Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank

Loïc Bidoux, Thibauld Feneuil, Philippe Gaborit, **Romaric Neveu**, Matthieu Rivain

 $10\mathrm{th}$ December 2024

Comparison with former schemes

RSD Parameters	Scheme	N	M	τ	η	ρ	Signature Size
q = 2 m = 31 n = 33 k = 15 r = 10	[Ste93]	-	-	219	-	-	33 886 B
	[Vér97]	-	-	219	-	-	$28 \ 794 \ B$
	[FJR22a]	32	389	28	-	-	$14 \ 792 \ B$
	[BG23]	32	389	28	-	-	12 816 B
	[Fen24] RD	256	-	21	24	-	8 990 B
	[Fen24] LP and $[ABB^+23b]$	256	-	20	1	-	$5\ 956\ { m B}$
q = 2, m = 53, n = 53	Our scheme (TCitH)	2 048	-	12	-	3	$2 \ 937 \ \mathrm{B}$
k = 45, r = 4	Our scheme (VOLEitH)	2 048	-	11	-	128	$2 \ 851 \ \mathbf{B}$

Table: Comparison of the signatures relying on RSD

Comparison with former schemes

MinRank Parameters	Scheme	N	M	τ	η	ρ	Signature Size
q = 16 $m = 16$ $m = 16$	[Cou01]	-	-	219	-	-	28 575 B
	[SINY22]	-	-	128	-	-	28 128 B
	[BESV22]	-	256	128	-	-	26 405 B
n = 10 k = 142	[BG23]	32	389	28	-	-	10 937 B
$\kappa = 142$ r = 4	[ARZV23]	256	-	18	-	-	7 422 B
	[Fen24] RD	256	-	19	9	-	7 122 B
q = 16, m = 16, n = 16	[Fen24] LP and $[ABB^+23c]$	256	-	18	1	-	5 640 B
k = 120, r = 5							
q = 16, m = 15, n = 15	MiRitH [ABB ⁺ 23a]	256	-	19	9	-	5 673 B
k = 78, r = 6							
q = 2, m = 43, n = 43	Our scheme (TCitH)	2048	-	12	-	130	2 896 B
k = 1520, r = 4	Our scheme (VOLEitH)	2048	-	11	-	128	$2\ 813\ { m B}$

Table: Comparison of the signatures relying on MinRank

Rank Metric Background

The Hard Problems

MPC-in-the-Head Background

The MPC-in-the-Head paradigm

Threshold-Computation-in-the-Head and VOLE-in-the-Head

MinRank and RSD Modelings

Existing Modelings

New Modeling: Dual Support Decomposition

Rank Metric Background

Rank Metric Background

The Hard Problems

Syndrome decoding problem

Given a random matrix $\boldsymbol{H} \in \mathbb{F}_q^{(n-k) \times n}$ and a vector $\boldsymbol{y} = \boldsymbol{H} \boldsymbol{x}^\top \in \mathbb{F}_q^{(n-k)}$, recover $\boldsymbol{x} \in \mathbb{F}_q^n$.

This problem is easy to solve (simple linear algebra).

To turn it into a difficult problem: \boldsymbol{x} of small weight for a particular metric:

- Euclidean \rightarrow lattices;
- ▶ Hamming metric;
- Rank metric.

Rank metric

Let $\boldsymbol{x} = (x_1, ..., x_n) \in \mathbb{F}_{q^m}^n$, and $\mathcal{B} = (b_1, ..., b_m)$ an \mathbb{F}_q -basis of \mathbb{F}_{q^m} .

$$x_i = \sum_{j=1}^m x_{i,j} b_j$$

We can define the matrix: $\boldsymbol{M}(\boldsymbol{x}) = \begin{pmatrix} x_{1,1} & x_{2,1} & \cdots & x_{n,1} \\ x_{1,2} & x_{2,2} & \cdots & x_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1,m} & x_{2,m} & \cdots & x_{n,m} \end{pmatrix}$.
Rank weight: $w_R(\boldsymbol{x}) = \mathsf{rank}(\boldsymbol{M}(\boldsymbol{x}))$.

The problems

Rank Syndrome Decoding

Given
$$(\boldsymbol{H} \in \mathbb{F}_{q^m}^{n-k \times n}, \boldsymbol{y} \in \mathbb{F}_{q^m}^{n-k})$$
, find a vector $\boldsymbol{x} \in \mathbb{F}_{q^m}^n$ such that $\boldsymbol{H} \boldsymbol{x}^\top = \boldsymbol{y}^\top$ and $w_R(\boldsymbol{x}) = r$.

