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RSD Parameters Scheme N M | 7 | n| p | Signature Size
9 [Ste93] - - 1219 - - 33 8386 B
n‘j T [Véro7| - BT I 28794 B
- [FIR22a] 32 (389 28 | - | - 14792 B
P [BG23| 32 380 28 | - | - 12816 B
, _ 10 [Fen24] RD 256 - 21 | 24| - 8990 B
= [Fen24] LP and [ABB*23b] || 256 | - | 20 | 1 | - 5956 B
q=2,m=>53,n=>53 Our scheme (TCitH) 2048 | - 12 | - 3 2937 B
k=45r=4 Our scheme (VOLEitH) || 2 048 | - 11 | - | 128 2851 B

Table: Comparison of the signatures relying on RSD
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MinRank Parameters Scheme N M T | n| p | Signature Size
oy [Cou01] B R 15T TO N I 28 575 B
= 16 [SINY22] B R I T 28128 B
:—_ 16 [BESV22| o256 |[128 | - | - 26 405 B
& __142 [BG23| 32 | 389 | 28 | - - 10 937 B
. [ARZV23| 256 | - || 18 | - | - 7422 B
N [Fen24] RD 256 - 19 |9 - 7122 B

q=16,m =16,n = 16 n

Ritotsiin [Fen24] LP and [ABB+23c| || 256 | - || 18 |1 | - 5 640 B
= 1:’_’”7§ i‘r’_”6: 15 MiRitH [ABB*23a] 256 | - | 199/ - 5673 B
g=2,m=43,n=143 Our scheme (TCitH) 2048 | - 12 | - | 130 2 896 B
k=1520,r =4 Our scheme (VOLEitH) || 2048 | - 11 | - | 128 2813 B

Table: Comparison of the signatures relying on MinRank
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The Hard Problems

The MPC-in-the-Head paradigm
Threshold-Computation-in-the-Head and VOLE-in-the-Head

Existing Modelings
New Modeling: Dual Support Decomposition
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The Hard Problems
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(n—k)xn
q

Given a random matrix H € I and a vector y = Hx " € an_k), recover

z € Fy.

This problem is easy to solve (simple linear algebra).

To turn it into a difficult problem: @ of small weight for a particular metric:
» Euclidean — lattices;
» Hamming metric;

» Rank metric.

7/37



Let = (1, ..., 7n) € Fym, and B = (b1, ..., bm) an Fy-basis of Fym.

T

We can define the matrix: M (x) =

Rank weight: wg(x) = rank(M (x)).

m
=D wigh;
j=1

T11  T21
Ti2 X232

Tim T2m

Tn,1
Tn,2

Tn,m
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Given (H € IF(’;,Z’“X", Yy E€ IFZJ’“), find a vector © € Fiim such that Hx" =y' and
wR(m) =T.
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Given (H € IFZ,Z’“X", TS IFZTZ’“), find a vector © € Fiim such that Hz'" =y and
wR(:B) =T.

Given M, My, ..., Mj, € F™*" find € F% such that E := M + Y1 | M;z; and
rank(E) < r.

e Studied for several decades, used in many cryptosystems.

e Parameters taken on Gilbert-Varshamov bound, hardest instances.
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The MPC-in-the-Head paradigm
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e Many evolutions of zero-knowledge proofs in codes:

» Stern protocol soundness error of %, uses permutations [Ste93];
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e Many evolutions of zero-knowledge proofs in codes:
» Stern protocol soundness error of %, uses permutations [Ste93];
» AGS protocol improvement of Stern, & [AMGS11];

» Shared Permutation, protocol with helper: soundness error down to % — now
depends of a chosen parameter [FJR22al;

» Protocol without helper: %, more efficient [BG23|;
» MPC-in-the-Head: Additive secret sharing, + too but more efficient [FJR22b|;

» Threshold-Computation-in-the-Head and VOLE-in-the-Head: Shamir secret
sharings, + much more efficient [FR23a, [BBASG™23].
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Problem-dependant )

Zero-knowledge
proof
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e Additive sharing:
@ = [z + [=]2 + - + [2]N-
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e Additive sharing:
@ = [z + [=]2 + - + [2]N-

e Linear operations: easy. But
non-linear?

e Beaver triples: how to get [zy] from
[+] and [y] ?

