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Comparison with former schemesComparison with former schemes

RSD Parameters Scheme N M τ η ρ Signature Size

q = 2
m = 31
n = 33
k = 15
r = 10

[Ste93] - - 219 - - 33 886 B
[Vér97] - - 219 - - 28 794 B

[FJR22a] 32 389 28 - - 14 792 B
[BG23] 32 389 28 - - 12 816 B

[Fen24] RD 256 - 21 24 - 8 990 B
[Fen24] LP and [ABB+23b] 256 - 20 1 - 5 956 B

q = 2,m = 53, n = 53
k = 45, r = 4

Our scheme (TCitH) 2 048 - 12 - 3 2 937 B
Our scheme (VOLEitH) 2 048 - 11 - 128 2 851 B

Table: Comparison of the signatures relying on RSD
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Comparison with former schemesComparison with former schemes

MinRank Parameters Scheme N M τ η ρ Signature Size

q = 16
m = 16
n = 16
k = 142
r = 4

[Cou01] - - 219 - - 28 575 B
[SINY22] - - 128 - - 28 128 B
[BESV22] - 256 128 - - 26 405 B
[BG23] 32 389 28 - - 10 937 B

[ARZV23] 256 - 18 - - 7 422 B
[Fen24] RD 256 - 19 9 - 7 122 B

q = 16,m = 16, n = 16
k = 120, r = 5

[Fen24] LP and [ABB+23c] 256 - 18 1 - 5 640 B

q = 16,m = 15, n = 15
k = 78, r = 6

MiRitH [ABB+23a] 256 - 19 9 - 5 673 B

q = 2,m = 43, n = 43
k = 1520, r = 4

Our scheme (TCitH) 2048 - 12 - 130 2 896 B
Our scheme (VOLEitH) 2048 - 11 - 128 2 813 B

Table: Comparison of the signatures relying on MinRank
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Syndrome decoding problemSyndrome decoding problem

Given a random matrix H ∈ F(n−k)×n
q and a vector y = Hx⊤ ∈ F(n−k)

q , recover
x ∈ Fn

q .

This problem is easy to solve (simple linear algebra).

To turn it into a difficult problem: x of small weight for a particular metric:

▶ Euclidean → lattices;

▶ Hamming metric;

▶ Rank metric.
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Rank metricRank metric

Let x = (x1, ..., xn) ∈ Fn
qm , and B = (b1, ..., bm) an Fq-basis of Fqm .

xi =

m∑
j=1

xi,jbj

We can define the matrix: M(x) =


x1,1 x2,1 · · · xn,1
x1,2 x2,2 · · · xn,2

...
...

. . .
...

x1,m x2,m · · · xn,m

.

Rank weight: wR

(
x
)
= rank(M(x)).
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The problemsThe problems

Rank Syndrome Decoding

Given (H ∈ Fn−k×n
qm ,y ∈ Fn−k

qm ), find a vector x ∈ Fn
qm such that Hx⊤ = y⊤ and

wR

(
x
)
= r.

MinRank
Given M ,M1, . . . ,Mk ∈ Fm×n

q , find x ∈ Fk
q such that E := M +

∑k
i=1Mixi and

rank(E) ≤ r.

• Studied for several decades, used in many cryptosystems.

• Parameters taken on Gilbert-Varshamov bound, hardest instances.
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MPC-in-the-Head BackgroundMPC-in-the-Head Background
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MPC-in-the-Head Background

The MPC-in-the-Head paradigm
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How to build signaturesHow to build signatures

One way function
(RSD, MinRank. . . )

Hash and Sign
(WAVE, UOV...)

Zero-knowledge
proof (MIRA,

RYDE...)

Short signatures
Trapdoor in

the public key

Larger signatures
Short public keys
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Evolutions of ZKPEvolutions of ZKP

• Many evolutions of zero-knowledge proofs in codes:

▶ Stern protocol soundness error of 2
3 , uses permutations [Ste93];

▶ AGS protocol improvement of Stern, 1
2 [AMGS11];

▶ Shared Permutation, protocol with helper: soundness error down to 1
N → now

depends of a chosen parameter [FJR22a];

▶ Protocol without helper: 1
N , more efficient [BG23];

▶ MPC-in-the-Head: Additive secret sharing, 1
N too but more efficient [FJR22b];

▶ Threshold-Computation-in-the-Head and VOLE-in-the-Head: Shamir secret
sharings, 1

N much more efficient [FR23a], [BBdSG+23].
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Construction of an MPC-in-the-Head protocolConstruction of an MPC-in-the-Head protocol

A secret x

Build an MPC
protocol for
the secret x

Problem-dependant

Apply the
MPC-in-the-

Head paradigm

Zero-knowledge
proof

Apply Fiat-
Shamir heuristic

to have a
signature
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MPC modelMPC model

Prover: x

Party
1: [[x]]1

Party
i: [[x]]i

Party
N: [[x]]N

• Additive sharing:
x = [[x]]1 + [[x]]2 + · · ·+ [[x]]N .

