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Private Set intersection (PSI)

Sender Receiver
PSI

Q = {qj}j∈[m] W = {wi}i∈[n]

nothing I = Q ∩W

I = {qj : ∃ i , s.t. wi = qj}
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Fuzzy Private Set intersection (FPSI)

Sender Receiver
FPSI

Q = {qj}j∈[m] W = {wi}i∈[n]

nothing Ifuzzy

Ifuzzy = {qj : ∃ i , s.t. dist (wi , qj) ≤ δ}
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Applications

Background 7 / 32

Searching on a database whose entries are not always accurate or full [FNP04]

Building block for privacy-preserving biometric identification [UCK+21; CFR23; CLO24]

Checking whether a user’s password is similar to passwords that have been leaked online
[GRS22; BP24]

Illegal content detection [BP24]

· · ·



Previous Work and Motivation

Background 8 / 32

Previous works can be divided into two categories: FPSI for Hamming and Lp∈[1,∞] distances.

1 Complexities of FPSI for Hamming distance have superlinear factors on input set sizes
▶ Brutally traversing all pairs of inputs results in the m · n factor in complexities [FNP04;

IW06; CH08; YSPW10; UCK+21; CFR23]
▶ approximating Ifuzzy via multiple rounds of PSI results in the max {m, n} log (max {m, n})

factor in complexities [CLO24]

2 Complexities of FPSI for Lp∈[1,∞] distance have superlinear factors on input set sizes or
dimension d

▶ Spatial Hashing and Locality Sensitive Hashing result in the 2d and m · nρ factors in
complexities, respectively [GRS22; GRS23; BP24]

Can we construct FPSI whose cost scales linearly
with input set sizes and dimension?
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Our Contributions

Background 9 / 32

We focus on FPSI for Hamming and Lp∈[1,∞] distances in semi-honest setting.

Introduce a new primitive called Fuzzy Mapping (Fmap)

Propose a new FPSI framework based on Fmap and Fuzzy Matching (FMatch)

Construct FPSI for Hamming and Lp∈[1,∞] distances with new Fmap instances
▶ Costs of FPSI for Hamming distance scale linearly with input set sizes
▶ Costs of FPSI for Lp∈[1,∞] distance scale linearly with input set sizes, dimension and

threashold δ

Demonstrate the efficiency of our FPSI with an implementation
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Oblivious Key-Value Store

Our Main Idea 11 / 32

Oblivious Key-Value Store (OKVS) enables encoding n key-value pairs such that an
adversary can not reverse engineer the original input keys with the encoding result, when
input keys {k1, · · · , kn} are distinct and values {v1, · · · , vn} are random.

OKVS consists of Encode and Decode algorithms.
▶ D ← Encode({(k1, v1), · · · , (kn, vn)})
▶ v ← Decode(D, k)
▶ If k = ki ∈ {k1, · · · , kn}, then v = vi

Recent OKVS constructions achieve output D of size O(n), encoding cost of O(nλ) ,
decoding cost of O(λ), and Randomly Decoding.

▶ Randomly Decoding: If k /∈ {k1, · · · , kn}, then v = rand

λ is the statistical security parameter.



Additively Homomorphic Encryption

Our Main Idea 12 / 32

An Additively Homomorphic Encryption (AHE) scheme is an encryption scheme that
enables to compute an encryption of the sum of two messages by just performing
operations on ciphertexts of these messages.

▶ (pk, sk)← Gen(1κ)
▶ c ← Encpk(m)
▶ m← Decsk(c)
▶ If c ′ ← Encpk(m

′) and c ′′ ← Encpk(m
′′), then it holds that

Decsk(c
′ ⊕pk c

′′) = m′ +m′′

κ is the computational security parameter.



Fuzzy Matching

FMatch
q w

e ∈ {0, 1}

e =

{
1, dist (w , q) ≤ δ

0, otherwise

Our Main Idea 13 / 32

A trivial construction of FPSI:
▶ Invoke FMatch on all m · n pairs of inputs to indicate the result of FPSI
▶ Receiver can obtain Ifuzzy via OT



Secret-Shared Fuzzy Matching

ssFMatch

q w

es ∈ {0, 1} er ∈ {0, 1}

es ⊕ er =

{
1, dist (w , q) ≤ δ

0, otherwise

Our Main Idea 14 / 32

A trivial construction of FPSI:
▶ Invoke FMatch on all m · n pairs of inputs to indicate the result of FPSI
▶ Receiver can obtain Ifuzzy via OT



