Fuzzy Private Set intersection from Fuzzy Mapping

Ying Gao 1,2 , Lin Qi 1 , Xiang Liu 1 , Yuanchao Luo 1 , Longxin Wang 1

School of Cyber Security and Technology, Beihang University Zhongguancun Laboratory

December 8th

Asiacrypt 2024

KORKARYKERKER OQO

Contents

- [Our Main Idea](#page-11-0)
- [Instantiation of Fuzzy Mapping](#page-29-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Implementation](#page-39-0)

Contents

[Our Main Idea](#page-11-0)

[Instantiation of Fuzzy Mapping](#page-29-0)

[Implementation](#page-39-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Private Set intersection (PSI)

$$
I = \{q_j : \exists i, s.t. w_i = q_j\}
$$

[Background](#page-2-0) 4 / 32

4日下 ← ● → 重 → <重→ Þ Q Fuzzy Private Set intersection (FPSI)

$$
I_{\text{fuzzy}} = \{q_j : \exists i, \text{s.t.} \text{ dist}(w_i, q_j) \leq \delta\}
$$

 $\mathsf{Background}$ $\mathsf{Background}$ $\mathsf{Background}$ $\qquad \qquad$ 5/32

不自下 \leftarrow \leftarrow \leftarrow 제품 H 제품 H 重 Q

 \leftarrow \Box \triangleleft \mathcal{A} . つくへ ∢ 重 重 € \rightarrow \rightarrow $\frac{1}{6/32}$

Applications

- Searching on a database whose entries are not always accurate or full [\[FNP04\]](#page-42-0)
- Building block for privacy-preserving biometric identification [\[UCK+21;](#page-42-1) [CFR23;](#page-42-2) [CLO24\]](#page-42-3)
- Checking whether a user's password is similar to passwords that have been leaked online [\[GRS22;](#page-42-4) [BP24\]](#page-42-5)
- Illegal content detection [\[BP24\]](#page-42-5)

 \bullet \cdot \cdot

Previous Work and Motivation

Previous works can be divided into two categories: FPSI for Hamming and $L_{p\in[1,\infty]}$ distances.

- **•** Complexities of FPSI for Hamming distance have superlinear factors on input set sizes
	- ▶ Brutally traversing all pairs of inputs results in the $m \cdot n$ factor in complexities [\[FNP04;](#page-42-0) [IW06;](#page-42-6) [CH08;](#page-42-7) [YSPW10;](#page-42-8) [UCK+21;](#page-42-1) [CFR23\]](#page-42-2)
	- **Example 1** approximating I_{fuzzy} via multiple rounds of PSI results in the max $\{m, n\}$ log (max $\{m, n\}$) factor in complexities [\[CLO24\]](#page-42-3)
- **2** Complexities of FPSI for $L_{p \in [1,\infty]}$ distance have superlinear factors on input set sizes or dimension d
	- ▶ Spatial Hashing and Locality Sensitive Hashing result in the 2^d and $m \cdot n^{\rho}$ factors in complexities, respectively [\[GRS22;](#page-42-4) [GRS23;](#page-42-9) [BP24\]](#page-42-5)

Previous Work and Motivation

Previous works can be divided into two categories: FPSI for Hamming and $L_{p \in [1,\infty]}$ distances.

1 Complexities of FPSI for Hamming distance have superlinear factors on input set sizes

- ▶ Brutally traversing all pairs of inputs results in the $m \cdot n$ factor in complexities [\[FNP04;](#page-42-0) [IW06;](#page-42-6) [CH08;](#page-42-7) [YSPW10;](#page-42-8) [UCK+21;](#page-42-1) [CFR23\]](#page-42-2)
- **Example 1** approximating I_{fuzzy} via multiple rounds of PSI results in the max $\{m, n\}$ log (max $\{m, n\}$) factor in complexities [\[CLO24\]](#page-42-3)
- **2** Complexities of FPSI for $L_{p \in [1,\infty]}$ distance have superlinear factors on input set sizes or dimension d
	- ▶ Spatial Hashing and Locality Sensitive Hashing result in the 2^d and $m \cdot n^{\rho}$ factors in complexities, respectively [\[GRS22;](#page-42-4) [GRS23;](#page-42-9) [BP24\]](#page-42-5)

Can we construct FPSI whose cost scales linearly with input set sizes and dimension?