The problems

Rank Syndrome Decoding

Given
$$(\boldsymbol{H} \in \mathbb{F}_{q^m}^{n-k \times n}, \boldsymbol{y} \in \mathbb{F}_{q^m}^{n-k})$$
, find a vector $\boldsymbol{x} \in \mathbb{F}_{q^m}^n$ such that $\boldsymbol{H} \boldsymbol{x}^\top = \boldsymbol{y}^\top$ and $w_R(\boldsymbol{x}) = r$.

MinRank

Given $M, M_1, \ldots, M_k \in \mathbb{F}_q^{m \times n}$, find $x \in \mathbb{F}_q^k$ such that $E := M + \sum_{i=1}^k M_i x_i$ and $\mathsf{rank}(E) \leq r$.

- Studied for several decades, used in many cryptosystems.
- Parameters taken on Gilbert-Varshamov bound, hardest instances.

MPC-in-the-Head Background

MPC-in-the-Head Background

The MPC-in-the-Head paradigm

- Many evolutions of zero-knowledge proofs in codes:
 - ▶ Stern protocol soundness error of $\frac{2}{3}$, uses permutations [Ste93];

- Many evolutions of zero-knowledge proofs in codes:
 - ▶ Stern protocol soundness error of $\frac{2}{3}$, uses permutations [Ste93];
 - AGS protocol improvement of Stern, $\frac{1}{2}$ [AMGS11];

- Many evolutions of zero-knowledge proofs in codes:
 - ▶ Stern protocol soundness error of $\frac{2}{3}$, uses permutations [Ste93];
 - AGS protocol improvement of Stern, $\frac{1}{2}$ [AMGS11];
 - Shared Permutation, protocol with helper: soundness error down to $\frac{1}{N} \rightarrow$ now depends of a chosen parameter [FJR22a];

- Many evolutions of zero-knowledge proofs in codes:
 - ▶ Stern protocol soundness error of $\frac{2}{3}$, uses permutations [Ste93];
 - AGS protocol improvement of Stern, $\frac{1}{2}$ [AMGS11];
 - Shared Permutation, protocol with helper: soundness error down to $\frac{1}{N} \rightarrow$ now depends of a chosen parameter [FJR22a];
 - ▶ Protocol without helper: $\frac{1}{N}$, more efficient [BG23];

- Many evolutions of zero-knowledge proofs in codes:
 - ▶ Stern protocol soundness error of $\frac{2}{3}$, uses permutations [Ste93];
 - AGS protocol improvement of Stern, $\frac{1}{2}$ [AMGS11];
 - Shared Permutation, protocol with helper: soundness error down to $\frac{1}{N} \rightarrow$ now depends of a chosen parameter [FJR22a];
 - Protocol without helper: $\frac{1}{N}$, more efficient [BG23];
 - ▶ MPC-in-the-Head: Additive secret sharing, $\frac{1}{N}$ too but more efficient [FJR22b];

- Many evolutions of zero-knowledge proofs in codes:
 - ▶ Stern protocol soundness error of $\frac{2}{3}$, uses permutations [Ste93];
 - AGS protocol improvement of Stern, $\frac{1}{2}$ [AMGS11];
 - Shared Permutation, protocol with helper: soundness error down to $\frac{1}{N} \rightarrow$ now depends of a chosen parameter [FJR22a];
 - ▶ Protocol without helper: $\frac{1}{N}$, more efficient [BG23];
 - ▶ MPC-in-the-Head: Additive secret sharing, $\frac{1}{N}$ too but more efficient [FJR22b];
 - ▶ Threshold-Computation-in-the-Head and VOLE-in-the-Head: Shamir secret sharings, $\frac{1}{N}$ much more efficient [FR23a], [BBdSG⁺23].

Construction of an MPC-in-the-Head protocol

$\mathrm{MPC} \ \mathrm{model}$

• Additive sharing: $\boldsymbol{x} = [\![\boldsymbol{x}]\!]_1 + [\![\boldsymbol{x}]\!]_2 + \cdots + [\![\boldsymbol{x}]\!]_N.$

$\mathrm{MPC} \ \mathrm{model}$

- Additive sharing: $\boldsymbol{x} = [\![\boldsymbol{x}]\!]_1 + [\![\boldsymbol{x}]\!]_2 + \cdots + [\![\boldsymbol{x}]\!]_N.$
- Linear operations: easy. But non-linear?