Mapping in PSI

1 3 7 9

✓

2 5 9
Hash1 →
Hash2 →
Hash3 →

Our Main Idea 15 / 32

How does PSI avoid the m · n factor caused by comparing all pairs of inputs?
▶ Using Cuckoo-Simple Hashing, each qj is hashed to 1 bin and each wi is hashed to 3 bins
▶ Same elements will be hashed to a same bin
▶ Q ∩W can be computed by Sender and Receiver processing m and 3n bins, respectively
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Fuzzy Mapping in FPSI

Fmap

Q = {qj}j∈[m] W = {wi}i∈[n]

{ID(qj)}j∈[m] {ID(wi )}i∈[n]

|ID(qj)| = rateS
|ID(wi )| = rateR

If dist (wi , qj) ≤ δ, ID(qj) ∩ ID(wi ) ̸= ∅

Our Main Idea 16 / 32

Similarly, we define Fuzzy Mapping (Fmap) for FPSI to avoid the m · n factor.
▶ Using Fmap, each qj is mapped to rateS identifiers and each wi is mapped to rateR

identifiers
▶ (Correctness) If dist (wi , qj) ≤ δ, qj and wi will have a same identifier
▶ Ifuzzy can be computed by Sender and Receiver processing m · rateS and n · rateR

identifiers, respectively
▶ (Security) Fmap should not leak one party’s information to the other



Existing Fmap Instances
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Naive Fmap: Brutally traversing all pairs of inputs. [FNP04; IW06; CH08; YSPW10;
UCK+21; CFR23]

▶ ID(qj) = {1, 2, · · · , n}, thus Sender have m · n identifiers
▶ ID(wi ) = {i}, thus Receiver have n identifiers

Spatial Hashing Fmap: Spatial Hashing is an Fmap instance. [GRS22; GRS23; BP24]
▶ The entire d-dimensional space is divided into several grids of sidelength of 2δ



Existing Fmap Instances
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Spatial Hashing Fmap: Spatial Hashing is an Fmap instance. [GRS22; GRS23; BP24]
▶ The entire d-dimensional space is divided into several grids of sidelength 2δ
▶ ID(qj) is the grid including qj , thus Sender have m identifiers
▶ ID(wi ) are grids intersecting with ball wi of radius δ, thus Receiver have 2d · n identifiers

⋆ ID(q1) = {g3}...
⋆ ID(w1) = {g1, g2, g3, g4}...



Existing Fmap Instances
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Naive Fmap: Brutally traversing all pairs of inputs. [FNP04; IW06; CH08; YSPW10;
UCK+21; CFR23]

▶ ID(qj) = {1, 2, · · · , n}, thus Sender have m · n identifiers
▶ ID(wi ) = {i}, thus Receiver have n identifiers

Spatial Hashing Fmap: Spatial Hashing is an Fmap instance. [GRS22; GRS23; BP24]
▶ ID(qj) is the grid including qj , thus Sender have m identifiers
▶ ID(wi ) are grids intersecting with ball wi of radius δ, thus Receiver have 2d · n identifiers

...

Many FPSI protocols actually base on instances of Fmap.
Complexity bottlenecks in these protocols are derived from

the excessive expansion rates of their Fmap instances.



FPSI from Fmap

Our Main Idea 20 / 32

”Map and Reduce” Paradigm:

(Map) Map each input point to identifiers
Using Fmap, close points are mapped to a same identifier.
False positives are allowed.

(Reduce) Reduce false positives to obtain result
Using OKVS, points have a same identifier form a pair.
FMatch on these pair can reduce false positives.

Note that Fmap for L∞ is also the Fmap for Lp∈[1,∞].

For any points q and w , L∞(w , q) ≤ Lp∈[1,∞](w , q)

Lp∈[1,∞](w , q) ≤ δ ⇒ L∞(w , q) ≤ δ

So Fmap for L∞ can extract pairs that are close enough for Lp∈[1,∞]
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FPSI from Fmap

Fmap
Q = {qj}j∈[m] W = {wi}i∈[n]

{ID(qj)}j∈[m] {ID(wi )}i∈[n]
(sk, pk)← Gen (1κ)

List←
⋃

i∈[n]

{(
idwi ,

(
Encpk (wi )

))}
idwi∈ID(wi )