Our Contributions

We focus on FPSI for Hamming and $L_{p \in [1,\infty]}$ distances in semi-honest setting.

- Introduce a new primitive called Fuzzy Mapping (Fmap)
- Propose a new FPSI framework based on Fmap and Fuzzy Matching (FMatch)
- Construct FPSI for Hamming and $L_{p∈[1,\infty]}$ distances with new Fmap instances
	- ▶ Costs of FPSI for Hamming distance scale linearly with input set sizes
	- ▶ Costs of FPSI for $L_{p \in [1,\infty]}$ distance scale linearly with input set sizes, dimension and threashold δ
- Demonstrate the efficiency of our FPSI with an implementation

Contents

[Our Main Idea](#page-11-0)

[Instantiation of Fuzzy Mapping](#page-29-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Oblivious Key-Value Store

- \bullet Oblivious Key-Value Store (OKVS) enables encoding *n* key-value pairs such that an adversary can not reverse engineer the original input keys with the encoding result, when input keys $\{k_1, \dots, k_n\}$ are distinct and values $\{v_1, \dots, v_n\}$ are random.
- OKVS consists of Encode and Decode algorithms.
	- ▶ $D \leftarrow$ Encode({ $\{(k_1, v_1), \cdots, (k_n, v_n)\}\$)
	- \blacktriangleright $v \leftarrow$ Decode(D, k)
	- ▶ If $k = k_i \in \{k_1, \cdots, k_n\}$, then $v = v_i$
- Recent OKVS constructions achieve output D of size $\mathcal{O}(n)$, encoding cost of $\mathcal{O}(n\lambda)$, decoding cost of $\mathcal{O}(\lambda)$, and Randomly Decoding.
	- ▶ Randomly Decoding: If $k \notin \{k_1, \dots, k_n\}$, then $v =$ rand

 λ is the statistical security parameter.

Additively Homomorphic Encryption

- An Additively Homomorphic Encryption (AHE) scheme is an encryption scheme that enables to compute an encryption of the sum of two messages by just performing operations on ciphertexts of these messages.
	- \blacktriangleright $(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^\kappa)$
	- \triangleright $c \leftarrow \text{Enc}_{\text{nk}}(m)$
	- \blacktriangleright $m \leftarrow \text{Dec}_{\text{sk}}(c)$
	- ▶ If $c' \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m')$ and $c'' \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m'')$, then it holds that

$$
\mathsf{Dec}_{\mathsf{sk}}(c'\oplus_{\mathsf{pk}}c'')=m'+m''
$$

 \bullet κ is the computational security parameter.

Fuzzy Matching

- A trivial construction of FPSI:
	- Invoke FMatch on all $m \cdot n$ pairs of inputs to indicate the result of FPSI
	- \triangleright Receiver can obtain I_{fuzzy} via OT

Secret-Shared Fuzzy Matching

- A trivial construction of FPSI:
	- Invoke FMatch on all $m \cdot n$ pairs of inputs to indicate the result of FPSI
	- \triangleright Receiver can obtain I_{fuzzy} via OT

Mapping in PSI

- \bullet How does PSI avoid the $m \cdot n$ factor caused by comparing all pairs of inputs?
	- \blacktriangleright Using Cuckoo-Simple Hashing, each q_j is hashed to 1 bin and each w_i is hashed to 3 bins
	- \triangleright Same elements will be hashed to a same bin
	- ▶ $Q \cap W$ can be computed by Sender and Receiver processing m and 3n bins, respectively

Mapping in PSI

- \bullet How does PSI avoid the $m \cdot n$ factor caused by comparing all pairs of inputs?
	- \blacktriangleright Using Cuckoo-Simple Hashing, each q_j is hashed to 1 bin and each w_i is hashed to 3 bins
	- \triangleright Same elements will be hashed to a same bin
	- ▶ $Q \cap W$ can be computed by Sender and Receiver processing m and 3n bins, respectively

Fuzzy Mapping in FPSI

- \bullet Similarly, we define Fuzzy Mapping (Fmap) for FPSI to avoid the $m \cdot n$ factor.
	- \blacktriangleright Using Fmap, each q_j is mapped to rate $_{\cal S}$ identifiers and each w_i is mapped to rate $_{\cal R}$ identifiers
	- \blacktriangleright (Correctness) If dist $(w_i,q_j)\leq \delta$, q_j and w_i will have a same identifier
	- \blacktriangleright I_{fuzzy} can be computed by Sender and Receiver processing $m \cdot \text{rate}_S$ and $n \cdot \text{rate}_R$ identifiers, respectively
	- \triangleright (Security) Fmap should not leak one party's information to the other