MPC model

Prover

MPC-in-the-Head Background

Threshold-Computation-in-the-Head and VOLE-in-the-Head

The TCitH framework

• Introduced in 2023 in [FR23b], improved later in [FR23a].

The TCitH framework

- Introduced in 2023 in [FR23b], improved later in [FR23a].
- Uses threshold linear secret sharing \rightarrow Shamir's secret sharing: $P_{\omega}(X) = rX + \omega$ \rightarrow hides ω .

The TCitH framework

- Introduced in 2023 in [FR23b], improved later in [FR23a].
- Uses threshold linear secret sharing \rightarrow Shamir's secret sharing: $P_{\omega}(X) = rX + \omega$ \rightarrow hides ω .
- \bullet Allows non-linear computations \rightarrow avoid Beaver triples AND easier to model the problems.
The TCitH framework

- Introduced in 2023 in [FR23b], improved later in [FR23a].
- Uses threshold linear secret sharing \rightarrow Shamir's secret sharing: $P_{\omega}(X) = rX + \omega$ \rightarrow hides ω .
- \bullet Allows non-linear computations \rightarrow avoid Beaver triples AND easier to model the problems.
- Faster: perform the MPC protocol τ times for only one party \rightarrow bigger values of N.

The TCitH framework

- Introduced in 2023 in [FR23b], improved later in [FR23a].
- Uses threshold linear secret sharing \rightarrow Shamir's secret sharing: $P_{\omega}(X) = rX + \omega$ \rightarrow hides ω .
- \bullet Allows non-linear computations \rightarrow avoid Beaver triples AND easier to model the problems.
- Faster: perform the MPC protocol τ times for only one party \rightarrow bigger values of N.
- \bullet Polynomial constraints checking protocol \to efficient protocol: false-positive probability and communication cost.

The Polynomial Checking protocol

- How to check that we know ω such that $f_1(\omega) = \cdots = f_m(\omega) = 0$?
 - 1. Evaluate $f_i(\llbracket \omega \rrbracket)$ for $i \in \{1, \ldots, m\}$;
 - 2. Receive *m* random coefficients $\gamma_1, \ldots, \gamma_m$;
 - 3. Compute $\llbracket \alpha \rrbracket = \llbracket 0 \rrbracket + \sum_{i=1}^{m} \gamma_i f_i(\llbracket \omega \rrbracket)$.

The Polynomial Checking protocol

- How to check that we know ω such that $f_1(\omega) = \cdots = f_m(\omega) = 0$?
 - 1. Evaluate $f_i(\llbracket \omega \rrbracket)$ for $i \in \{1, \ldots, m\}$;
 - 2. Receive *m* random coefficients $\gamma_1, \ldots, \gamma_m$;
 - 3. Compute $\llbracket \alpha \rrbracket = \llbracket 0 \rrbracket + \sum_{i=1}^{m} \gamma_i f_i(\llbracket \omega \rrbracket)$.
- If ω is a root of all f_i then $\alpha = 0$.
- No Beaver triples \rightarrow efficient protocol.

- Introduced independently from TCitH, but can be expressed with the same syntax:
 - ▶ Uses Shamir's Secret Sharing with threshold $\ell = 1 \rightarrow$ hides the secret w with P(X) = wX + r;
 - ▶ Large field embedding: use the isomorphism ϕ between \mathbb{F}_q^{τ} and $\mathbb{F}_{q^{\tau}}$.

MinRank and RSD Modelings

MinRank and RSD Modelings

Existing Modelings

What to consider?

• Interaction between the base technique and the modelings: additive sharing or Shamir's \rightarrow changes the best modeling, changes the parameters.

What to consider?

- Interaction between the base technique and the modelings: additive sharing or Shamir's \rightarrow changes the best modeling, changes the parameters.
- For additive sharing schemes:
 - ▶ Size of the witness;
 - Communication between parties (Size of α);
 - ▶ False-positive probability.

What to consider?

