Dictators? Friends? Forgers.

Breaking and Fixing Unforgeability Definitions for
Anamorphic Signature Schemes

Joseph Jaeger and Roy Stracovsky

Georgia Institute
ASIACRYPT 2024 of Technology

Vlotivation

Anamorphic Encryption [PPY22]

® Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.

® Goal: allow users to communicate privately in authoritarian settings by
concealing hidden messages inside of innocuous ciphertexts.

® Technical realization: augment deployed primitives with “anamorphic
extensions” that use a double key dk to conceal “anamorphic messages”.

Anamorphic Encryption [PPY22]

® Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.

® Goal: allow users to communicate privately in authoritarian settings by
concealing hidden messages inside of innocuous ciphertexts.

® Technical realization: augment deployed primitives with “anamorphic
extensions” that use a double key dk to conceal “anamorphic messages”.

Hashed ElGamal,
RSA-OAEP, ...

Anamorphic Encryption [PPY22]

® Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.

® Goal: allow users to communicate privately in authoritarian settings by
concealing hidden messages inside of innocuous ciphertexts.

® Technical realization: augment deployed primitives with “anamorphic
extensions” that use a double key dk to conceal “anamorphic messages”.

Hashed ElGamal, looks like Hashed ElGamal,
RSA-OAEP, ... RSA-OAEP, ...

Anamorphic Encryption [PPY22]

® Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.

® Goal: allow users to communicate privately in authoritarian settings by
concealing hidden messages inside of innocuous ciphertexts.

® Technical realization: augment deployed primitives with “anamorphic
extensions” that use a double key dk to conceal “anamorphic messages”.

Hashed ElGamal, looks like Hashed ElGamal,
RSA-OAEP, ... RSA-OAEP, ...

even to dictator

who knows sk

Anamorphic Signature Schemes [KPPYZ23]

® Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

® Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

Anamorphic Signature Schemes [KPPYZ23]

® Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

® Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

ElGamal signatures,
RSA-PSS, ...

Anamorphic Signature Schemes [KPPYZ23]

® Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

® Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

looks like EIGamal signatures,
RSA-PSS, ...

ElGamal signatures,
RSA-PSS, ...

Anamorphic Signature Schemes [KPPYZ23]

® Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

® Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

ElGamal signatures, looks like EIGamal signatures,

RSA-PSS, ... RSA-PSS, ...

even to dictator

who knows sk

Anamorphic Signature Schemes [KPPYZ23]

® Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

® Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

looks like EIGamal signatures,
RSA-PSS, ...

ElGamal signatures,
RSA-PSS, ...

even to dictator

who knows sk

® |ntroduce new security definitions specific to (anamorphic) signatures.

Anamorphic Signatures, Deployed

i .
Sender e mmmmmmmm e ————- g uses Schnorrto sign EER Recelver
messages, metadata,

(Vka Sk) headers, etc. vk
dk dk

Anamorphic Signatures, Deployed

i .
Sender e mmmmmmmm e ————- g uses Schnorrto sign EER Recelver
messages, metadata,

(Vka Sk) headers, etc. vk
dk dk

Anamorphic Signatures, Deployed

| .
Sender e mmmmmmmm e ————- g uses Schnorrto sign EER Recelver
messages, metadata,
(Vka Sk) headers, etc. vk

dk dk

Warmup Anamorphic Signature Scheme (RSA-PSS)

Warmup Anamorphic Signature Scheme (RSA-PSS)

dk < prE . KeyGen(1%)

Warmup Anamorphic Signature Scheme (RSA-PSS)

r < prE . Enc(dk, amsg)

dk < prE . KeyGen(1%)

Warmup Anamorphic Signature Scheme (RSA-PSS)

r < prE . Enc(dk, amsg)

dk < prE . KeyGen(1%)

aDec(vk, dk, msg, asig) :
(bllwllally) < asig” (mod N)
r—Gw) @a
amsg « prE . Dec(dk, r)
return amsg

Warmup Anamorphic Signature Scheme (RSA-PSS)

r < prE . Enc(dk, amsg)

dk < prE . KeyGen(1%)

aDec(vk, dk, msg, asig) :
(bllwlla|ly) < asig® (mod N)
r—Gw) @a
amsg « prE . Dec(dk, r)

® (Generalizes to any signature
scheme that with “recoverable”
signing randomness.

return amsg

Randomness Replacement [KPPYZ23]

® Randomness Replacement Transtorm RRep .
-

® Input: randomness recoverable signature scheme S RRep mabl
® Input: pseudorandom encryption scheme prE pre —

® Output: anamorphic signature scheme aS

® S is randomness recoverable it there exists a PPT RRecov that, given
sig < Sign(sk, msg; r), can recover r < RRecov(vk, msg, sig).