E ← Encode (List)
E , pk

for each j ∈ [m] and each ℓ ∈ [rateS ] :

samples mskj ,ℓ = (mskj ,ℓ,k)k∈[d ]
R←− Ud

cj ,ℓ ←
(
Encpk (mskj ,ℓ)⊕pk Decode

(
E , idqj ,ℓ

))
uj ,ℓ ← mskj ,ℓ + qj

cj ,ℓ

vj ,ℓ ← Decsk (cj ,ℓ)

keys of OKVS encoding should be distinct
(Distinctiveness) ID (wi ) ∩ ID (wj) = ∅ for i ̸= j

Our Main Idea 21 / 32



FPSI from Fmap

Fmap
Q = {qj}j∈[m] W = {wi}i∈[n]

{ID(qj)}j∈[m] {ID(wi )}i∈[n]
(sk, pk)← Gen (1κ)

List←
⋃

i∈[n]

{(
idwi ,

(
Encpk (wi )

))}
idwi∈ID(wi )

E ← Encode (List)
E , pk

for each j ∈ [m] and each ℓ ∈ [rateS ] :

samples mskj ,ℓ = (mskj ,ℓ,k)k∈[d ]
R←− Ud

cj ,ℓ ←
(
Encpk (mskj ,ℓ)⊕pk Decode

(
E , idqj ,ℓ

))
uj ,ℓ ← mskj ,ℓ + qj

cj ,ℓ

vj ,ℓ ← Decsk (cj ,ℓ)

keys of OKVS encoding should be distinct
(Distinctiveness) ID (wi ) ∩ ID (wj) = ∅ for i ̸= j

Our Main Idea 21 / 32



FPSI from Fmap for each j ∈ [m] and each ℓ ∈ [rateS ] :

ssFMatch

uj ,ℓ vj ,ℓ

es,j ,ℓ er ,j ,ℓ

for each j ∈ [m] :

PEqT
(es,j ,1, es,j ,2, · · · , es,j ,rateS ) (er ,j ,1, er ,j ,2, · · · , er ,j ,rateS )

ej

for each j ∈ [m] :

OT
(qj ,⊥) ej

mj

translation invariance:
dist(qj +mskj ,wi +mskj) = dist(qj ,wi )

If rateS and rateR are not related to m and n,
FPSI’s cost scales linearly with input set sizes

Our Main Idea 22 / 32
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Instance of Fmap for Hamming Distance

Instantiation of Fuzzy Mapping 24 / 32

To construct an efficient FPSI, all we need is an Fmap with small rateS and rateR.

For Hamming distance, we assume that each Receiver’s point has δ + 1 unique
components (R. UniqC).

In other words, for each Receiver’s point wi , there exists at least δ + 1 dimensions such
that on each of them wi ’s component is different from wi ′ ̸=i ’s components.

UniqC Fmap for Hamming distance.
▶ UniqC Fmap maps qj to all of its d components, thus rateS = d
▶ UniqC Fmap maps wi to δ + 1 unique components, thus rateR = δ + 1

(Correctness) If Ham(qj ,wi ) ≤ δ, qj and wi have at most δ different components.
Therefore, ID(qj) ∩ ID(wi ) ̸= ∅.
(Security) Security property is self-evident because UniqC Fmap has no interaction.

(Distinctiveness) R. UniqC assumption guarantees that different Receiver’s points have
different identifiers.

Obviously, in a high dimensional space, R. UniqC assumption holds with high probability
for a uniformly distributed set of points.
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Instance of Fmap for L∞ Distance

Instantiation of Fuzzy Mapping 25 / 32

As mentioned before, Fmap for L∞ is also the Fmap for Lp∈[1,∞]

Thus, to construct FPSI for Lp∈[1,∞] distance, we only need an Fmap for L∞ distance

In fact, we report an instance of Fmap for L∞ distance with rateS = rateR = 1

Our Fmap with optimal expansion rate brings great efficiency to our FPSI



Instance of Fmap for L∞ Distance

ww[2]

w[1]

w

q
w[2]

w[1]

q[2]

q[1]

2δ
w[1] = q[1]
w[2] = q[2]

Instantiation of Fuzzy Mapping 26 / 32

We assign random values to points on each of Receiver’s d axes.

The assignment of point w in Receiver’s coordinate system Seedr ,w is the sum of its d
components’ assignment in this coordinate system.