- Interaction between the base technique and the modelings: additive sharing or Shamir's \rightarrow changes the best modeling, changes the parameters.
- For additive sharing schemes:
 - ► Size of the witness;
 - Communication between parties (Size of α);
 - ▶ False-positive probability.
- \bullet With Shamir's secret sharing (TCitH and VOLEitH): <u>only</u> Size of the witness matters.

Several modelings

- ▶ Rank decomposition;
- ▶ Kipnis-Shamir modeling;
- ▶ q-polynomials;
- ▶ New modeling: dual support decomposition.
- Degree 2 modeling \rightarrow optimal signature sizes.

Kipnis-Shamir modeling

- For MinRank: prove that $\boldsymbol{E} = \boldsymbol{M} + \sum_{i=1}^{k} x_i \boldsymbol{M}_i$ is of rank $\leq r$.
- To prove that a matrix X is of rank r: sends the right-kernel K of rank n r and compute XK.
 - ▶ For RSD: send $\boldsymbol{x}_B \in \mathbb{F}_{q^m}^k$, $\boldsymbol{A} \in \mathbb{F}_q^{r \times (n-r)}$;
 - ▶ For MinRank: send $\boldsymbol{x} \in \mathbb{F}_q^k$, $\boldsymbol{A} \in \mathbb{F}_q^{r \times (n-r)}$.
- Witness is of size $k + r \cdot (n r)$.

q-polynomials modeling

q-polynomial

A q-polynomial of q-degree r is a polynomial in $\mathbb{F}_{q^m}[X]$ of the form:

$$P(X) = X^{q^r} + \sum_{i=0}^{r-1} p_i \cdot X^{q^i} \quad \text{with } p_i \in \mathbb{F}_{q^m}.$$

q-polynomials modeling

q-polynomial

A q-polynomial of q-degree r is a polynomial in $\mathbb{F}_{q^m}[X]$ of the form:

$$P(X) = X^{q^r} + \sum_{i=0}^{r-1} p_i \cdot X^{q^i} \quad \text{with } p_i \in \mathbb{F}_{q^m}.$$

• To prove that $\boldsymbol{E} = \boldsymbol{M} + \sum_{i=1}^{k} x_i \boldsymbol{M}_i$ is of rank $\leq r$: give the polynomial $P_{\boldsymbol{E}}$ and check $\forall i, P_{\boldsymbol{E}}(e_i) = 0$.

- For RSD: send $\boldsymbol{x}_B \in \mathbb{F}_{q^m}^k, P_{\boldsymbol{x}} \to \mathbb{F}_{q^m}^r$;
- ▶ For MinRank: send $\boldsymbol{x} \in \mathbb{F}_q^k$, $P_{\boldsymbol{E}} \to \mathbb{F}_{q^m}^r$.
- Witness: k + rm, but lower false-positive probability.

MinRank and RSD Modelings

New Modeling: Dual Support Decomposition

- New modeling to achieve smaller signature sizes.
- For RSD: improvement of the Rank Decomposition modeling, Shamir's secret sharing \rightarrow easier multiplications.

- New modeling to achieve smaller signature sizes.
- \bullet For RSD: improvement of the Rank Decomposition modeling, Shamir's secret sharing \to easier multiplications.
- Check that $Hx^{\top} = y^{\top}$ with x of weight $\leq r$.
- \boldsymbol{x} of small weight $\rightarrow \boldsymbol{x} = (x_1, \dots, x_r) \cdot \boldsymbol{C}$ with $\boldsymbol{C} \in \mathbb{F}_q^{r \times n}$.

- New modeling to achieve smaller signature sizes.
- \bullet For RSD: improvement of the Rank Decomposition modeling, Shamir's secret sharing \to easier multiplications.
- Check that $Hx^{\top} = y^{\top}$ with x of weight $\leq r$.
- \boldsymbol{x} of small weight $\rightarrow \boldsymbol{x} = (x_1, \dots, x_r) \cdot \boldsymbol{C}$ with $\boldsymbol{C} \in \mathbb{F}_q^{r \times n}$.
- Inputs:
 - Supp $(\boldsymbol{x}) = \langle 1, x_2, \dots, x_r \rangle;$
 - $\mathbf{C} \in \mathbb{F}_q^{r \times (n-r)} \text{ such that } (1, x_2, \dots, x_r) \cdot (\mathbf{I}_r \quad \mathbf{C}) = (1, x_2, \dots, x_n) = \mathbf{x}.$