Randomness Replacement [KPPYZ23]

® Randomness Replacement Transtorm RRep

S—»

® Input: randomness recoverable signature scheme S RRep mabl

® Input: pseudorandom encryption scheme prE prE—>

® Output: anamorphic signature scheme aS

® S is randomness recoverable if there exists a PPT RRecov that, given
sig < Sign(sk, msg; r), can recover r < RRecov(vk, msg, sig).

/

Security Notions for Anamorphic Signatures

Security Notions for Anamorphic Signatures

® Stealthiness: dictator cannot distinguish honest and anamorphic signatures
even when given keypair (vk, sk) [KPPYZ23].

Security Notions for Anamorphic Signatures

® Stealthiness: dictator cannot distinguish honest and anamorphic signatures
even when given keypair (vk, sk) [KPPYZ23].

® Robustness: honest signatures don’t anamorphically decrypt to valid
anamorphic messages [BGHMR24].

Security Notions for Anamorphic Signatures

® Stealthiness: dictator cannot distinguish honest and anamorphic signatures
even when given keypair (vk, sk) [KPPYZ23].

® Robustness: honest signatures don’t anamorphically decrypt to valid
anamorphic messages [BGHMR24].

® Private anamorphism: a recipient who knows the double key dk and sees
honest signatures cannot forge new signatures [KPPYZ23].

Our Contributions

Summary

10

Summary

Observe a gap between a stated goal of
robustness and its formalization.

10

Summary

o
F

Summary

10

Summary

10

Summary

10

Summary

Summary

v,
1]
"]
L

Summary

6

4 C Yy
\\ JI»

i
| T

Part 1: Strengthening Robustness to Dictator Unforgeability

Observe a gap between the deployment scenario

of private anamorphism and its formalization.

Mount a practical attack a natural
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform n
to achieve recipient unforgeability.

11

Robustness [BGHMR24]

® Proposed by Banfi, Gegier, Hirt, Maurer, and Rito at Eurocrypt 2024.*

® High level goal: honest signatures don’t anamorphically decrypt to valio
anamorphic messages.

® BGHMR list two primary motivations for robustness.

® Usability: anamorphic messages will be sent in a network containing honest
communication — anamorphic users need to identify what is what.

® Security: (roughly) to prevent a dictator from initiating anamorphic channels
with anamorphic users.

® BGHMR propose two transforms that achieve robustness.

*Proposed originally for anamorphic encryption though we analyze a straightforward adaptation to signature schemes in our work.

12

Randomness Identification with PRF [BGHMR24]

® Randomness ldentification with PRF Transtorm RIdP .
—>

® |nput: randomness identifying signature scheme S > 25
prkE—»

® Input: pseudorandom function prF

® Output: anamorphic signature scheme aS

® S is randomness identitying it there exists a PPT RIdtfy that, given
sig < Sign(sk, msg; r), can check whether r’' = r via RIdtfy(vk, msg, sig, r').

13

Randomness Identification with PRF [BGHMR24]

® Randomness ldentification with PRF Transtorm RIdP .
—>

® |[nput: randomness identitying signature scheme S > 25
prk—»

® Input: pseudorandom function prF

® Output: anamorphic signature scheme aS

® S is randomness identifying if there exists a PPT RIdtfy that, given
sig < Sign(sk, msg; r), can check whether r’ = r via RIdtfy(vk, msg, sig, r’).

13

Randomness Identification with PRF/XOR [BGHMR24]

® Randomness ldentification with PRF/XOR Transform RIAPX

S—»

® Input: randomness identifying signature scheme S RIdPX TR

® Input: pseudorandom function prF pr- =

® Output: anamorphic signature scheme aS

® S is randomness identifying if there exists a PPT RIdtfy that, given
sig < Sign(sk, msg; r), can check whether r’ = r via RIdtfy(vk, msg, sig, r’).

