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(One-more) Unforgeability

User can only obtain valid signatures on chosen messages by interacting with the signer.

Blindness/Unlinkability

Signer cannot link a message and signature pair to any specific signing session.




Applications

> Electronic cash [Chaum83]

> Electronic voting [Canard-Gaud-Traoré06]

> Cryptographic tumblers [Heilman-Alshenibr-Baldimtsi-Goldberg17]

» Anonymous credential schemes [Baldimtsi-Lysyanskayal3, Fuchsbauer-Hanser-Slamanig19]

> Authentication tokens/Anonymous web-browsing [Davidson-Goldberg-Sullivan-Tankersley-Valsorda18]
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Towards a non-interactive protocol

EieYer

Any blind signature scheme on user specified messages requires an interactive signature generation algorithm.

Observation [Hanzlik23]

The blindly sighed message is randomly chosen by the user in many modern applications.

Proposition [Hanzlik23]

If the user does not require a specific distribution or structure to the message, then a non-interactive signature

generation algorithm exists.
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(One-more) Unforgeability

User can only obtain valid signatures on (random) messages from the signer.

Signer cannot link a message and signature pair to any specific issuance.
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The issue with NIBS blindness

Cause

Previous definition restricts to the case where the adversary receives exactly two message and signature pairs

from the challenger. In general, this need not be the case.

Our solution

» Give a new definition of blindness.

» Facilitated by providing the adversary with access to an oracle for the Obtain algorithm.

> Holds for an unbounded number of message and signature showings.
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=

The stronger blindness definition captures the actual baseline requirements for NIBS blindness.
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one of those messages.
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How to commit to an exponential number of messages efficiently?

User sets pk,, to be a commitment to some PRF key K.

How to have the signer obliviously select one of those messages?

The signer samples the messages by selecting a random input r and signing it along with pk,,.

The final message is then F(r) and the signature is a proof of knowledge of the (pre)signature on pk,,

and r corresponding to this message.
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Our generic NIBS compiler

Security

(One-more) Unforgeability

From AoK property of the NIZK and existential unforgeability of the signature scheme under chosen messages.

Strong blindness

Zero-knowledge of the NIZK, hiding of the commitment scheme and pseudo-randomness of F.
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Towards efficient signature size

from homomorphic encryption

Homomorphic encryption enables arbitrary homomorphic operations on the receiver's commitment.
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An alternate construction from homomorphic encryption

How to commit to an exponential number of messages efficiently?

User sets pk,, to be an (homomorphic) encryption of the PRF key K.

How to have the signer obliviously select one of those messages?

The signer homomorphically evaluates a signature on the message Fy(r) for some randomness r of its choice.

The final message is then F.(r) and the signature ¢ is an actual signature, obtained by decrypting the

(pre)signature.
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NIBS from HE

(SkU = K, SkHEa pkU = EncekHE(K), ekHE)

—

Y = (W,n), 1
A———————
Verify _ (-++) < Prove ()
Obtain p = Fr(r) U, o

o« Decy, () ~——  Verify, (4.0
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NIBS from HE

(One-more) Unforgeability

Zero-knowledge of the NIZK, existential unforgeability of the signature scheme under chosen messages and circuit-privacy of HE.

Strong blindness

From AoK property of the NIZK, CPA security of HE and pseudo-randomness of F.

Can be instantiated from standard lattice assumptions, giving a first theoretical construction for post-quantum secure NIBS.




Comparison of our constructions

Construction | pkU| K el Blindness
Circuit-private LHE poly(4) poly(4) < 1KB Strong
General-purpose NIZK poly(4) < 1KB poly(4) Strong

Lattice-based

1.6 KB < 1 KB 68 KB Weak /one-time
(rOM-ISIS)

Table. Public key, transcript and signature sizes of our constructions.
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Summary of our results

ldentify an issue with the existing definition
and give the right definition for blindness of

A Fishclin-like compiler for NIBS and prove

security in our baseline setting.

NIBS (and a new correctness notion).

A generic construction for NIBS from Construction from a (non-standard) lattice
leveled homomorphic encryption and prove assumption called rOM-ISIS which satisfies

security in our baseline setting. the weaker one-time blindness.




Future work

> Efficient post-quantum secure NIBS with baseline security.

> Formal cryptanalysis of the rOM-ISIS assumption.

> NIBS from pairing free assumptions.