- New modeling to achieve smaller signature sizes.
- \bullet For RSD: improvement of the Rank Decomposition modeling, Shamir's secret sharing \to easier multiplications.
- Check that $Hx^{\top} = y^{\top}$ with x of weight $\leq r$.
- \boldsymbol{x} of small weight $\rightarrow \boldsymbol{x} = (x_1, \dots, x_r) \cdot \boldsymbol{C}$ with $\boldsymbol{C} \in \mathbb{F}_q^{r \times n}$.
- Inputs:
 - Supp $(\boldsymbol{x}) = \langle 1, x_2, \dots, x_r \rangle;$
 - $\mathbf{C} \in \mathbb{F}_q^{r \times (n-r)} \text{ such that } (1, x_2, \dots, x_r) \cdot (\mathbf{I}_r \quad \mathbf{C}) = (1, x_2, \dots, x_n) = \mathbf{x}.$
- Just compute $\boldsymbol{H} \cdot \boldsymbol{C}^{\top} \cdot (1, x_2, \dots, x_r)^{\top}$: witness size is (r-1)m + r(n-r).

$$\rho: \qquad \mathbb{F}_q^{m \times n} \qquad \longrightarrow \qquad \mathbb{F}_q^{mn} \\
\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \qquad \mapsto \qquad (a_{1,1}, \dots, a_{1,n}, \dots, a_{m,1}, \dots, a_{m,n}) .$$

$$\rho: \qquad \mathbb{F}_q^{m \times n} \qquad \rightarrow \qquad \mathbb{F}_q^{mn} \\
\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \qquad \mapsto \qquad (a_{1,1}, \dots, a_{1,n}, \dots, a_{m,1}, \dots, a_{m,n}) .$$

• Given the MinRank instance, build
$$m{G} = egin{pmatrix}
ho(m{M}_1) \\ \vdots \\
ho(m{M}_k) \end{pmatrix}$$
 .

$$\rho: \qquad \mathbb{F}_q^{m \times n} \qquad \rightarrow \qquad \mathbb{F}_q^{mn} \\
\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \qquad \mapsto \qquad (a_{1,1}, \dots, a_{1,n}, \dots, a_{m,1}, \dots, a_{m,n}) .$$

.

• Given the MinRank instance, build
$$\boldsymbol{G} = \begin{pmatrix} \rho(\boldsymbol{M}_1) \\ \vdots \\ \rho(\boldsymbol{M}_k) \end{pmatrix}$$

• We have the relation $\rho(M) = -xG + \rho(E) \rightarrow$ Apply the dual.

MinRank Syndrome

Given
$$\boldsymbol{H} := \begin{bmatrix} \boldsymbol{I_{mn-k}} & \boldsymbol{H'} \end{bmatrix} \in \mathbb{F}_q^{(mn-k) \times mn}$$
 where $\boldsymbol{H'} \in \mathbb{F}_q^{(mn-k) \times k}$ and $\boldsymbol{y} \in \mathbb{F}_q^{mn-k}$,
find \boldsymbol{E} such that $\rho(\boldsymbol{E})\boldsymbol{H}^{\top} = \boldsymbol{y}$ and $\mathsf{rank}(\boldsymbol{E}) \leq r$.

MinRank Syndrome

Given $\boldsymbol{H} := \begin{bmatrix} \boldsymbol{I_{mn-k}} & \boldsymbol{H'} \end{bmatrix} \in \mathbb{F}_q^{(mn-k) \times mn}$ where $\boldsymbol{H'} \in \mathbb{F}_q^{(mn-k) \times k}$ and $\boldsymbol{y} \in \mathbb{F}_q^{mn-k}$, find \boldsymbol{E} such that $\rho(\boldsymbol{E})\boldsymbol{H}^{\top} = \boldsymbol{y}$ and $\mathsf{rank}(\boldsymbol{E}) \leq r$.

- For the dual support, inputs are: $\bm{S}\in\mathbb{F}_q^{m\times r}$ and $\bm{C}\in\mathbb{F}_q^{r\times n}$
- The protocol: $\rho(SC)H^{\top} = y$ with $S = \begin{bmatrix} I_r \\ S' \end{bmatrix}$.