- s Sk pri(dk ctr) @ amsg

14

Robustness Game [BGHMR24]

b {0.1)
aKeyGen(1%) = (vk, sk, dk)

15

Robustness Game [BGHMR24]

b2 {01}
aKeyGen(1%) = (vk, sk, dk) O..
Sign,aDec
msg
if b = 0 then
amsg «— |
if b = 1 then
sig < Sign(sk, msg)
amsg < aDec(vk, dk, msg, sig)
amsg

15

Robustness Game [BGHMR24]

b (0,1)
aKeyGen(1%) = (vk, sk, dk) O..
Sign,aDec
msg
if » = 0 then
amsg «— |
if » = 1 then
sig < Sign(sk, msg)
amsg < aDec(vk, dk, msg, sig)
h* amsg

wins if b = b*

15

Revisiting Robustness Threat Model

Sender e meemmmm-memmmsmeemmmmmemmmmmmemmmmm===al Receiver

(vk,spy -———7°?o—490o0o0o020-4"4~4~4~————————— vk
dk dk

attacks captured by robustness

16

Revisiting Robustness Threat Model

sig’ < Sign(sk, msg*)

Sender e meemmmm-memmmsmeemmmmmemmmmmmemmmmm===al Receiver

(vk,spy -———7°?o—490o0o0o020-4"4~4~4~————————— vk
dk dk

attacks captured by robustness

16

Revisiting Robustness Threat Model

sig’ «— f(sk)

Sender e meemmmm-memmmsmeemmmmmemmmmmmemmmmm===al Receiver

(vk,spy -———7°?o—490o0o0o020-4"4~4~4~————————— vk
dk dk

reasonable attacks not captured by robustness

17

Revisiting Robustness Threat Model

sig’ «— f(sk)

Sender L - Receiver

(vk,spy -———7°?o—490o0o0o020-4"4~4~4~————————— vk
dk dk

reasonable attacks not captured by robustness

18

Revisiting Robustness Threat Model

sig’ < f(sk)

Sender L - Receiver

(vk,spy -———7°?o—490o0o0o020-4"4~4~4~————————— vk
dk dk

reasonable attacks not captured by robustness

18

Our Proposal: Dictator Unforgeability Game

S« 0@
aKeyGen(1%) = (vk, sk, dk)

19

Our Proposal: Dictator Unforgeability Game

S« 0@
aKeyGen(1%) = (vk, sk, dk)
(vk, sk)

19

Our Proposal: Dictator Unforgeability Game

S« 0@
aKeyGen(1%) = (vk, sk, dk)
(vk, sk)

(msg,amsg)

asig < aSign(sk, dk, msg, amsg)
S < SU{(msg,asig)}

asig

19

Our Proposal: Dictator Unforgeability Game

S« 0@
aKeyGen(1%) = (vk, sk, dk)

(vk, sk)

19

Dasien (msg,amsg)
asig < aSign(sk, dk, msg, amsg)
S < SU{(msg,asig)}
asig
Ospec
(msg,asig))

amsg < aDec(vk, dk, msg, asig)
amsg

Our Proposal: Dictator Unforgeability Game

R,
aKeyGen(1%) = (vk, sk, dk) 0.
(vk, sk) e (msg, amsg)
asig < aSign(sk, dk, msg, amsg)
S < SU{(msg,asig)}
asig
Ospec
(msg,asig))
amsg < aDec(vk, dk, msg, asig)
(msg*, asig’) amsg

amsg* « aDec(vk, dk, msg*, asig")

wins if (amsg™ # 1)
A ((msg*, asig) & S)

19

Dictator Unforgeability of Transforms

® Are the previously proposed transforms dictator unforgeable?

[KPPYZ23] IBGHMRZ24] IBGHMRZ24]

S—»> S—»> S—»>

> aS Nl Gl aS

RRep paN

pre = prF—> prF—>

20

Dictator Unforgeability of Transforms

® Are the previously proposed transforms dictator unforgeable?

[KPPYZ23] IBGHMRZ24] IBGHMRZ24]

S—» S—»
RRep = 23S — aS
prk —» prk—»

X

S—»

RIAPX BgEN

X

prE —»

20

Dictator Unforgeability of Transforms

® Are the previously proposed transforms dictator unforgeable?