 299

Existing Fmap Instances

- Naive Fmap: Brutally traversing all pairs of inputs. [\[FNP04;](#page-42-0) [IW06;](#page-42-6) [CH08;](#page-42-7) [YSPW10;](#page-42-8) [UCK+21;](#page-42-1) [CFR23\]](#page-42-2)
	- \blacktriangleright ID(q_i) = {1, 2, \cdots , n}, thus Sender have $m \cdot n$ identifiers
	- \blacktriangleright ID(w_i) = {i}, thus Receiver have *n* identifiers
- **Spatial Hashing Fmap**: Spatial Hashing is an Fmap instance. [\[GRS22;](#page-42-4) [GRS23;](#page-42-9) [BP24\]](#page-42-5)
	- **►** The entire d-dimensional space is divided into several grids of sidelength of 2δ

Existing Fmap Instances

• Spatial Hashing Fmap: Spatial Hashing is an Fmap instance. [\[GRS22;](#page-42-4) [GRS23;](#page-42-9) [BP24\]](#page-42-5)

- **►** The entire d-dimensional space is divided into several grids of sidelength 2δ
- \blacktriangleright ID (q_j) is the grid including q_j , thus Sender have m identifiers
- ▶ ID (w_i) are grids intersecting with ball w_i of radius δ , thus Receiver have $2^d \cdot n$ identifiers
	- \star ID(q₁) = {g₃}...
	- \star ID(w₁) = {g₁, g₂, g₃, g₄}...

[Our Main Idea](#page-11-0) 18 / 32

Existing Fmap Instances

- Naive Fmap: Brutally traversing all pairs of inputs. [\[FNP04;](#page-42-0) [IW06;](#page-42-6) [CH08;](#page-42-7) [YSPW10;](#page-42-8) [UCK+21;](#page-42-1) [CFR23\]](#page-42-2)
	- \blacktriangleright ID(q_i) = {1, 2, \cdots , n}, thus Sender have $m \cdot n$ identifiers
	- \blacktriangleright ID(w_i) = {*i*}, thus Receiver have *n* identifiers
- **Spatial Hashing Fmap**: Spatial Hashing is an Fmap instance. [\[GRS22;](#page-42-4) [GRS23;](#page-42-9) [BP24\]](#page-42-5)
	- \blacktriangleright ID (q_j) is the grid including q_j , thus Sender have m identifiers
	- ▶ ID (w_i) are grids intersecting with ball w_i of radius δ , thus Receiver have $2^d \cdot n$ identifiers

...

Many FPSI protocols actually base on instances of Fmap. Complexity bottlenecks in these protocols are derived from the excessive expansion rates of their Fmap instances.

FPSI from Fmap

"Map and Reduce" Paradigm:

- (Map) Map each input point to identifiers Using Fmap, close points are mapped to a same identifier. False positives are allowed.
- (Reduce) Reduce false positives to obtain result Using OKVS, points have a same identifier form a pair. FMatch on these pair can reduce false positives.

FPSI from Fmap

"Map and Reduce" Paradigm:

- (Map) Map each input point to identifiers Using Fmap, close points are mapped to a same identifier. False positives are allowed.
- (Reduce) Reduce false positives to obtain result Using OKVS, points have a same identifier form a pair. FMatch on these pair can reduce false positives.

Note that Fmap for L_{∞} is also the Fmap for $L_{\mathsf{p} \in [1,\infty]}$.