MinRank Syndrome

Given $\boldsymbol{H} := \begin{bmatrix} \boldsymbol{I_{mn-k}} & \boldsymbol{H'} \end{bmatrix} \in \mathbb{F}_q^{(mn-k) \times mn}$ where $\boldsymbol{H'} \in \mathbb{F}_q^{(mn-k) \times k}$ and $\boldsymbol{y} \in \mathbb{F}_q^{mn-k}$, find \boldsymbol{E} such that $\rho(\boldsymbol{E})\boldsymbol{H}^{\top} = \boldsymbol{y}$ and $\mathsf{rank}(\boldsymbol{E}) \leq r$.

• For the dual support, inputs are: $S \in \mathbb{F}_q^{m \times r}$ and $C \in \mathbb{F}_q^{r \times n}$

• The protocol:
$$\rho(\mathbf{SC})\mathbf{H}^{\top} = \mathbf{y}$$
 with $\mathbf{S} = \begin{bmatrix} \mathbf{I}_{\mathbf{r}} \\ \mathbf{S}' \end{bmatrix}$.

- \bullet Important to note: size does not depend on $k \rightarrow$ explore other areas of parameters.
- Open doors for new cryptosystems based on MinRank (Niederreiter types of schemes for instance).

Comparison of the modelings

Modeling	Witness size	Parameters for $\lambda = 128$	
		(q, m, n, k, r)	Size
Rank Decomposition	$[km + (r-1)m + r(n-r)] \cdot \log_2(q)$	(2, 31, 33, 15, 10)	122 B
q-polynomial	$[km + (r-1)m] \cdot \log_2(q)$	(2, 31, 33, 15, 10)	93 B
Kipnis-Shamir	$[km + (r-1)(n-r)] \cdot \log_2(q)$	(2, 31, 33, 15, 10)	86 B
Dual Support Decomp.	$\left[(r-1)m + r(n-r) \right] \cdot \log_2(q)$	(2, 53, 53, 45, 4)	45 B

Table: Witness size for the RSD problem.

Modeling	Witness size	Parameters for $\lambda = 128$	
		(q,m,n,k,r)	Size
Rank Decomposition	$[k+r(m-r)+rn] \cdot \log_2(q)$	(16, 15, 15, 78, 6)	111 B
q-polynomial	$[k+rm] \cdot \log_2(q)$	(16, 15, 15, 78, 6)	76 B
Kipnis-Shamir	$[k+r(n-r)] \cdot \log_2(q)$	(16, 15, 15, 78, 6)	66 B
Dual Support Decomp.	$[r(m-r)+rn] \cdot \log_2(q)$	(2, 43, 43, 1520, 4)	41 B

Table: Witness size for MinRank

Summary

Summary

Summary

Summary

- \bullet Parameters on GV bound \rightarrow hardest instances.
- \bullet Resiliancy: more secure parameters for MinRank and RSD \rightarrow not much bigger signatures.

Parameters and performances

Security	Trade-off	Framework	τ	Signature	Estimated time (MCycles)
NIST I	Short	TCitH	12	$2937~\mathrm{B}$	16.0
		VOLEitH	11	$2851~\mathrm{B}$	14.9
	Fast	TCitH	20	$3708~{ m B}$	5.0
		VOLEitH	16	$3450~\mathrm{B}$	2.7
NIST III	Short	TCitH	18	$6713~\mathrm{B}$	54.3
		VOLEitH	16	$6566~\mathrm{B}$	40.6
	Fast	TCitH	30	8454 B	33.3
		VOLEitH	24	$8207~{ m B}$	8.0
NIST V	Short	TCitH	25	$12371~\mathrm{B}$	79.8
		VOLEitH	22	$12682~\mathrm{B}$	50.1
	Fast	TCitH	39	$14926~\mathrm{B}$	60.8
		VOLEitH	32	$14768~\mathrm{B}$	11.8

Table: Parameters and performance - RSD

• Will be used for RYDE - 2nd round.

Parameters and performances

Security	Trade-off	Framework	τ	Signature	Estimated time (MCycles)
NIST I	Short	TCitH	12	2896 B	35.7
		VOLEitH	11	$2813~\mathrm{B}$	72.9
	Fast	TCitH	20	$3640~\mathrm{B}$	12.5
		VOLEitH	16	3 396 B	60.7
NIST III	Short	TCitH	18	6584 B	111.0
		VOLEitH	16	$6452~\mathrm{B}$	270.5
	Fast	TCitH	30	$8240~\mathrm{B}$	42.8
		VOLEitH	24	8036 B	237.9
NIST V	Short	TCitH	25	$12149~\mathrm{B}$	220.9
		VOLEitH	22	$12486~\mathrm{B}$	763.2
	Fast	TCitH	39	$14579~\mathrm{B}$	93.4
		VOLEitH	32	14 484 B	734.9

Table: Parameters and performance - MinRank

• Will be used for Mirath - 2nd round.