[KPPYZ23] IBGHMRZ24] IBGHMRZ24]

S—» S—» S—»
RRep paS - aS
pre = prF—> prF—>

X

® Can we patch any of the transforms?

RIAPX BgEN

X

20

Dictator Unforgeability of Transforms

® Are the previously proposed transforms dictator unforgeable?

[KPPYZ23] IBGHMR?24] IBGHMR?Z24]
S—> S—> S—>
RRep gg&N - aS RIAPX RS
pre = prF—> prF—>

® Can we patch any of the transforms?

Dictator Unforgeability of Transforms

® Are the previously proposed transforms dictator unforgeable?

[KPPYZ23] I BGHMRZ24] IBGHMRZ24]

S—> S—»> S—>
RRep gl - 3S RIAPX BN
prE—> prF—> prE—>
rob

X X

® Can we patch any of the transforms?

21

X
o,

:

Dictator

22

X
o,

:

Dictator

amsg = "meet at 2PM"

22

X
&

:

Dictator

amsg = "meet at 2PM"

r < prF(dk, ctr) @ amsg

22

Dictator Attacking RIdPX
9

Dictator

amsg = "meet at 2PM"

r < prF(dk, ctr) @ amsg
I

v
asig < Sign(sk, msg; r)

scheme is randomness

recoverable e.g. EIGamal,
Schnorr, RSA-PSS, .etc

22

Dictator Attacking RIdPX
9

Dictator
amsg = "meet at 2PM"
r < prF(dk, ctr) @ amsg
_ | asig
asig < Sign(sk, msg;r) —»

scheme is randomness

recoverable e.g. EIGamal,
Schnorr, RSA-PSS, .etc

22

Dictator Attacking RIdPX
9

Dictator

amsg = "meet at 2PM"

r < prF(dk, ctr) @ amsg
asig

asig < Sign(sk, msg; r) —|_>

r < RRecov(vk, sk, msg, asig)

scheme is randomness

recoverable e.g. EIGamal,
Schnorr, RSA-PSS, .etc

22

Dictator Attacking RIdPX
. 9

Dictator
amsg = "meet at 2PM"
r < prF(dk, ctr) @ amsg
_ | asig
asig < Sign(sk, msg;r) —»

r < RRecov(vk, sk, msg, asig)
scheme is randomness |
v

r* « r @ amsg’

recoverable e.g. EIGamal,
Schnorr, RSA-PSS, .etc

22

Dictator Attacking RIdPX
®

Dictator

amsg = "meet at 2PM"
r < prF(dk, ctr) @ amsg

. . asig
asig < Sign(sk, msg;r) —m»

r < RRecov(vk, sk, msg, asig)
r* « r @ amsg’

asig’ < Sign(sk, msg;)

22

Dictator Attacking RIdPX

Dictator

amsg = "meet at 2PM"

r < prF(dk, ctr) @ amsg

. . asig
asig < Sign(sk, msg;r) —m»

r < RRecov(vk, sk, msg, asig)

r* « r @ amsg’
. asig™
asig <« Sign(sk, msg; r*)———————————————"—">

22

Dictator Attacking RIdPX
o ®

Dictator

amsg = "meet at 2PM"

r < prF(dk, ctr) @ amsg

. . asig
asig < Sign(sk, msg;r) —m»

r < RRecov(vk, sk, msg, asig)

r* « r @ amsg’
. asig™
asig <« Sign(sk, msg; r*)————————————"f—""»

amsg™ <« aDec(vk, dk, msg, asig*)

22

Dictator Attacking RIdPX

Dictator

amsg = "meet at 2PM"

r < prF(dk, ctr) @ amsg

. . asig
asig < Sign(sk, msg;r) —m»

r < RRecov(vk, sk, msg, asig)

r* « r @ amsg’
. asig™
asig <« Sign(sk, msg; r*)———————————————"—">
amsg™ <« aDec(vk, dk, msg, asig*)

amsg” = amsg @ amsg = "meet at 4PM"

22

Repairing Dictator Unforgeability of RRep and RIdP

Replaces signing randomness with Replaces signing randomness with
pseudorandom encryptions i.e. pseudorandom function outputs i.e.

r < prE . Enc(dk, amsg) r < prF(dk, (ctr,amsg))

23

Repairing Dictator Unforgeability of RRep and RIdP

S—>
RRep pgN J

prE —»