15/37




( Prover ) ( Verifier )




( Prover ) ( Verifier )

( [z]1,- -, [zN] Commitment 4, Sample a
challenge e




( Prover ) ( Verifier )

( [zl [xn]

Sample a
challenge e

( MPC protocol




( Prover ) ( Verifier )

( [z]1,-- -, [zN]

Sample a
challenge &

( MPC protocol Sample a

challenge 1
\with Il =N -1




( Prover ) ( Verifier )

( [z]1,-- -, [zN]

Sample a
challenge &

( MPC protocol Sample a

challenge 1
\with Il =N -1

( Sends [x];




( Prover ) ( Verifier )

(: [z]1,-- -, [zN]

Sample a
challenge &

( MPC protocol Sample a

challenge 1
\with Il =N -1

( Sends [x];

Verify hy and ho )
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Threshold-Computation-in-the-Head and VOLE-in-the-Head
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e Introduced in 2023 in [FR23b]|, improved later in [FR23al.
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e Introduced in 2023 in [FR23b]|, improved later in [FR23al.

e Uses threshold linear secret sharing — Shamir’s secret sharing: P, (X) =rX 4+ w
— hides w.

e Allows non-linear computations — avoid Beaver triples AND easier to model the
problems.

e Faster: perform the MPC protocol 7 times for only one party — bigger values of
N.

e Polynomial constraints checking protocol — efficient protocol: false-positive
probability and communication cost.
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e How to check that we know w such that fi(w)="---= fn(w) =07
1. Evaluate f;([w]) for i € {1,...,m};

2. Receive m random coeflicients =1, ..., Ym;

3. Compute [af = [0] + >, i fi([w])-
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e How to check that we know w such that fi(w)="---= fn(w) =07
1. Evaluate f;([w]) fori e {1,...,m};

2. Receive m random coeflicients =1, ..., Ym;

3. Compute [af = [0] + >, i fi([w])-
e If wis a root of all f; then o = 0.

e No Beaver triples — efficient protocol.

19/37
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e Introduced independently from TCitH, but can be expressed with the same
syntax:

» Uses Shamir’s Secret Sharing with threshold ¢ = 1 — hides the secret w with
P(X)=wX +r;

» Large field embedding: use the isomorphism ¢ between Fy and F-.
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MinRank and RSD Modelings

Existing Modelings
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e Interaction between the base technique and the modelings: additive sharing or
Shamir’s — changes the best modeling, changes the parameters.
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e Interaction between the base technique and the modelings: additive sharing or
Shamir’s — changes the best modeling, changes the parameters.

e For additive sharing schemes:
» Size of the witness;
» Communication between parties (Size of a);
» False-positive probability.

e With Shamir’s secret sharing (TCitH and VOLEitH): only Size of the witness
matters.
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» Rank decomposition;

» Kipnis-Shamir modeling;

» (-polynomials;

» New modeling: dual support decomposition.

e Degree 2 modeling — optimal signature sizes.
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e For MinRank: prove that E = M + Zle x; M is of rank < r.

e To prove that a matrix X is of rank r: sends the right-kernel K of rank n — r
and compute X K.

» For RSD: send zp € F’;m, Ac FZX(H—T) :

» For MinRank: send z € F%, A € ]ng(n_r) .

e Witness is of size k + 7 - (n —r).
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A g-polynomial of q-degree r is a polynomial in Fgm [X] of the form:

r—1
P(X)=X"+Y p;- X7 withp; € Fym.
=0
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A g-polynomial of q-degree r is a polynomial in Fgm [X] of the form:

r—1
P(X)=X"+Y p;- X7 withp; € Fym.
=0

e To prove that £ = M + Zle x;M; is of rank < r: give the polynomial Pg and
check Vi , Pg(e;) = 0.

