotaru, N. Smart, S. Tap, M. Walter. Noah's ark: Efficient threshold-FHE using noise flooding. WAHC'23

HOW LARGE SHOULD THE FLOODING BE?

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

The size of e_i drives the choice of q during decryption ⇒ drives amount of communication in decryption

(if need be, we can switch to a large q just before decryption*)

* M. Dahl, D. Demmler, S. El Kazdadi, A. Meyre, J.-B. Orfila, D. Rotaru, N. Smart, S. Tap, M. Walter. Noah's ark: Efficient threshold-FHE using noise flooding. WAHC'23

HOW LARGE SHOULD THE FLOODING BE?

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

The size of e_i drives the choice of q during decryption ⇒ drives amount of communication in decryption

(if need be, we can switch to a large q just before decryption*)

 $e_i = 0$ Adversary can recover sk_i

Exponential e_i : $|e_i| \geq 2^{\lambda} \cdot |e|$ We can simulate the adversary's view

HOW LARGE SHOULD THE FLOODING BE?

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

No $e_i = 0$ Adversary can recover sk_i

Exponential $: |e_i| \geq 2^{\lambda} \cdot |e|$ We can simulate the adversary's view

Very small e_i : $|e_i| \approx \text{poly}(\lambda) \cdot |e|$ Adversary can "average-out" e_i in \sh_i **What about moderate** e_i ? $|e_i| \approx \text{poly}(Q_{dec}) \cdot |e|$ $(Q_{dec}$ is the number of decr. queries)

CAN MODERATE FLOODING WORK?

* S. Agrawal, D. Stehlé, A. Yadav. Roundoptimal lattice-based threshold signatures, revisited. ICALP'22

** B. Li, D. Micciancio, M. Schultz, J. Sorrell. Securing approximate homomorphic encryption using differential privacy. CRYPTO'22

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

Split the key as $sk = \sum sk_i$

PartDec (ct, sk_i)

 $sh_i \coloneqq a \cdot sk_i + e_i$ $|e_i| \approx \text{poly}(Q_{dec}) \cdot |e|$ FinDec $(ct, (sh_i)_i)$ Dcd $(\sum sh_i + b)$

ASY22*: When used to thresholdize a signature scheme, this can be proved secure using Rényi Divergence

LMSS22** attack, e.g. using BFV:

- Encrypt $(10,10)$ or $(0,0)$
- Perform an inner product with $(1, -1)$
- In both cases, the result is 0
- But the noise is larger for $(10,10)$

 \Rightarrow Gives a poly $\left(\frac{1}{2}\right)$ Q_{dec} dist. advantage

** K. Boudgoust, P. Scholl: Simple threshold (fully *homomorphic encryption) from LWE with polynomial modulus*. ASIACRYPT'23

THE BS23 APPROACH

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

ASY22: When used to thresholdize a signature scheme, this can be proved secure using Rényi Divergence

LMSS22: The decryption noise may carry **information on past computations**, including the challenge plaintexts

BS23* (informal): Assuming the FHE scheme is **circuit-private**, then the threshold FHE scheme is secure with moderate noise

Circuit privacy: the distribution of the decryption noise does not depend on past computations, even if sk is given to the adversary

We are given $ct^* = (a^*, b^*)$: $a^* \cdot sk + b^* = \text{Ecd}(m_\beta) + e \cdot [q]$ We want to distinguish $\beta = 0$ from $\beta = 1$

Assumption 1: the scheme allows "Rescale"

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$ $ct' = (a', b') = \left(\frac{q'}{a} \right)$ $\frac{q'}{q}a\bigg]$, $\bigg|\frac{q'}{q}\bigg|$ $\left(\begin{array}{c} \frac{q}{q} \ b \end{array} \right)$ $\left[\begin{array}{c} q' \end{array} \right]$ with $q' \ll q$

We have

 $a' \cdot sk + b' \approx Ecd(m) + e_{rnd} \cdot sk$, where $e_{rnd} = \left\{\frac{q'}{q}\right\}$ $\frac{d}{q}a\big\}$ is **known**

We are given $ct^* = (a^*, b^*)$: $a^* \cdot sk + b^* = \text{Ecd}(m_\beta) + e \cdot [q]$ We want to distinguish $\beta = 0$ from $\beta = 1$

Assumption 1: the scheme allows "Rescale"

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$ $ct' = (a', b') = \left(\frac{q'}{a} \right)$ $\frac{q'}{q}a\bigg]$, $\bigg|\frac{q'}{q}\bigg|$ $\left(\begin{array}{c} \frac{q}{q} \ b \end{array} \right)$ $\left[\begin{array}{c} q' \end{array} \right]$ with $q' \ll q$

We have

 $a' \cdot sk + b' \approx Ecd(m) + e_{rnd} \cdot sk$, where $e_{rnd} = \left\{\frac{q'}{q}\right\}$ $\frac{d}{q}a\big\}$ is **known**