Replaces signing randomness with Replaces signing randomness with
pseudorandom encryptions i.e. pseudorandom function outputs i.e.

r < prE . Enc(dk, amsg) r < prF(dk, (ctr,amsg))

23

Repairing Dictator Unforgeability of RRep and RIdP

S—>
RRep pgN J

prE —»

s of

Replaces signing randomness with Replaces signing randomness with
pseudorandom encryptions i.e. pseudorandom function outputs i.e.

r < prE . Enc(dk, amsg) r < prF(dk, (ctr, msg, amsg))

24

Part 2: Strengthening Private Anamorphism to Recipient Unforgeability

Observe a gap between a stated goal of

robustness and its formalization.
O,
Propose Dictator Unforgeability. i

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to

achieve dictator unforgeability.

25

Private Anamorphism [KPPYZ23]

® Proposed alongside anamorphic signatures.

® High level goal: a recipient who knows the double key dk and sees honest
signatures cannot forge new signatures.

® KPPYZ discusses a primary motivation for private anamorphism.

® Security: (roughly) to prevent a recipient from forging signatures on behalf
of the sender.

® KPPYZ provide a framework that achieves private anamorphism which covers
the randomness replacement transtorm RRep as a special case.

26

Private Anamorphism Game [KPPYZ23]

S« 0@
aKeyGen(1%) = (vk, sk, dk)
(vk, dk)

27

Private Anamorphism Game [KPPYZ23]

S« 0@
aKeyGen(1%) = (vk, sk, dk)

(vk, dk) msg

sig < Sign(sk, msg)
S <« SuU {(msg,sig)}
Sig

27

Private Anamorphism Game [KPPYZ23]

S0
aKeyGen(1%) = (vk, sk, dk)
(vk, dk) msg
sig < Sign(sk, msg)
S« SU{(msg,sig)}
(msg”*, sig’) sig

wins if Verify(vk, msg*,sig) = 1
A ((msg®, sig) & S)

27

Revisiting Anamorphic Threat Model

Sender

(vk,sky —4m™———4———————> vk
dk dk

28

Revisiting Anamorphic Threat Model

sig < Sign(sk, msg)

asig < aSign(sk, dk, msg, amsg)
Sender T ...

(vk,sk ———————————————————— vk
dk dk

28

Revisiting Anamorphic Threat Model

sig < Sign(sk, msg)

asig < aSign(sk, dk, msg, amsg)
Sender S ..

(vk,sk ———————————————————— vk
dk dk

28

Our Proposal: Recipient Unforgeability Game

S« 0@
aKeyGen(1%) = (vk, sk, dk)
(vk, dk)

29

Our Proposal: Recipient Unforgeability Game

S« 0@
aKeyGen(1%) = (vk, sk, dk)

(vk, dk) msg

sig < Sign(sk, msg)
S <« SuU {(msg,sig)}
Sig

29

Our Proposal: Recipient Unforgeability Game

S« 0@
aKeyGen(1%) = (vk, sk, dk)
(vk, dk)

msg
sig < Sign(sk, msg)
S« SU{(msg,sig)}
Sig

(msg, amsg)

asig < Sign(sk, dk, msg, amsg)
S <« SU {(msg,asig)}

asig

29

Our Proposal: Recipient Unforgeability Game

S« @
aKeyGen(1%) = (vk, sk, dk) 0.
(vk, dk) et msg
sig < Sign(sk, msg)
S« SU{(msg,sig)}
Sig
Dasien (msg, amsg)
asig < Sign(sk, dk, msg, amsg)
S <« SU {(msg,asig)}
(msg”*, sig’) asig

wins if Verify(vk, msg*, sig) = 1
A ((msg*,sig) & S)

29

Recipient Attacking RRep: The Ingredients

® Recall RRep replaces signing randomness with r < prE . Enc(dk, amsg).

30

Recipient Attacking RRep: The Ingredients

® Recall RRep replaces signing randomness with r < prE . Enc(dk, amsg).

backdoor: outputs sk when signing

randomness r = 0

still SUF-CMA secure!

30

Recipient Attacking RRep: The Ingredients

® Recall RRep replaces signing randomness with r < prE . Enc(dk, amsg).

backdoor: outputs sk when signing

randomness r = 0

still SUF-CMA secure!

blockcipher used in counter mode
i.e. Enc(dk, amsg) := prF(dk, ctr++H @ amsg

still IND$-CPA secure!