> Other models for non-interactive signing.



Future work

Solved in an upcoming work—NIBS from MLWE/MSIS + ISIS,

> Formal cryptanalysis of the rOM-ISIS assumption.
> NIBS from pairing free assumptions.

> Other models for non-interactive signing.



Thank you.

Full version: ia.cr/2024 /614






| attice-based NIBS

from our generic compiler

> An efficient lattice-based NIBS scheme that is secure (blind) under the definition of [Han23]*.

> The final signature size is 68 KB (total communication ~70 KB). The current state-of-the-art (interactive)

lattice-based blind signature scheme [BLNS23] has signature around 22 KB (but total communication is 100+ KB).

> Our security proof relies on a new lattice assumption that we call the randomized one-more ISIS assumption

(rOM-ISIS). rOM-ISIS is a more robust variant of the one-more ISIS assumption due to Agrawal, et al. [AKSY22].

We also provide some high-level cryptanalysis to show that rOM-ISIS is (likely) at least as hard as OM-ISIS.



Lattice-based NIBS

from our generic compiler

(sky := (x,0), pk,, := A - x + H(5)) (skg :=
Z,y
—ee
m:=A -x,+Ar -7z,
=, 0),0 .=y, x _
Obtain Y < E”CpkaE(X\ [y||z) ﬂu ) Verity _ (---)

< Prove.(::*)



CP-LHE

3.4.6 Leveled homomorphic encryption

Let C; denote the class of boolean valued circuits of depth d. A leveled homomorphic encryption
scheme LHE with message space {0, 1} for circuit class {C;} ;. consists of the following polyno-

mial time algorithms:

Setup(1%,17) — (sk,ek) The setup algorithm takes as input the security parameter A, bound on
circuit depth d and outputs a secret key sk and evaluation key ek.

Enc(sk,m €{0,1}) — ct The encryption algorithm takes as input a secret key sk, message m € {0, 1}
and outputs a ciphertext ct.

Eval(ek, C € Cy4,ct) — ct’ The evaluation algorithm takes as input an evaluation key ek, a circuit
C € C,, a sequence of ciphertexts ct = (cty,...,ct;) for some € > 0 and outputs a ciphertext ct.

Here ¢ denotes the input length of C.

Dec(sk,ct) — x The decryption algorithm takes as input a secret key sk and ciphertext ct and
outputs x € {0, 1} U {L}.

Correctness. The scheme LHE is said to be (perfectly) correct if for all security parameter A,
circuit-depth bound d, (sk,ek) « Setup(14,19), circuit C € C; and messages m,,...,m; € {0,1},
every ciphertext ct; « Enc(sk, m;) where € denotes input length of C, the following holds:

Pr|[Dec(sk,Eval(ek, C,(cty,...,cte)) = C(my,...,mg)] = 1.

Definition 3.19 (Circuit privacy). An LHE scheme is said to be circuit private if there exists a PPT

algorithm Sim such that for every d € IN any circuit C € C; with input length ¢ = poly(A), and any
sequence of message bits m,,...,m, € {0, 1}, the following holds:

(ek,Eval(ek, C, (cty,...,cty)),cty,...,Ctp) =, (ek, ct, Ctl,...,Ct(-)

where (sk, ek) «s Setup(14,19), ct; «=s Enc(sk, m;) Yi € [€], ct = Sim(ek, C(my, ..., my),cty,...,cty).



rOM-ISIS

. The challenger samples a challenge matrix A € Z

. TOM-ISIS assumption says that A cannot output € + 1 distinct vector tuples {(x Yt ]-)}

nxm

q
along with a large set of random target vectors T C Z. It provides the attacker with A, B
and the vector set T.

and a randomization matrix B € Z;*"

. A can make preimage queries for any target vector t € Z; such that the challenger replies

with a short vector X and a +1 vector y € {+1}" such that A- X +B -y ='t.

jel€+1]
such that A - x; +B-y; =t;, t; € T, X; is sufficiently short, Y is a +1 vector, and A made at

most ¢ preimage queries.