» For RSD: send zg € IF];m, Py — Fim ;

» For MinRank: send = € F¥, Pg — FJ..

o Witness: k + rm, but lower false-positive probability.
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e Most efficient signatures:

Low false-positive
— low repeti-
tion number
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New Modeling: Dual Support Decomposition

29/37



e New modeling to achieve smaller signature sizes.

e For RSD: improvement of the Rank Decomposition modeling, Shamir’s secret
sharing — easier multiplications.
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e New modeling to achieve smaller signature sizes.

e For RSD: improvement of the Rank Decomposition modeling, Shamir’s secret
sharing — easier multiplications.

e Check that Ha" =y with @ of weight < r.
e z of small weight — = = (z1,...,2,) - C with C € F*".
e Inputs:
» Supp(x) = (1,z9,...,2,);
» C € IE‘ZX("_T) such that (1,z9,...,2,) - (Ir C) =(1,z2,...,2,) = x.

e Just compute H - C" - (1,z2,...,7,): witness size is (r — 1)m +r(n —r).
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e For MinRank, more work to adapt: How to avoid sending 7 — simple solution,
but not used in this context before.
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e For MinRank, more work to adapt: How to avoid sending 7 — simple solution,
but not used in this context before.

p: By " - F"
a1 c.. Q1n
— (al,l,...,al,n,...,am717...,am7n) .
Am1 - Gmn
p(My)

e Given the MinRank instance, build G = :
p(Mj)
e We have the relation p(M) = —xG + p(E) — Apply the dual.
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Given H := [Imn_, H'] € F((Jmn_k)xmn where H' € ]FS;"“"“)X’“ and y € Fn—h,
find E such that p(E)H " = y and rank(E) < r.
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Given H := [Imn_, H'] € Fémn_k)xmn where H' € Fgmn_k)Xk and y € Fn—h,
find E such that p(E)H " = y and rank(E) < r.

e For the dual support, inputs are: S € F;"*" and C € F;*"

e The protocol: p(SCYH'" =y with S = [g] .
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Given H := [Imn—k H’] € Fémn_k)xmn where H' € Fgmn_k)Xk and y € IE‘Zm_k,
find E such that p(E)H " = y and rank(E) < r.

e For the dual support, inputs are: S € F;"*" and C € F;*"

e The protocol: p(SCYH'" =y with S = [g] .

e Important to note: size does not depend on k — explore other areas of
parameters.

e Open doors for new cryptosystems based on MinRank (Niederreiter types of
schemes for instance).
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Modeling Witness size Parameters for A = 1 28

(g,m,n, k,r) Size
Rank Decomposition [km+ (r—1)m+r(n—r)]-logy(q) | (2,31,33,15,10) 122 B
g-polynomial [km + (r — 1)m] - logy(q) (2,31,33,15,10) 93 B
Kipnis-Shamir [km+ (r —1)(n —r)] -logy(q) (2,31,33,15,10) 86 B
Dual Support Decomp. [(r—=1)m+7r(n—r)]-logy(q) (2,53,53,45,4) 45 B

Table: Witness size for the RSD problem.

Modeling Witness size Parameters for \ = 1.28

(g, m,n, k,r) Size
Rank Decomposition [k+r(m—7r)+rn]-logy(q) (16,15,15,78,6) 111 B
g-polynomial [k +rm]-logy(q) (16,15,15,78,6) 76 B
Kipnis-Shamir [k+7(n—r7)]-logy(q) (16,15,15,78,6) 66 B
Dual Support Decomp. [r(m—7r)4+rn]-logy(q) (2,43,43,1520,4) 41 B

Table: Witness size for MinRank
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(" Low false-positive )
— low repeti-
tion number

Lower witness
size, false-positive
does not matter

Even lower
witness size

e Parameters on GV bound — hardest instances.

e Resiliancy: more secure parameters for MinRank and RSD — not much bigger
signatures.
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Security | Trade-off | Framework | 7 | Signature | Estimated time (MCycles)
TCitH 12| 2937 B 16.0
Short
VOLEitH | 11 | 2851 B 14.9
NIST I
TCitH 20 | 3708 B 5.0
Fast
VOLEitH | 16 | 3450 B 2.7
TCitH 18 | 6713 B 54.3
Short
VOLEitH | 16 | 6566 B 40.6
NIST III
TCitH 30 | 8454 B 33.3
Fast
VOLEitH | 24 | 8207 B 8.0
TCitH 25 | 12371 B 79.8
Short
VOLEitH | 22 | 12682 B 50.1
NIST V
TCitH 39 | 14926 B 60.8
Fast
VOLEitH | 32 | 14768 B 11.8