Seedr ,w =
∑
k∈[d ]

rr ,w[k]
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If the assignment of Receiver’s d axes satisfies:

∀k ∈ [d ], ∀ℓ ∈ [−δ,−δ], rr ,w[k]+ℓ = rr ,w[k]

Then, if L∞(w , q) ≤ δ, we have Seedr ,w = Seedr ,q

Symmetrically, Seeds,w = Seeds,q holds



Instance of Fmap for L∞ Distance

(sk, pk)← Gen (1κ)

List←
⋃

i∈[n],k∈[d ]

{(
k∥(wi [k] + ℓ),Encpk

(
rr ,wi [k]

) )}
ℓ∈[−δ,δ]

E ← Encode (List)
E , pk

for each j ∈ [m]:

samples mskj
R←− P

cj ← Encpk (mskj)⊕pk

(⊕
pkk∈[d ]

Decode
(
E , k∥qj[k]

))
cj

pj ← Decsk (cj)
pj

Seedr ,qj ← pj −mskj

Instantiation of Fuzzy Mapping 27 / 32

Using AHE and OKVS, it is easy to inform Sender assignments of its points in
Receiver’s coordinate system

But we should not use Seedr ,qj as qj ’s identifier
▶ For Sender’s points qj and q′j , if Seedr ,qj = Seedr ,q′

j
, Sender can infer that there is a

Receiver’s point nearby. Such information leakage undermines security

We choose to avoid this with symmetric operations and DH-like subprotocol in our Fmap

The identifier of a point is DDH value of the sum of its assignments in Sender’s and
Receiver’s coordinate system

▶ For Sender, identifier of qj is idqj = (Seedr ,qj + Seeds,qj )
skDH,R·skDH,S

▶ For Sender, identifier of wi is idwi = (Seedr ,wi + Seeds,wi )
skDH,R·skDH,S

▶ Here, skDH,S and skDH,R are Sender’s and Receiver’s private keys, respectively

(Correctness) If L∞(wi , qj) ≤ δ, we have Seedr ,wi = Seedr ,qj and Seeds,wi = Seeds,qj . So
idqj = idwi

(Distinctiveness) We assume that Seeds of different points are different
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Experiment Results for Hamming Distance

Table: The comparison of SOTA and our FPSI protocol for Hamming distance in running time (s) and
communication cost (MB), where dimension d = 128, and threshold δ = 4.

Set Size
Protocol

Cost
m = n Comm. Comp.

256
[CLO24] 465.68 38.7
Ours 91.889 5.18

1024
[CLO24] 1779.3 147.85
Ours 367.53 19.428

4096
[CLO24] 6870 569.9
Ours 1470 76.00

Implementation 29 / 32

Experiments are conducted in LAN setting, and we omit all the offline costs



Experiment Results for Lp∈[1,∞] Distance

Table: The comparison of SOTA and our FPSI
protocol for L2 distance in running time (s) and
communication cost (MB).

m = n Protocol
(d , δ)

(2,30) (6,30) (10,30)
Comm. Comp. Comm. Comp. Comm. Comp.

24
[BP24] 0.957 3.082 25.19 74.80 660.4 2046
Ours 1.339 0.820 3.960 1.783 6.581 2.801

28
[BP24] 15.31 45.34 403.1 1246 > 104 > 104

Ours 21.42 8.825 63.35 23.18 106.6 38.97

212
[BP24] 244.9 742.6 > 6000 > 104 > 105 > 105

Ours 346.8 142.3 1026 402.7 1706 657.2

216
[BP24] 3919 12017 > 104 > 105 > 106 > 106

Ours 5549 2366 16419 6539 27289 10953

Table: The comparison of SOTA and our FPSI
protocol for L∞ distance in running time (s) and
communication cost (MB).

m = n Protocol
(d , δ)

(2,30) (6,30) (10,30)
Comm. Comp. Comm. Comp. Comm. Comp.

24
[BP24] 0.517 1.891 24.75 73.61 660.0 2042
Ours 1.340 0.696 3.994 1.727 6.648 2.501

28
[BP24] 8.266 25.10 396.0 1225 > 104 > 104

Ours 21.44 7.930 63.90 22.28 106.4 36.99

212
[BP24] 132.3 420.8 > 6000 > 104 > 105 > 105

Ours 343.0 128.9 1022 391.4 1702 644.1

216
[BP24] 2116 6796 > 104 > 105 > 106 > 106

Ours 5488 2218 16358 6366 27228 10779

Implementation 30 / 32

Our protocol performs better in almost every situation

The larger the set sizes and dimension, the greater our advantage
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