Thank you for your attention

Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-Zamarripa, Carlo Sanna, Javier Verbel, and Floyd Zweydinger.

MiRitH.

NIST's Post-Quantum Cryptography Standardization of Additional Digital Signature Schemes Project (Round 1), https://pqc-mirith.org/, 2023.

Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-Domínguez, Victor Dyseryn, Thibauld Feneuil, Philippe Gaborit, Antoine Joux, Matthieu Rivain, Jean-Pierre Tillich, and Adrien Vincotte.

RYDE.

NIST's Post-Quantum Cryptography Standardization of Additional Digital Signature Schemes Project (Round 1), https://pqc-ryde.org/, 2023.

Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-Domínguez, Victor Dyseryn, Thibauld Feneuil, Philippe Gaborit, Romaric Neveu, Matthieu Rivain, and Jean-Pierre Tillich.

MIRA.

NIST's Post-Quantum Cryptography Standardization of Additional Digital Signature Schemes Project (Round 1), https://pqc-mira.org/, 2023.

Carlos Aguilar-Melchor, Philippe Gaborit, and Julien Schrek.

A new zero-knowledge code based identification scheme with reduced communication. 2011 IEEE Information Theory Workshop, pages 648–652, 2011.

Gora Adj, Luis Rivera-Zamarripa, and Javier Verbel. Minrank in the head.

In Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, editors, *Progress in Cryptology - AFRICACRYPT 2023*, pages 3–27, Cham, 2023. Springer Nature Switzerland.

Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini, Lawrence Roy, and Peter Scholl.

Publicly verifiable zero-knowledge and post-quantum signatures from vole-in-the-head.

In Helena Handschuh and Anna Lysyanskaya, editors, *Advances in Cryptology – CRYPTO* 2023, pages 581–615, Cham, 2023. Springer Nature Switzerland.

Emanuele Bellini, Andre Esser, Carlo Sanna, and Javier Verbel.

Mr-dss – smaller minrank-based (ring-)signatures.

In Post-Quantum Cryptography: 13th International Workshop, PQCrypto 2022, Virtual Event, September 28–30, 2022, Proceedings, page 144–169, Berlin, Heidelberg, 2022. Springer-Verlag.

Loïc Bidoux and Philippe Gaborit.

Compact Post-quantum Signatures from Proofs of Knowledge Leveraging Structure for the PKP, SD and RSD Problems.

In Codes, Cryptology and Information Security (C2SI), 2023.

Nicolas T. Courtois.

Efficient zero-knowledge authentication based on a linear algebra problem minrank.

In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, pages 402–421, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

Thibauld Feneuil.

Building MPCitH-based signatures from MQ, MinRank, Rank SD and PKP.

In International Conference on Applied Cryptography and Network Security (ACNS), 2024.

Thibauld Feneuil, Antoine Joux, and Matthieu Rivain.

Shared permutation for syndrome decoding: new zero-knowledge protocol and code-based signature.

Designs, Codes and Cryptography, 91:563–608, 2022.

Thibauld Feneuil, Antoine Joux, and Matthieu Rivain.

Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs.

In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, pages 541–572, Cham, 2022. Springer Nature Switzerland.

Thibauld Feneuil and Matthieu Rivain.

Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments.

Cryptology ePrint Archive, Report 2023/1573, 2023.

Thibauld Feneuil and Matthieu Rivain.

Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head.

In International Conference on the Theory and Application of Cryptology and Information Security (Asiacrypt), 2023.

Bagus Santoso, Yasuhiko Ikematsu, Shuhei Nakamura, and Takanori Yasuda. Three-pass identification scheme based on minrank problem with half cheating probability, 2022.

Jacques Stern.

A new identification scheme based on syndrome decoding.

In International Cryptology Conference (CRYPTO), 1993.

Pascal Véron.

Improved Identification Schemes Based on Error-Correcting Codes.

Applicable Algebra in Engineering, Communication and Computing, 8(1), January 1997.