- For any points q and w , $L_{\infty}(w,q) \le L_{\mathsf{p} \in [1,\infty]}(w,q)$
- $\mathcal{L}_{\mathsf{p} \in [1,\infty]}(w,q) \leq \delta \Rightarrow \mathcal{L}_{\infty}(w,q) \leq \delta$
- So Fmap for L_{∞} can extract pairs that are close enough for $L_{\text{p}∈[1,\infty]}$

$$
\begin{array}{ll}\n\text{FPSI from Fmap} & W = \{w_i\}_{i \in [n]} \\
\hline\n\frac{\{1D(q_j)\}_{j \in [m]} & \text{Fmap} \\
\frac{\{1D(q_j)\}_{j \in [m]} & \text{Fmap} \\
 & \text{List} \leftarrow \bigcup_{i \in [n]} \left\{ \left(\text{id}_{\mathbf{w}_i}, \left(\text{Enc}_{\text{pk}}(w_i)\right)\right) \right\}_{\text{id}_{\mathbf{w}_i} \in \text{ID}(\mathbf{w}_i)} \\
& E \leftarrow \text{Encode (List)} \\
\text{samples } \text{msk}_{j,\ell} = (\text{msk}_{j,\ell,k})_{k \in [d]} \stackrel{\mathcal{E}}{\leftarrow} \text{U}^d \\
\text{c}_{j,\ell} \leftarrow (\text{Enc}_{\text{pk}}(\text{msk}_{j,\ell}) \oplus_{\text{pk}} \text{Decode } (E, \text{id}_{q_j,\ell})) \\
\text{Our Main idea}\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{Sum of the image:} \\
\text{Sum of the image:} \\
\
$$

FPSI from Fmap	$Q = {q_i}_{j \in [m]}$	$W = {w_i}_{i \in [n]}$
\n $\frac{\{1D(q_j)\}_{j \in [m]}$ \n <p>Eng</p> \n <p>Regs of OKVS encoding should be distinct (Distinctiveness) ID (<i>w_i</i>) ∩ 1D (<i>w_j</i>) = ∅ for $i \neq j$ (List $\leftarrow \bigcup_{i \in [n]} \left\{ (id_{w_i}, (Enc_{pk}(w_i)) \right\}_{id_{w_i} \in ID(w_i)}$)</p> \n <p>$E \leftarrow \text{Encode}(\text{List})$</p> \n <p>samples $msk_{j,\ell} = (msk_{j,\ell,k})_{k \in [d]} \stackrel{\mathcal{R}}{\leftarrow} \mathbb{U}^d$</p> \n <p>$c_{j,\ell} \leftarrow (Enc_{pk}(msk_{j,\ell}) \oplus_{pk} \text{Decode } (E, id_{q_j,\ell}))$</p> \n <p>$\frac{u_{j,\ell} \leftarrow msk_{j,\ell} + q_j}{v_{j,\ell} \leftarrow msk_{j,\ell} + q_j}$</p> \n <p>Our Main Idea</p> \n <p>$\frac{c_{j,\ell}}{\sum_{i \in [d]} \sum_{j \in [d]} \sum$</p>		

[Our Main Idea](#page-11-0) 22 / 32

イロト イ部 トイヨ トイヨト G. 299

[Our Main Idea](#page-11-0) 22 / 32

If rates and rate_R are not related to m and n, FPSI's cost scales linearly with input set sizes

[Our Main Idea](#page-11-0) 22 / 32

Contents

[Our Main Idea](#page-11-0)

[Instantiation of Fuzzy Mapping](#page-29-0)

 \bullet To construct an efficient FPSI, all we need is an Fmap with small rate_S and rate_R.

- \bullet To construct an efficient FPSI, all we need is an Fmap with small rates and rate σ .
- For Hamming distance, we assume that each Receiver's point has $\delta + 1$ unique components (R. UniqC).
- In other words, for each Receiver's point w_i , there exists at least $\delta+1$ dimensions such that on each of them w_i 's component is different from $w_{i' \neq i}$'s components.

- \bullet To construct an efficient FPSI, all we need is an Fmap with small rates and rate σ .
- \bullet For Hamming distance, we assume that each Receiver's point has $\delta + 1$ unique components (R. UniqC).
- **UniqC Fmap** for Hamming distance.
	- \triangleright UniqC Fmap maps q_i to all of its d components, thus rate $s = d$
	- \triangleright UniqC Fmap maps w_i to $\delta + 1$ unique components, thus rate $\kappa = \delta + 1$
- (Correctness) If $\mathsf{Ham}(q_j,w_i) \leq \delta$, q_j and w_i have at most δ different components. Therefore, $ID(q_i) \cap ID(w_i) \neq \emptyset$.
- (Security) Security property is self-evident because UniqC Fmap has no interaction.
- (Distinctiveness) R. UniqC assumption guarantees that different Receiver's points have different identifiers.