30

Recipient Attacking RRep: The Ingredients

® Recall RRep replaces signing randomness with r < prE . Enc(dk, amsg).

backdoor: outputs sk when signing

randomness r = 0

still SUF-CMA secure!

blockcipher used in counter mode

i.e. Enc(dk, amsg) := prF(dk, ctr++H @ amsg

till IND$-CPA , yet recipient forgeable
St - secure!

30

asig . asig., ..., asl
asig. < aSign(sk, dk, msg., amsg) M»

31

asig . asig., ..., asl
asigl. < aSign(sk, dk, msg., amsgi) B 2781 B¢ amsg. « aDec(vk, dk, msg., asigl.)

31

asig.,asig ., ..., aslg |
asig. < aSign(sk, dk, msg., amsg) #» amsg. < aDec(vk, dk, msg, asig)

| please covertly send me amsg’
amsg <+ amsg = prF(dk, 7 + 1)

31

Recipient Attacking RRep: The Attack

asig.,asig ., ..., aslg |
asigl. < aSign(sk, dk, msg., amsgi) B 2781 4 amsg. « aDec(vk, dk, msg., aS|gl.)

| please covertly send me amsg’
amsg amsg = prF(dk, 7 + 1)

r' < prF(dk, 7 + 1) @ amsg’

31

Recipient Attacking RRep: The Attack

asig.,asig ., ..., aslg |
asigl. < aSign(sk, dk, msg., amsgi) B 2781 4 amsg. « aDec(vk, dk, msg., aS|gl.)

| please covertly send me amsg’
amsg amsg = prF(dk, 7 + 1)

r' < prF(dk, 7 + 1) @ amsg’
= prF(dk,Z + 1) @ prF(dk,Z + 1)

31

Recipient Attacking RRep: The Attack

asig.,asig ., ..., aslg |
asigl. < aSign(sk, dk, msg., amsgi) B 2781 4 amsg. « aDec(vk, dk, msg., aS|gl.)

| please covertly send me amsg’
amsg amsg = prF(dk, 7 + 1)

r' < prF(dk, 7 + 1) @ amsg’
= prF(dk,Z + 1) @ prF(dk,Z + 1)
=0

31

Recipient Attacking RRep: The Attack

asig . asig., ..., asl
asigl. < aSign(sk, dk, msg., amsgi) B 2781 B¢ amsg. « aDec(vk, dk, msg., asigl.)

| please covertly send me amsg’
amsg amsg = prF(dk, 7 + 1)

r' < prF(dk, 7 + 1) @ amsg’
= prF(dk,Z + 1) @ prF(dk,Z + 1)
=0

asig/ < Sign(sk, msg; ')

31

Recipient Attacking RRep: The Attack

asig.,asig ., ..., aslg |
asig. < aSign(sk, dk, msg., amsg) #» amsg. < aDec(vk, dk, msg, asig)

| please covertly send me amsg’
amsg 4+ amsg = prF(dk, 7 + 1)

r' < prF(dk, 7 + 1) @ amsg’

= prF(dk,Z + 1) @ prF(dk,Z + 1)
= () triggers backdoor!

asig < Sign(sk, msg; 1)

31

Recipient Attacking RRep: The Attack

asig.,asig ., ..., aslg |
asig. < aSign(sk, dk, msg., amsg) #» amsg. < aDec(vk, dk, msg, asig)

| please covertly send me amsg’
amsg 4+ amsg = prF(dk, 7 + 1)

r' < prF(dk, 7 + 1) @ amsg’

= prF(dk,Z + 1) @ prF(dk,Z + 1)
= () triggers backdoor!

asig < Sign(sk, msg; 1) asig = sk

= sk

31

Recipient Attacking RRep: The Attack

asig . asig., ..., asl
asig. < aSign(sk, dk, msg., amsg) M» amsg. < aDec(vk, dk, msg, asig)

| please covertly send me amsg’
amsg 4+ amsg = prF(dk, 7 + 1)

r' < prF(dk, 7 + 1) @ amsg’

= prF(dk,Z + 1) @ prF(dk, £
= () triggers backdoor!

asig < Sign(sk, msg; 1)

= sk msg* of choosing!