Intuitively, the attacker now cannot truly select the preimage vector arbitrarily since the chal-
lenger randomizes the actual target vector as (t — B -y), where y is a random +1 vector. Since the

attacker receives the vector y used for randomization, it is unclear whether we can reduce it to
the standard ISIS assumption.” However, our preliminary cryptanalysis (cf. § 6.1) shows that it is

more robust when compared with the OM-ISIS assumption. We believe that this new formulation
could serve as a better lattice analogue of the one-more RSA assumption [BNPS03]|. For exam-

ple, we can also prove that a mild adaptation of the Agrawal et al. [AKSY22| two-round blind
signature scheme 1is still secure under rOM-ISIS assumption, and now we no longer have set the

parameters as carefully to avoid simple attacks as was done in [AKSY22]|. This further illustrates

the flexibility of our new assumption. Later, in Section 6, we describe the assumption in full detail
and also provide some preliminary cryptanalysis.



NIBS

Definition 4.2 (Reusability). A NIBS scheme § satisfies the reusability property, if there exists a
negligible function negl(-) such that for every A € IN, the following holds:

pp «$ Setup(lA) |
nonce, = NONce, (sk,vk) <= KeyGeng(pp), (sky, pky) <5 KeyGeny(pp)
Pr : ; < negl(A).
V po = 1 Ybe{0,1}: (psigy, noncey) < Issue(sk, pky)
¥Yb €{0,1}: (up, op) <5 Obtain(sky, vk, (psigy, noncey)) |

Definition 4.3 (One-more unforgeability). A NIBS scheme § satisfies one-more unforgeability, if
for every stateful admissible PPT adversary A, there exists a negligible function negl(-) such that

for every A € IN, the following holds:

Pr

A (/\i:,'e[m]l‘i * P;‘)

Niejes1) Verify(vk, pi,0i) =1

{(pi,00)}

pp <5 Setup(l") |
(sk,vk) «s KeyGeng(pp)

['*'11 —$ Aosk(‘)
1=

(vk) |

< negl(A),

where O (-) takes as input a receiver’s public key pk, , and outputs a presignature-nonce pair
(psig;, nonce;) by running Issue(sk, ka‘,), and A is an admissible adversary iff A makes at most £

queries to Ogy.



NIBS

Definition 4.4 (Strong receiver blindness). A NIBS scheme & satisfies strong receiver blindness, if
for every stateful admissible PPT adversary A, there exists a negligible function negl(-) such that
for every A € IN, the following holds:

i Osk sk ('r':') I
A (W Oy 0y ) = b

pp <5 Setup(1%), b «s{0,1),
Pr ¥Ybe{0,1}: (ska,kab) «—=s KeyGeng(pp)

IA
N | =

+ negl(A),

(v, (psigy, noncey,);) s A R ("0'.}(Pkko, Pk, )
Vb e{0,1}: (up, 04) < Obtain(sky , vk, (psigy, noncey))

where oracle OSkRU'SkR , on the i-th query (b'",vk!), (psig!’), nonce!")), outputs Obtain(sk, ,vk'",
I pli)

(psig'”’, nonce!")). That is, Og,, sk, Provides Aoracle access to the Obtain algorithm w.r.t. sk, , sk .
0 1
We say that A is an admissible adversary iff:

- 0g, 01 #L (i.e., Obtain algorithm does not abort), and

— nonceg # nonce!’) and nonce; # nonce'” for all i. (That is, A cannot make an Obtain query
with nonce value to be either of the challenge nonce values.)



NIBS

Definition 4.5 (Strong nonce blindness). A NIBS scheme § satisfies nonce blindness, if for every

stateful admissible PPT adversary A, there exists a negligible function negl(-) such that for every
A € N, the following holds:

Os' ('ﬁ') a A A g — I, o
AR Wy Oy Py 0y ) = b

Pr pp < Setup(1%), (skg, pky) <5 KeyGeng(pp) | <
(vk, (psigy, noncey),) «s A% (pky), b «s{0,1}
¥bel0,1}: (up, 04) <3 Obtain(skg, vk, (psigy, noncey))

% + negl(A),

where oracle Ogk,» ON the i-th query (vk'”), (psig'”), nonce'™)), outputs Obtain(skp, vk, (psig!”), nonce!")).
That is, Oy provides A oracle access to the Obtain algorithm w.r.t. sk,. We say that A is an ad-
missible adversary iff:

- 0,01 #1 (1.e., Obtain algorithm does not abort), and

- nonce, # nonce!’) and nonce; # nonce!’ for all i. (That is, A cannot make an Obtain query
with nonce value to be either of the challenge nonce values.)