Assumption 2: "nice" homomorphic mult. noise

 $ct_1 = (a_1, b_1): a_1 \cdot sk + b_1 = Ecd(m_1) + e_1$ [q] $ct_2 = (a_2, b_2): a_2 \cdot sk + b_2 = Ecd(m_2) + e_2$ [q] $ct_x = (a_x, b_x): a_x \cdot sk + b_x = Ecd(m_1 \cdot m_2) + e_x [q']$ with $\overline{e_{\times}} \approx m_1 \cdot e_2 + m_2 \cdot e_1$

BFV and CKKS can be parametrized to fit

We are given $ct^* = (a^*, b^*)$: $a^* \cdot sk + b^* = \text{Ecd}(m_\beta) + e \cdot [q]$ We want to distinguish $\beta = 0$ from $\beta = 1$

If Eval ends up with $Enc(A)$, we post-process as follows:

 $Enc(1)$ **Rescale** $Enc(1)$

noise $\approx e_{rnd} \cdot$ sk with known e_{rnd}

We are given $ct^* = (a^*, b^*)$: $a^* \cdot sk + b^* = \text{Ecd}(m_\beta) + e \cdot [q]$ We want to distinguish $\beta = 0$ from $\beta = 1$

We are given $ct^* = (a^*, b^*)$: $a^* \cdot sk + b^* = \text{Ecd}(m_\beta) + e \cdot [q]$ We want to distinguish $\beta = 0$ from $\beta = 1$

- 1. If the initial scheme is circuit-private, then so is the modified scheme
- 2. Request encryption and decryption of $MSB(a^*)$
- 3. Recover $e_x \approx \text{MSB}(a^*) \cdot e_{rnd} \cdot \text{sk}$
- 4. Compute $e_{\times} + e_{rnd} \cdot b^* \approx e_{rnd} \cdot \text{Ecd}(m_{\beta})$
- 5. As the decr. modulus is small, we can distinguish

FORGETTING HISTORY REQUIRES RANDOMNESS

Deeper issue with the BS23 approach:

- Current circuit-privacy techniques require the server to **inject randomness**
- But the server is potentially a corrupted user ⇒ **not random to the adversary**

FORGETTING HISTORY REQUIRES RANDOMNESS

Deeper issue with the BS23 approach:

- Current circuit-privacy techniques require the server to **inject randomness**
- But the server is potentially a corrupted user ⇒ **not random to the adversary**

We propose an **noncolluding-server variant of Threshold-FHE**

DOES THE MODEL MAKE SENSE?

This depends on applications!

- OK if the group of users externalizes the computation to an outsider server ⇒ Somewhat trusted third party (may eavesdrop, may not collude)
- Not OK for the universal thresholdizer, which requires Eval to be deterministic

CONTRIBUTION #2: DOUBLE FLOOD & ROUND

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

Split the key as

 $sk = \sum sk_i$

ServerDec (ct)

Add $Enc(0)$ to ct Add exponential flooding to b -part Rdm-Rescale to a **poly(1) modulus** PartDec (ct, sk_i)

 $sh_i := a \cdot sk_i + e_i$ Using **tiny** e_i

FinDec $(ct, (sh_i)_i)$ Dcd $(\sum sh_i + b)$

* D. Micciancio, A. Suhl. Simulation-secure threshold PKE from LWE with polynomial modulus. eprint 2023/1728

CONTRIBUTION #2: DOUBLE FLOOD & ROUND

 $ct = (a, b): a \cdot sk + b = Ecd(m) + e [q]$

Split the key as

 $sk = \sum sk_i$

ServerDec (ct)

Add $Enc(0)$ to ct Add exponential flooding to b -part Rdm-Rescale to a $\text{poly}(\lambda)$ modulus PartDec (ct, sk_i)

 $sh_i \coloneqq a \cdot sk_i + e_i$ Using **tiny** e_i

FinDec $(ct, (sh_i)_i)$ Dcd $(\sum sh_i + b)$

• Everything that users get and send is with a **poly(2) modulus**

- This requires exponential flooding, but only internally to the server
- Proof technique closely related to MS23^{*}

WRAP-UP

Contribution #1

Cryptanalysis of the BS23* Threshold-FHE with **moderate** decryption modulus

⇒ All known (general-purpose) Threshold-FHE's need **exponential** decr. modulus

Contribution #2

Construction of a Threshold-FHE with **tiny** decryption modulus…

… for the (specific) case where the server is not colluding.

Open problems:

- Can we get general-purpose Threshold-FHE with $poly(Q_{dec})$ decryption modulus?
- Can we weaken the noncolluding-server assumption?

QUESTIONS?

Eprint 2024/1984

{ alain.passelegue, damien.stehle } @ cryptolab.co.kr