• Linear operations: easy. But
non-linear?

• Beaver triples: how to get [[xy]] from
[[x]] and [[y]] ?

[[α]] = [[x]] + [[a]] [[β]] = [[y]] + [[b]]

Reconstruct α Reconstruct β

Operations
on α and β
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Blueprint of MPC-in-the-HeadBlueprint of MPC-in-the-Head

Prover Verifier

[[x]]1, . . . , [[xN ]] Sample a
challenge ε

Commitment h1

MPC protocol

ε

Sample a
challenge I

with |I| = N − 1

Response h2

Sends [[x]]I

I

Verify h1 and h2

[[x]]I

16/37



Blueprint of MPC-in-the-HeadBlueprint of MPC-in-the-Head

Prover Verifier

[[x]]1, . . . , [[xN ]] Sample a
challenge ε

Commitment h1

MPC protocol

ε

Sample a
challenge I

with |I| = N − 1

Response h2

Sends [[x]]I

I

Verify h1 and h2

[[x]]I

16/37



Blueprint of MPC-in-the-HeadBlueprint of MPC-in-the-Head

Prover Verifier

[[x]]1, . . . , [[xN ]] Sample a
challenge ε

Commitment h1

MPC protocol

ε

Sample a
challenge I

with |I| = N − 1

Response h2

Sends [[x]]I

I

Verify h1 and h2

[[x]]I

16/37



Blueprint of MPC-in-the-HeadBlueprint of MPC-in-the-Head

Prover Verifier

[[x]]1, . . . , [[xN ]] Sample a
challenge ε

Commitment h1

MPC protocol

ε

Sample a
challenge I

with |I| = N − 1

Response h2

Sends [[x]]I

I

Verify h1 and h2

[[x]]I

16/37



Blueprint of MPC-in-the-HeadBlueprint of MPC-in-the-Head

Prover Verifier

[[x]]1, . . . , [[xN ]] Sample a
challenge ε

Commitment h1

MPC protocol

ε

Sample a
challenge I

with |I| = N − 1

Response h2

Sends [[x]]I

I

Verify h1 and h2

[[x]]I

16/37



Blueprint of MPC-in-the-HeadBlueprint of MPC-in-the-Head

Prover Verifier

[[x]]1, . . . , [[xN ]] Sample a
challenge ε

Commitment h1

MPC protocol

ε

Sample a
challenge I

with |I| = N − 1

Response h2

Sends [[x]]I

I

Verify h1 and h2

[[x]]I

16/37



MPC-in-the-Head Background

Threshold-Computation-in-the-Head and VOLE-in-the-Head
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The TCitH frameworkThe TCitH framework

• Introduced in 2023 in [FR23b], improved later in [FR23a].

• Uses threshold linear secret sharing → Shamir’s secret sharing: Pω(X) = rX + ω
→ hides ω.

• Allows non-linear computations → avoid Beaver triples AND easier to model the
problems.

• Faster: perform the MPC protocol τ times for only one party → bigger values of
N .

• Polynomial constraints checking protocol → efficient protocol: false-positive
probability and communication cost.
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The Polynomial Checking protocolThe Polynomial Checking protocol

• How to check that we know ω such that f1(ω) = · · · = fm(ω) = 0 ?

1. Evaluate fi([[ω]]) for i ∈ {1, . . . ,m};

2. Receive m random coefficients γ1, . . . , γm;

3. Compute [[α]] = [[0]] +
∑m

i=1 γifi([[ω]]).

• If ω is a root of all fi then α = 0.

• No Beaver triples → efficient protocol.

19/37



The Polynomial Checking protocolThe Polynomial Checking protocol

• How to check that we know ω such that f1(ω) = · · · = fm(ω) = 0 ?

1. Evaluate fi([[ω]]) for i ∈ {1, . . . ,m};

2. Receive m random coefficients γ1, . . . , γm;

3. Compute [[α]] = [[0]] +
∑m

i=1 γifi([[ω]]).

• If ω is a root of all fi then α = 0.