Table: Parameters and performance - RSD

e Will be used for RYDE - 2nd round.
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Security | Trade-off | Framework | 7 | Signature | Estimated time (MCycles)
TCitH 12 | 2896 B 35.7
Short
VOLEitH | 11 | 2813 B 72.9
NIST I
TCitH 20 | 3640 B 12.5
Fast
VOLEitH | 16 | 3396 B 60.7
TCitH 18 | 6584 B 111.0
Short
VOLEitH | 16 | 6452 B 270.5
NIST III
TCitH 30 | 8240 B 42.8
Fast
VOLEitH | 24 | 8036 B 237.9
TCitH 25| 12149 B 220.9
Short
VOLEitH | 22 | 12486 B 763.2
NIST V
TCitH 39 | 14579 B 93.4
Fast
VOLEitH | 32 | 14484 B 734.9

Table: Parameters and performance - MinRank

o Will be used for Mirath - 2nd round.
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Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-Zamarripa, Carlo
Sanna, Javier Verbel, and Floyd Zweydinger.
MiRitH.
NIST’s Post-Quantum Cryptography Standardization of Additional Digital Signature
Schemes Project (Round 1), https://pgc-mirith.org/, 2023.

Nicolas Aragon, Magali Bardet, Loic Bidoux, Jests-Javier Chi-Dominguez, Victor Dyseryn,
Thibauld Feneuil, Philippe Gaborit, Antoine Joux, Matthieu Rivain, Jean-Pierre Tillich, and
Adrien Vincotte.

RYDE.
NIST’s Post-Quantum Cryptography Standardization of Additional Digital Signature
Schemes Project (Round 1), https://pqc-ryde.org/, 2023.

Nicolas Aragon, Magali Bardet, Loic Bidoux, Jestus-Javier Chi-Dominguez, Victor Dyseryn,
Thibauld Feneuil, Philippe Gaborit, Romaric Neveu, Matthieu Rivain, and Jean-Pierre
Tillich.

MIRA.

NIST’s Post-Quantum Cryptography Standardization of Additional Digital Signature
Schemes Project (Round 1), https://pgc-mira.org/, 2023.

Carlos Aguilar-Melchor, Philippe Gaborit, and Julien Schrek.
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https://pqc-mirith.org/
https://pqc-ryde.org/
https://pqc-mira.org/

A new zero-knowledge code based identification scheme with reduced communication.

@ Gora Adj, Luis Rivera-Zamarripa, and Javier Verbel.
Minrank in the head.

@ Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Kloofs,
Emmanuela Orsini, Lawrence Roy, and Peter Scholl.

Publicly verifiable zero-knowledge and post-quantum signatures from vole-in-the-head.

@ Emanuele Bellini, Andre Esser, Carlo Sanna, and Javier Verbel.

Mr-dss — smaller minrank-based (ring-)signatures.

@ Loic Bidoux and Philippe Gaborit.
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Compact Post-quantum Signatures from Proofs of Knowledge Leveraging Structure for the
PKP, SD and RSD Problems.

Nicolas T. Courtois.

Efficient zero-knowledge authentication based on a linear algebra problem minrank.

Thibauld Feneuil.
Building MPCitH-based signatures from MQ, MinRank, Rank SD and PKP.

Thibauld Feneuil, Antoine Joux, and Matthieu Rivain.
Shared permutation for syndrome decoding: new zero-knowledge protocol and code-based
signature.

Thibauld Feneuil, Antoine Joux, and Matthieu Rivain.

Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs.
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@ Thibauld Feneuil and Matthieu Rivain.

Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and
Zero-Knowledge Arguments.

ﬁ Thibauld Feneuil and Matthieu Rivain.
Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head.

ﬁ Bagus Santoso, Yasuhiko Ikematsu, Shuhei Nakamura, and Takanori Yasuda.

Three-pass identification scheme based on minrank problem with half cheating probability,
2022.

ﬁ Jacques Stern.
A new identification scheme based on syndrome decoding.

ﬁ Pascal Véron.

Improved Identification Schemes Based on Error-Correcting Codes.
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