

General Practical Cryptanalysis of the Sum of Round-Reduced Block Cipher and ZIP-AES

Antonio Flórez-Gutiérrez¹, Lorenzo Grassi², Gregor Leander², Ferdinand Sibleyras¹, <u>Yosuke Todo¹</u>

1, NTT Social Informatics Laboratories, 2, RUB

Motivation

- Sum of PRP = PRF
- Do we really need PRP here?
 - e.g.) Orthros (Banik et al. ToSC 2021) we explore the setting that E and E' are rather weak as a stand-alone block cipher, using a small number of very simple rounds. The point is that the outputs of E and E' are never given in clear, hence we can hope that both can cover each weakness, and consequently the sum of them can tolerate dedicated attacks as a PRF.
 - Each output is invisible.
 - PRP might be over-security.

Our approach

NTT 🕐

Provable security

- When each branch is PRP, it's PRF.
- It's unlikely to be possible to weaken the assumption, PRP.

General practical cryptanalysis

- We analyze this construction like the dedicated analysis.
- But, we don't suppose each specification.
 - Like the generic attack on Feistel network...
- Consider the link with another construction.
 - Like the security reduction...

Dedicated analysis

- Like the analysis against Orthros...
- New primitive, new analysis from the scratch.
- Heavy design cost.

- Assuming an attacker can break the $P \oplus Q$, he also break $Q \circ P$.
- This is the security reduction
 - If we can say it, $P \oplus Q$ is equivalently secure of $Q \circ P$.
 - This is too dream; then, this problem should be solved as provable security.

Reality from Dream

- We restrict the attacker.
 - Differential, linear, differential-linear, truncated differential, algebraic/integral, zerocorrelation linear, meet-in-the-middle, etc.
 - Generally compare these two constructions by these attacks.
 - e.g.) if the sum construction is broken by the differential attack, we can also break the composition too with high chance.

Differential cryptanalysis

 $DP_{\alpha,\beta}^{\mathsf{F}} = \operatorname{Prob}[\mathsf{F}(x) \oplus \mathsf{F}(x \oplus \alpha) = \beta]$

 $DP_{\alpha,\beta}^{\mathsf{S}} = \operatorname{Prob}[\mathsf{S}(x) \oplus \mathsf{S}(x \oplus \alpha) = \beta]$

 $DP_{\alpha,\beta}^{\mathsf{F}} \neq DP_{\alpha,\beta}^{\mathsf{S}}$

 $DP^{\mathsf{F}}_{\alpha,\beta\oplus\gamma}\approx DCP^{\mathsf{F}}_{\alpha,\gamma,\beta}=DP^{P}_{\alpha,\gamma}\times DP^{Q}_{\alpha,\beta}$

 $DP^{\mathsf{S}}_{\alpha,\beta} \approx DCP^{\mathsf{S}}_{\alpha,\gamma,\beta} = DP^{P}_{\alpha,\gamma} \times DP^{Q}_{\gamma,\beta}$

Differential cryptanalysis

Differential cryptanalysis

 $DP_{\alpha,\beta\oplus\gamma}^{\mathsf{F}} \approx DCP_{\alpha,\gamma,\beta}^{\mathsf{F}} = DP_{\alpha,\gamma}^{P} \times DP_{\alpha,\beta}^{Q} \qquad \qquad DP_{\gamma,\beta}^{\mathsf{S}} \approx DC_{\alpha,\beta}^{\mathsf{S}}$

 $DP_{\gamma,\beta}^{\mathsf{S}} \approx DCP_{\gamma,\alpha,\beta}^{\mathsf{S}} = DP_{\alpha,\gamma}^{P} \times DP_{\alpha,\beta}^{Q}$

$$DCP_{\alpha,\gamma,\beta}^{\mathsf{F}} = DCP_{\gamma,\alpha,\beta}^{\mathsf{S}}$$

 $DP_{\alpha,\beta\oplus\gamma}^{\mathsf{F}} \approx DCP_{\alpha,\gamma,\beta}^{\mathsf{F}} = DP_{\alpha,\gamma}^{P} \times DP_{\alpha,\beta}^{Q} \qquad \qquad L$

 $DP_{\gamma,\beta}^{\mathsf{S}} \approx DCP_{\gamma,\alpha,\beta}^{\mathsf{S}} = DP_{\alpha,\gamma}^{P} \times DP_{\alpha,\beta}^{Q}$

 $DP_{\alpha,\beta\oplus\gamma}^{\mathsf{F}} \approx DP_{\gamma,\beta}^{\mathsf{S}}$

Differential cryptanalysis

- Both constructions have **different DPs**.
 - $DP_{\alpha,\beta}^{\mathsf{F}} \neq DP_{\alpha,\beta}^{\mathsf{S}}$
- In practice, to mount the attack, we use the differential characteristic instead of the differential.
- Both constructions have the same DCPs.
 - $DP^{\mathsf{F}}_{\alpha,\beta\oplus\gamma} \approx DCP^{\mathsf{F}}_{\alpha,\gamma,\beta} = DCP^{\mathsf{S}}_{\gamma,\alpha,\beta} \approx DP^{\mathsf{S}}_{\gamma,\beta}$

When P and Q are Independent α $\mathsf{F} = P \oplus Q$ $\underline{\mathsf{S}} = Q \circ P^{-1}$ **P**-1 Ρ Ο α Q $\beta \oplus \gamma$

 $DP^{\mathsf{F}}_{\alpha,\beta\oplus\gamma} = \sum_{\gamma} DP^{P}_{\alpha,\gamma} \times DP^{Q}_{\alpha,\beta} \qquad \qquad DP^{\mathsf{S}}_{\gamma,\beta} = \sum_{\alpha} DP^{P}_{\alpha,\gamma} \times DP^{Q}_{\alpha,\beta}$

The two probabilities are different ways of adding the same values.

