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Cryptographic Group Action

Let (G, ◦) be a group with identity element id ∈ G, and X a set. A map

⋆ : G × X → X

is a group action if it satisfies the following properties:

1. Identity: id ⋆x = x for all x ∈ X .
2. Compatibility: (g ◦ h) ⋆ x = g ⋆ (h ⋆ x) for all g, h ∈ G and x ∈ X .

Vectorization problem [8]
Given (x, y) ∈ X 2 , determine g ∈ G such that y = g ⋆ x.

To achieve some advanced properties of digital signatures, some relaxations of the above problem are
usually used.

This topic has been cryptanalyzed for LCE and MCE [9] and LIP [5].

Given a polynomial number of pairs
(xi, g ⋆ xi), i = 1, . . . , t.

• Find g, or
• Distinguish from random pairs in X 2.
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Contributions

Our results concern LCE and MCE.

→ We improve the bound on the number of necessary pairs

(xi, g ⋆ xi)

to retrieve g.
→ For the case of LCE with k = n

2 , we show that two pairs are enough to retrieve g in polynomial time.
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Linear and Matrix Code Equivalence Problems

Let G and G′ be the generator matrices of two (n, k)-linear codes C, C′. We say that C and C′ are
equivalent if there exist S ∈ GLk(Fq) and Q ∈ Monon(Fq) such that

G′ = SGQ.

Definition (Linear Code Equivalence (LCE) Problem)

Given G,G′ ∈ Fk×n
q . Find (if they exists) matrices S ∈ GLk(Fq) and Q ∈ Monon(Fq) such that G′ = SGQ.

• If Q ∈ Permn(Fq), then it is Permutation Code Equivalence (PCE) Problem.
• If C and C′ determine two subspaces of the m× r matrix space, then it becomes the Matrix Code

Equivalence (MCE) Problem.
• Cryptographic constructions assume the matrix code generators are in systematic form (SF),

corresponding with its reduced row-echelon form.
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Inverse Linear Code Equivalence Problem

In the context of linkable ring signatures, [2] introduced the following problem.

Definition (Inverse LCE (ILCE) Systematic Form Version)

Given the generators G,G′,G′′ ∈ Fk×n
q in systematic form, find Q ∈ Monon(Fq) such that G′ = SF(GQ) and

G′′ = SF(GQ−1).

Remark

From a given ILCE instance { (
G,G′ = SF(GQ)

)
, (G,G′′ = SF(GQ−1))

}
one obtains { (

G,G′ = SF(GQ)
)
,

(
G′′,G = SF(G′′Q)

) }
,

which is almost like having two random problem instances with the same secret.
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Code equivalences modeled as group actions

Define the following equivalence relation

A ≃SF B ⇐⇒ SF(A) = SF(B), A,B ∈ Fk×n
q .

Consider the base set as X = Fk×n
q / ≃SF and the group as G = Monon(Fq). Then, the group action ⋆ is

defined as
⋆ : G × X → X , (Q,G) 7→ Q ⋆ G := SF(GQ).

Similarly, PCE and MCE are modeled as group actions following the same framework.
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Sample complexity

We define and study the following problem in the context of LCE and MCE.

Multiple Sample Setting

Let Q ∈ Monon(Fq) be fixed and secret. Given t random instances(
Gi,G′

i = Q ⋆ Gi
)
∈ X 2, i = 1, . . . , t.

The t-LCE problem is to find Q.

Similarly, one defines t-PCE and t-MCE.
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Sample complexity

D’Alconzo and Di Scala [9] showed that with t = kn instances of the form(
Gi,G′

i = SGiQ
)

one can retrieve S ∈ GLk(Fq) and Q ∈ Monon(Fq) in polynomial time.

We improve this result in two ways:

→ We require a much smaller number of samples.
→ Our result also works with instances in systematic form, where the matrix S is different for each

G′
i = SF(GiQ) = SiGiQ.
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Sample complexity

Let (G,G′ = SF(GQ)) be an LCE instance, and let H′ be a parity check matrix of G′. Then we have that

GQH′⊤ = 0⇔ (G⊗ H′)vec(Q) = 0

where vec(Q) is the column vector whose entries are the entries of Q row-by-row.

In particular, if G = (Ik|M) and G′ = (Ik|M′), then we have[
( Ik M )⊗ ( −M′⊤ In−k )

]
vec(Q) = 0.

The idea is to stack systems derived from different samples until the rank is large enough to retrieve
vec(Q) via Gaussian elimination. That is, one constructs the system A · vec(Q) = 0, where

A =


( Ik M1 )⊗ ( −M′

1
⊤ In−k )

( Ik M2 )⊗ ( −M′
2
⊤ In−k )

. . .

( Ik Mt )⊗ ( −M′
t
⊤ In−k )

 . (1)
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Sample complexity

Lemma (LCE Sample Complexity - informal)

For t ≥
⌊

n2
k(n−k)

⌋
+ 1, then t-LCE is solvable with non-negligible probability in time O(n2ω) for some constant ω ∈ [2, 3].

For k = n
2 , we have t ≥ 5.

Lemma (MCE Sample Complexity - informal)

For t ≥
⌊

m2r2
k(mr−k)

⌋
+ 1, then t-MCE is solvable with overwhelming probability in time O((mr)2ω) for some constant

ω ∈ [2, 3].