- \bullet To construct an efficient FPSI, all we need is an Fmap with small rates and rate σ .
- \bullet For Hamming distance, we assume that each Receiver's point has $\delta + 1$ unique components (R. UniqC).
- **. UniqC Fmap** for Hamming distance.
	- \triangleright UnigC Fmap maps q_i to all of its d components, thus rate $s = d$
	- \triangleright UnigC Fmap maps w_i to $\delta + 1$ unique components, thus rate $\delta = \delta + 1$
- (Correctness) If $\mathsf{Ham}(q_j,w_i) \leq \delta$, q_j and w_i have at most δ different components. Therefore, $ID(q_i) \cap ID(w_i) \neq \emptyset$.
- (Security) Security property is self-evident because UniqC Fmap has no interaction.
- (Distinctiveness) R. UniqC assumption guarantees that different Receiver's points have different identifiers.
- Obviously, in a high dimensional space, R. UniqC assumption holds with high probability for a uniformly distributed set of points.

[Instantiation of Fuzzy Mapping](#page-29-0) 24 / 32

- As mentioned before, Fmap for L_{∞} is also the Fmap for $L_{p\in[1,\infty]}$
- Thus, to construct FPSI for $L_{p \in [1,\infty]}$ distance, we only need an Fmap for L_{∞} distance
- In fact, we report an instance of Fmap for L_{∞} distance with rate $\varsigma =$ rate $\varsigma = 1$
- Our Fmap with optimal expansion rate brings great efficiency to our FPSI

- We assign random values to points on each of Receiver's d axes.
- The assignment of point w in Receiver's coordinate system Seed_{r w} is the sum of its d components' assignment in this coordinate system.

 $r_{r,w_{[k]}}$

[Instantiation of Fuzzy Mapping](#page-29-0) 26 / 32

 \bullet If the assignment of Receiver's d axes satisfies:

[Instantiation of Fuzzy Mapping](#page-29-0) 26 / 32

 $(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{Gen}\left(1^\kappa\right)$ Using AHE and OKVS, it is easy to inform Sender assignments of its points in Receiver's coordinate system

List $\leftarrow \bigcup_{i \in [n], k \in [d]} \left\{ \left(k \| (w_{i[k]} + \ell), \mathsf{Enc}_{\mathsf{pk}} \left(r_{r,w_{i[k]}} \right) \right) \right\}$ $\ell \in [-\delta, \delta]$ $E \leftarrow$ Encode (List) E, pk for each $j \in [m]$: samples msk $_j \overset{\ {\sf R}}{\leftarrow} \mathcal{P}$ $\mathsf{c}_j \leftarrow \mathsf{Enc}_{\mathsf{pk}}\left(\mathsf{msk}_j\right) \oplus_{\mathsf{pk}}\left(\bigoplus_{\mathsf{pk}_k\in\llbracket d\rrbracket} \mathsf{Decode}\left(E, k\|q_{j[k]}\right)\right)$ c_i $p_i \leftarrow \text{Dec}_{sk}(c_i)$ p_j Seed r_{i} ← p_{i} – msk_j

[Instantiation of Fuzzy Mapping](#page-29-0) $27 / 32$

- Using AHE and OKVS, it is easy to inform Sender assignments of its points in Receiver's coordinate system
- But we should not use Seed $_{r,q_j}$ as q_j 's identifier
	- \blacktriangleright For Sender's points q_j and q'_j , if Seed $_{r,q_j}$ $=$ Seed $_{r,q'_j}$, Sender can infer that there is a Receiver's point nearby. Such information leakage undermines security
- We choose to avoid this with symmetric operations and DH-like subprotocol in our Fmap
- The identifier of a point is DDH value of the sum of its assignments in Sender's and Receiver's coordinate system
	- \blacktriangleright For Sender, identifier of q_j is id $_{q_j}=(\mathsf{Seed}_{r,q_j}+\mathsf{Seed}_{s,q_j})^{\mathsf{sk}_{\mathsf{DH},\mathcal{R}}\cdot\mathsf{sk}_{\mathsf{DH},\mathcal{S}}}$
	- ▶ For Sender, identifier of w_i is $\mathsf{id}_{w_i} = (\mathsf{Seed}_{r,w_i} + \mathsf{Seed}_{s,w_i})^{\mathsf{sk}_{\mathsf{DH}, \mathcal{R}} \cdot \mathsf{sk}_{\mathsf{DH}, \mathcal{S}}}$
	- ▶ Here, sk_{DH,S} and sk_{DH,R} are Sender's and Receiver's private keys, respectively
- (Correctness) If $L_\infty(w_i,q_j)\leq \delta$, we have $\mathsf{Seed}_{r,w_i}=\mathsf{Seed}_{r,q_j}$ and $\mathsf{Seed}_{s,w_i}=\mathsf{Seed}_{s,q_j}.$ So $id_{\alpha_i} = id_{w_i}$
- (Distinctiveness) We assume that Seeds of different points are different