• No Beaver triples → efficient protocol.

19/37



To sum upTo sum up

Shamir se-
cret sharing

non-linear operation:
easier modelings

Faster

Efficient MPC
protocol

Change of
modelings, change

of parameters
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The VOLEitH frameworkThe VOLEitH framework

• Introduced independently from TCitH, but can be expressed with the same
syntax:

▶ Uses Shamir’s Secret Sharing with threshold ℓ = 1 → hides the secret w with
P (X) = wX + r;

▶ Large field embedding: use the isomorphism ϕ between Fτ
q and Fqτ .
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MinRank and RSD ModelingsMinRank and RSD Modelings
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MinRank and RSD Modelings

Existing Modelings
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What to consider?What to consider?

• Interaction between the base technique and the modelings: additive sharing or
Shamir’s → changes the best modeling, changes the parameters.

• For additive sharing schemes:

▶ Size of the witness;

▶ Communication between parties (Size of α);

▶ False-positive probability.

• With Shamir’s secret sharing (TCitH and VOLEitH): only Size of the witness
matters.

24/37



What to consider?What to consider?

• Interaction between the base technique and the modelings: additive sharing or
Shamir’s → changes the best modeling, changes the parameters.

• For additive sharing schemes:

▶ Size of the witness;

▶ Communication between parties (Size of α);

▶ False-positive probability.

• With Shamir’s secret sharing (TCitH and VOLEitH): only Size of the witness
matters.

24/37



What to consider?What to consider?

• Interaction between the base technique and the modelings: additive sharing or
Shamir’s → changes the best modeling, changes the parameters.

• For additive sharing schemes:

▶ Size of the witness;

▶ Communication between parties (Size of α);

▶ False-positive probability.

• With Shamir’s secret sharing (TCitH and VOLEitH): only Size of the witness
matters.

24/37



Several modelingsSeveral modelings

▶ Rank decomposition;

▶ Kipnis-Shamir modeling;

▶ q-polynomials;

▶ New modeling: dual support decomposition.

• Degree 2 modeling → optimal signature sizes.
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Kipnis-Shamir modelingKipnis-Shamir modeling

• For MinRank: prove that E = M +
∑k

i=1 xiMi is of rank ≤ r.

• To prove that a matrix X is of rank r: sends the right-kernel K of rank n− r
and compute XK.

▶ For RSD: send xB ∈ Fk
qm , A ∈ Fr×(n−r)

q ;

▶ For MinRank: send x ∈ Fk
q , A ∈ Fr×(n−r)

q .

• Witness is of size k + r · (n− r).
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q-polynomials modelingq-polynomials modeling

q-polynomial
A q-polynomial of q-degree r is a polynomial in Fqm [X] of the form:

P (X) = Xqr +

r−1∑
i=0

pi ·Xqi with pi ∈ Fqm .

• To prove that E = M +
∑k

i=1 xiMi is of rank ≤ r: give the polynomial PE and
check ∀i , PE(ei) = 0.

▶ For RSD: send xB ∈ Fk
qm , Px → Fr

qm ;

▶ For MinRank: send x ∈ Fk
q , PE → Fr

qm .

• Witness: k + rm, but lower false-positive probability.
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A change of efficiencyA change of efficiency

• Most efficient signatures:

q-polynomials +
Additive MPCitH

Low false-positive
→ low repeti-
tion number

Kipnis-Shamir +
TCitH/VOLEitH

Change of
framework

Change of
modeling
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MinRank and RSD Modelings

New Modeling: Dual Support Decomposition
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Dual support decompositionDual support decomposition

• New modeling to achieve smaller signature sizes.

• For RSD: improvement of the Rank Decomposition modeling, Shamir’s secret
sharing → easier multiplications.

• Check that Hx⊤ = y⊤ with x of weight ≤ r.

• x of small weight → x = (x1, . . . , xr) ·C with C ∈ Fr×n
q .

• Inputs:

▶ Supp(x) = ⟨1, x2, . . . , xr⟩;

▶ C ∈ Fr×(n−r)
q such that (1, x2, . . . , xr) ·

(
Ir C

)
= (1, x2, . . . , xn) = x.

• Just compute H ·C⊤ · (1, x2, . . . , xr)⊤: witness size is (r − 1)m+ r(n− r).
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• For MinRank, more work to adapt: How to avoid sending x? → simple solution,
but not used in this context before.

ρ : Fm×n
q → Fmn

qa1,1 . . . a1,n
...