For m = r = k, we have t ≥ ⌊ k2
k−1⌋+ 1 ≥ k + 1.
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Solving 2-LCE and ILCE for k = n/2

With only two samples, one obtains an underdetermined linear system; hence, the secret matrix Q
cannot be recovered via Gaussian elimination.

We propose an algorithm for solving 2-ILCE, which takes inspiration from Saeed’s work [11].

• Guess some unknown variables Qij by exploiting the monomial structure.
• Check whether the obtained reduced system accepts (or not) a solution.

}
Eliminate variables

• Retrieve the remaining variables using Gaussian elimination.
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Core idea of the algorithm

→ Guessing a non-zero entry of the monomial Q corresponds to eliminating 2n− 1 (specific) columns
from A (and variables from vec(Q)).

0 0 0 0 a 0 0
b 0 0 0 0 0 0
0 0 c 0 0 0 0
0 0 0 0 0 0 d
0 0 0 0 0 e 0
0 0 0 f 0 0 0
0 g 0 0 0 0 0




→ From the guessing at entry (i, j), one obtains a reduced linear system

Aij · vec(Q′) = bij

where Q′ is the (n− 1)× (n− 1) resulting secret matrix. The vector bij corresponds with the column
of A determined by the non-zero entry, and Aij has n2

2 rows and (n− 1)2 columns.
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Sketch of the algorithm

A · vec(Q) = 0 ← initial linear system

⇓ ← make guess on entry(i, j)

Aij · vec(Q′) = bij ← reduced linear system

rank(Aij)
?
= rank(Aij|bij)

← Rouché-Capelli test

rank(A) = n2
2

rank(Aij) =
n2
2 − 1 rank(Aij|bij) =

{
n2
2 − 1 accept
n2
2 reject
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Analysis of the algorithm

→ The probability of accepting a wrong guess is ≈ 1
q .

→ There are n correct guesses that always pass the Rouché-Capelli test.
→ There are n2 − n wrong guesses that might pass the Rouché-Capelli test.
→ Therefore, the expected number of survivals (missing unknown variables) is

n+ (n2 − n) 1
q
.

→ Consequently, we can recover the secret monomial matrix Q when

n+ (n2 − n) 1
q
≤ n2

2
⇒ q ≥ 2(n− 1)

n− 2
.

→ Complexity:
• Rouché-Capelli test takes O(n2ω) field operations.
• We need to perform n2 guesses.

The total complexity is then O(n2+2ω) for some constant ω ∈ [2, 3].
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Experiments on solving 2-LCE and ILCE for k = n/2

q
n 16 24 32 40 1− 1

q

7 2-LCE 0.81 0.84 0.81 0.86 0.86ILCE 0.87 0.82 0.86 0.85

11 2-LCE 0.92 0.87 0.93 0.87 0.91ILCE 0.91 0.93 0.89 0.90

17 2-LCE 0.95 0.95 0.93 0.92 0.94ILCE 0.96 0.94 0.96 0.96

31 2-LCE 0.96 0.99 0.96 0.95 0.97ILCE 0.94 0.96 0.98 0.98

Table: The data corresponds to the number of solved instances divided by the total number of experiments (which is
100). The last column reports the expected success probability from our analysis, that is, the matrix A has full rank.
In all the experiments, we have k = n/2.
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Experiments on solving 2-LCE for k = n/2

n q Corresponding LCE Expected Measured Memory Runtime Ratiobit security survival vars. survival vars. (GB)

64

17 35 305 288 16.96 07m 08s 17/20
23 37 242 240 16.96 07m 00s 17/20
31 38 196 191 16.96 07m 06s 20/20
127 44 96 97 16.97 07m 02s 20/20

72

19 39 345 343 27.19 13m 27s 20/20
23 40 297 291 27.19 13m 58s 17/20
37 42 212 212 27.20 12m 50s 18/20
127 47 113 113 27.21 13m 08s 20/20

80

19 41 416 417 41.48 21m 40s 18/20
29 44 301 302 41.50 21m 48s 20/20
41 46 236 228 41.49 18m 37s 18/20
127 51 130 132 41.50 18m 09s 20/20

96

23 48 496 499 86.10 01h 04m 20/20
31 51 393 392 86.10 01h 04m 19/20
47 54 292 284 86.10 01h 04m 20/20
127 58 169 169 86.09 01h 08m 20/20

128

31 63 656 639 272.06 06h 02m 20/20
43 66 509 519 272.07 06h 02m 19/20
61 69 397 397 272.06 05h 51m 19/20
127 73 257 252 272.10 04h 39m 20/20

Table: Average of 20 iterations.
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Direct implications of our work

• We reply to the question raised in [2]: ILCE is not secure⇒ no linkability in LCE-based ring
signature.

• The distributed key-generation in the threshold-group action signature GRASS [4] instantiated with
LCE is not secure. (The authors revised their work dropping the dependency on 2-LCE [3]).

ID scheme /
signature

Commitment Linkable ring
signature from

[6, 2, 7]

Pseudo random
function from [1]

Updatable
encryption from

[10]

LCE ✓ ✓ ✗ ✗ ✗

MCE ✓ ✓ ✓(?) ✗ ✗

Table: Overview of the secure and insecure known instantiations of primitives constructed from LCE and MCE group
actions. The symbols ✗ and ✓ denote that the corresponding primitive is insecure or remains secure. The symbol
✓(?) denotes that no specific attacks are known, but we suggest further investigation. The third column in the LCE
setting concerns the cryptographic scenario when the code length doubles the code dimension.
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Questions?

Thanks for attending!
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