[Instantiation of Fuzzy Mapping](#page-29-0) $27 / 32$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - Y 이 Q Q

Contents

[Background](#page-2-0)

[Our Main Idea](#page-11-0)

[Instantiation of Fuzzy Mapping](#page-29-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Experiment Results for Hamming Distance

Experiments are conducted in LAN setting, and we omit all the offline costs

Table: The comparison of SOTA and our FPSI protocol for Hamming distance in running time (s) and communication cost (MB), where dimension $d = 128$, and threshold $\delta = 4$.

[Implementation](#page-39-0) $29 / 32$

Experiment Results for $L_{p\in [1,\infty]}$ Distance

Table: The comparison of SOTA and our FPSI protocol for L_2 distance in running time (s) and communication cost (MB).

Table: The comparison of SOTA and our FPSI protocol for L_{∞} distance in running time (s) and communication cost (MB).

- Our protocol performs better in almost every situation
- The larger the set sizes and dimension, the greater our advantage

[Implementation](#page-39-0) 30 / 32

References

- [BP24] Aron van Baarsen and Sihang Pu. "Fuzzy Private Set Intersection with Large Hyperballs". In: Advances in Cryptology - EUROCRYPT 2024. Ed. by Marc Joye and Gregor Leander. Cham: Springer Nature Switzerland, 2024, pp. 340–369.
- [CFR23] Anrin Chakraborti, Giulia Fanti, and Michael K. Reiter. "Distance-Aware Private Set Intersection". In: 32nd USENIX Security Symposium (USENIX Security 23). Anaheim, CA: USENIX Association, 2023, pp. 319–336.
- [CH08] Lukasz Chmielewski and Jaap-Henk Hoepman. "Fuzzy Private Matching (Extended Abstract)". In: 2008 Third International Conference on Availability, Reliability and Security. 2008, pp. 327–334.
- [CLO24] Wutichai Chongchitmate, Steve Lu, and Rafail Ostrovsky. Approximate PSI with Near-Linear Communication. Cryptology ePrint Archive, Paper 2024/682. 2024. url: <https://eprint.iacr.org/2024/682>.
- [FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. "Efficient Private Matching and Set Intersection". In: Advances in Cryptology - EUROCRYPT 2004. Ed. by Christian Cachin and Jan L. Camenisch. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 1–19.
- [GRS22] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. "Structure-Aware Private Set Intersection, with Applications to Fuzzy Matching". In: Advances in Cryptology – CRYPTO 2022. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Cham: Springer Nature Switzerland, 2022, pp. 323–352.
- [GRS23] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. "Malicious Secure, Structure-Aware Private Set Intersection". In: Advances in Cryptology -CRYPTO 2023. Ed. by Helena Handschuh and Anna Lysyanskaya. Cham: Springer Nature Switzerland, 2023, pp. 577–610.
- [IW06] Piotr Indyk and David Woodruff. "Polylogarithmic Private Approximations and Efficient Matching". In: Theory of Cryptography. Ed. by Shai Halevi and Tal Rabin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 245–264.
- [UCK+21] Erkam Uzun et al. "Fuzzy Labeled Private Set Intersection with Applications to Private Real-Time Biometric Search". In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 2021, pp. 911–928.
- [YSPW10] Qingsong Ye, Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. "Efficient Fuzzy Matching and Intersection on Private Datasets", In: Information, Security and Cryptology – ICISC 2009. Ed. by Donghoon Lee and Seokhie Hong. Berlin. Heidelberg: Springer Berlin Heidelberg, 2010. pp. 211–228.

Thanks for your attention!

イロト 4 個 ト 4 差 ト 4 差 ト - 差 - 約 9 (0)