...
am,1 . . . am,n

 7→
(
a1,1, . . . , a1,n, . . . , am,1, . . . , am,n

)
.

• Given the MinRank instance, build G =

ρ(M1)
...

ρ(Mk)

 .

• We have the relation ρ(M) = −xG+ ρ(E) → Apply the dual.
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MinRank Syndrome

Given H :=
[
Imn−k H ′] ∈ F(mn−k)×mn

q where H ′ ∈ F(mn−k)×k
q and y ∈ Fmn−k

q ,
find E such that ρ(E)H⊤ = y and rank(E) ≤ r.

• For the dual support, inputs are: S ∈ Fm×r
q and C ∈ Fr×n

q

• The protocol: ρ(SC)H⊤ = y with S =

[
Ir
S′

]
.

• Important to note: size does not depend on k → explore other areas of
parameters.

• Open doors for new cryptosystems based on MinRank (Niederreiter types of
schemes for instance).
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Comparison of the modelingsComparison of the modelings

Modeling Witness size Parameters for λ = 128
(q,m, n, k, r) Size

Rank Decomposition [ km+ (r − 1)m+ r(n− r) ] · log2(q) (2, 31, 33, 15, 10) 122 B
q-polynomial [ km+ (r − 1)m ] · log2(q) (2, 31, 33, 15, 10) 93 B
Kipnis-Shamir [ km+ (r − 1)(n− r) ] · log2(q) (2, 31, 33, 15, 10) 86 B
Dual Support Decomp. [ (r − 1)m+ r(n− r) ] · log2(q) (2, 53, 53, 45, 4) 45 B

Table: Witness size for the RSD problem.

Modeling Witness size Parameters for λ = 128
(q,m, n, k, r) Size

Rank Decomposition [ k + r(m− r) + rn ] · log2(q) (16, 15, 15, 78, 6) 111 B
q-polynomial [ k + rm ] · log2(q) (16, 15, 15, 78, 6) 76 B
Kipnis-Shamir [ k + r(n− r) ] · log2(q) (16, 15, 15, 78, 6) 66 B
Dual Support Decomp. [ r(m− r) + rn ] · log2(q) (2, 43, 43, 1520, 4) 41 B

Table: Witness size for MinRank
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SummarySummary

q-polynomials +
Additive MPCitH

Low false-positive
→ low repeti-
tion number

Kipnis-Shamir +
TCitH/VOLEitH

Lower witness
size, false-positive
does not matter

Dual Support
MinRank
Syndrome
Definition

Even lower
witness size
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tion number

Kipnis-Shamir +
TCitH/VOLEitH

Lower witness
size, false-positive
does not matter

Dual Support
MinRank
Syndrome
Definition

Even lower
witness size

• Parameters on GV bound → hardest instances.

• Resiliancy: more secure parameters for MinRank and RSD → not much bigger
signatures.
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Parameters and performancesParameters and performances

Security Trade-off Framework τ Signature Estimated time (MCycles)

NIST I

Short
TCitH 12 2 937 B 16.0

VOLEitH 11 2 851 B 14.9

Fast
TCitH 20 3 708 B 5.0

VOLEitH 16 3 450 B 2.7

NIST III

Short
TCitH 18 6 713 B 54.3

VOLEitH 16 6 566 B 40.6

Fast
TCitH 30 8 454 B 33.3

VOLEitH 24 8 207 B 8.0

NIST V

Short
TCitH 25 12 371 B 79.8

VOLEitH 22 12 682 B 50.1

Fast
TCitH 39 14 926 B 60.8

VOLEitH 32 14 768 B 11.8

Table: Parameters and performance - RSD

• Will be used for RYDE - 2nd round.
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Parameters and performancesParameters and performances

Security Trade-off Framework τ Signature Estimated time (MCycles)

NIST I

Short
TCitH 12 2 896 B 35.7

VOLEitH 11 2 813 B 72.9

Fast
TCitH 20 3 640 B 12.5

VOLEitH 16 3 396 B 60.7

NIST III

Short
TCitH 18 6 584 B 111.0

VOLEitH 16 6 452 B 270.5

Fast
TCitH 30 8 240 B 42.8

VOLEitH 24 8 036 B 237.9

NIST V

Short
TCitH 25 12 149 B 220.9

VOLEitH 22 12 486 B 763.2

Fast
TCitH 39 14 579 B 93.4

VOLEitH 32 14 484 B 734.9

Table: Parameters and performance - MinRank

• Will be used for Mirath - 2nd round.
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Thank you for your attentionThank you for your attention
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