It's even difficult to construct examples they differ artificially.

Differential key recovery

- Both constructions share almost the same immunity against the differential cryptanalysis looking at DPs.
- How about key-recovery attack?

What is differential key recovery?

- Procedure
 - We guess k_0 and k_2 .
 - Find the pair satisfying differential.
 - Data complexity
 - It's at least p^{-1} .
 - When the correct k_0 and k_2 are guessed, we need $2p^{-1}$ queries to detect the pair.
 - We might need more because the attacker doesn't know the correct keys.
 - It depends on the cipher.

Differential key recovery against the sum

- Key recovery to the output side.
 - The attacker cannot get the output of P and Q.

NTT

Differential key recovery against the sum

- Key recovery to the output side.
 - The attacker cannot get the output of P and Q.
- Key recovery to the input side.
 - At the first glance, it looks the same as the differential key recovery on the composition.

Differential key recovery against the sum

- Key recovery to the output side.
 - The attacker cannot get the output of P and Q.
- Key recovery to the input side.
 - At the first glance, it looks the same as the differential key recovery on the composition.
- Remark
 - Even if we know the correct key, it's impossible to find the pair satisfying differential with p^{-1} pairs.
 - Prob $\left[\alpha_P \xrightarrow{Q_1 \circ P_1^{-1}} \alpha_Q\right] = q \ll 1$ in practice.
 - We need at least $p^{-1} \times q^{-1}$ pairs.

17

How about linear cryptanalysis?

Differential cryptanalysis

How about linear cryptanalysis?

Linear cryptanalysis

We have the same conclusion in the linear cryptanalysis. The corresponding compassion is slightly different.

$S^* = S$ in practice

$S^* = S$ in practice

 $S^{\star} = S$ in practice

Supposing the iteration of the same round function (with different keys), S^* and S are equivalent in practice.

Linear key recovery against the sum

- The key-recovery map is the sum of two Boolean functions.
- We don't have dependency issue like the differential cryptanalysis.
- The linear cryptanalysis is more promising strategy than the differential cryptanalysis considering the freedom of the key recovery.

Other attacks and summary

• The following statement is almost true.

$F=P\oplus Q$		$S = Q \circ P^{-1}$
differential linear diff-lin KR 2 nd order diff MitM	*	differential Linear diff-lin boomerang MitM

Truncated diff (Diff-lin) Integral

The integral attack can be the most critical attack against $P \oplus Q$. The algebraic degree is the maximum degree of either P or Q.

?

Other attacks and summary

• The following statement is almost true.

$F=P\oplus Q$		$S = Q \circ P^{-1}$
differential linear diff-lin KR 2 nd order diff MitM	*	differential Linear diff-lin boomerang MitM
—		

Truncated diff (Diff-lin) Integral

Differential-type attacks have critical drawback in the key recovery. Roughly speaking, the attack doesn't work unless the full-round secret-key distinguisher.

?

Security analysis of ZIP-AES

- We inherit almost the same security from the AES.
- We only analyze some exceptions.
 - Differential-linear
 - So far, the best autocorrelation of 5-round AES is $2^{-55.66}$.
 - Thus, the autocorrelation is lower than $2^{-111.32}$
 - The 3-roud AES has the autocorrelation of $2^{-7.66}$, but the autocorrelation of another branch is significantly lower than it.
 - Integral
 - We have the distinguisher on 4-round ZIP-AES with 2⁶⁴ CPs.
 - It's unlikely we add key recovery.
 - Both branch takes the input of the integral distinguisher simultaneously.
 - If we add 1-round key recovery, we need to construct such a set via 2 rounds.
 - Truncated differential, and Mixture
 - So far, 2+2 or 3+3 has slightly higher probability than a generic attack.
 - No successful attack from 4+4.

Table 2: Performance comparison on the counter mode.

cycle-per-byte					counter		
	16B	32B	256B	2KB	16 KB	128KB	
AES	3.56	1.84	0.51	0.36	0.34	0.34	integer
AES-PRF	3.63	1.94	0.55	0.39	0.37	0.37	integer
ZIP-AES	2.96	1.58	0.53	0.41	0.39	0.39	integer

- As expected, ZIP-AES is lower latency than the others.
- It's unfortunate for us that AES-NI doesn't support the straightforward AES inverse round function.
 - Straightforward inverse function, $AK \circ SB^{-1} \circ SR^{-1} \circ MC^{-1}$.
 - AESDEC, $AK \circ MC^{-1} \circ SR^{-1} \circ SB^{-1}$.
 - We need MC^{-1} additionally, but MC^{-1} is double slower than the round function and its inverse.

Table 2: Performance comparison on the counter mode.

	cycle-per-byte						counter
	16B	32B	256B	2KB	16 KB	128KB	
AES	3.53	1.81	0.47	0.35	0.34	0.33	gray code
AES-PRF	3.57	1.88	0.51	0.36	0.34	0.34	gray code
ZIP-AES	2.90	1.61	0.47	0.34	0.33	0.33	gray code

- We use the gray code counter instead of the integer counter.
- The increment is linear.
 - We apply MC^{-1} to the initial state and counter in advance.
 - We can avoid MC^{-1} , and the throughput is improved.

Conclusion

- General practical cryptanalysis
 - Analyze the cipher without detailed specification (like a generic attack).
 - Compare the security from well-studied construction (like a reduction security).
- The sum is almost equivalently secure to the composition.
 - Besides, it's more secure if we focus on the key-recovery efficiency.
 - We reported an error in the existing attack against Orthros because of the difficulty of the key recovery.
 - Linear-type attack is more suited considering the key recovery.
- ZIP-AES
 - Cut AES and zip them.