31

Repairing Recipient Unforgeability of RRep

SUF-CMA security is insufficient

Attack takes advantage of
chosen randomness.

IND$-CPA security is insufficient

Attack takes advantage of the
“controllability” of ciphertexts by recipient
who knows the symmetric key.

32

Repairing Recipient Unforgeability of RRep

SUF-CMA security is insufficient

Attack takes advantage of
chosen randomness.

IND$-CPA security is insufficient

Attack takes advantage of the
“controllability” of ciphertexts by recipient
who knows the symmetric key.

® Attack leverages insufficiencies in both signature scheme and pseudorandom encryption.
Can regain security by requiring stronger security properties of either one component.

32

S—»

prE —»

Repairing Recipient Unforgeability of RRep

® Can achieve recipient unforgeability by requiring stronger

property on signature scheme S. "

RREp paN
prE —»

33

Repairing Recipient Unforgeability of RRep

® Can achieve recipient unforgeability by requiring stronger

property on signature scheme S. "

RRep paN

. re—»
® Unforgeability under chosen randomness attack P

(SUF-CRA security) akin to SUF-CMA security except adversary
queries for signatures on messages and randomness of its choosing.

33

Repairing Recipient Unforgeability of RRep

® Can achieve recipient unforgeability by requiring stronger

property on signature scheme S. "

RRep paN

. re—»
® Unforgeability under chosen randomness attack P

(SUF-CRA security) akin to SUF-CMA security except adversary
queries for signatures on messages and randomness of its choosing.

® \We prove that RSA-PSS and Rabin signatures are SUF-CRA secure, hence
anamorphic RSA-PSS and Rabin from RRep are recipient unforgeable.

33

Repairing Recipient Unforgeability of RRep

® Can achieve recipient unforgeability by requiring stronger

property on signature scheme S. "

RRep paN

. re—»
® Unforgeability under chosen randomness attack P

(SUF-CRA security) akin to SUF-CMA security except adversary
queries for signatures on messages and randomness of its choosing.

® \We prove that RSA-PSS and Rabin signatures are SUF-CRA secure, hence
anamorphic RSA-PSS and Rabin from RRep are recipient unforgeable.

® \We are unable to prove some signature schemes such as Boneh-Boyen are
SUF-CRA secure — can we still achieve recipient-unforgeable schemes?

33

S—»

prE -

Repairing Recipient Unforgeability of RRep

® Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme prE. S—»

RREp paN
prE -

34

Repairing Recipient Unforgeability of RRep

® Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme prE. S—»

RRep paN
® Simulatability with random ciphertexts (SIM-$CT) prE —»
asks that any adversary cannot distinguish between
ciphertexts and random samples even knowing
the symmetric key.

34

Repairing Recipient Unforgeability of RRep

® Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme prE. S—»

RRep paN
® Simulatability with random ciphertexts (SIM-$CT) prE —»
asks that any adversary cannot distinguish between
ciphertexts and random samples even knowing
the symmetric key.

® How is this possible? \We can leverage ideal models to make decryption of random
samples consistent with a fixed key:.

34

Repairing Recipient Unforgeability of RRep

® Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme prE. S—»

RRep paN
® Simulatability with random ciphertexts (SIM-$CT) prE —»
asks that any adversary cannot distinguish between
ciphertexts and random samples even knowing
the symmetric key.

® How is this possible? \We can leverage ideal models to make decryption of random
samples consistent with a fixed key:.

® Definition is modular — construction can build on a variety of ideal primitives (e.g.
random oracle, ideal cipher) — and composable.

34

Repairing Recipient Unforgeability of RRep

® Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme prE. S—»

RRep paN
® Simulatability with random ciphertexts (SIM-$CT) prE —»
asks that any adversary cannot distinguish between
ciphertexts and random samples even knowing
the symmetric key.

® How is this possible? \We can leverage ideal models to make decryption of random
samples consistent with a fixed key:.

® Definition is modular — construction can build on a variety of ideal primitives (e.g.
random oracle, ideal cipher) — and composable.

® Achieved by randomized block cipher modes.

34

Conclusion

Summary

Mount a practical attack a previously proposed Mount a practical attack a natural

robust anamorphic signature scheme. private anamorphic signature scheme.

Repair other prior anamorphic transforms to Repair (in two ways) a prior anamorphic transform n

achieve dictator unforgeability. to achieve recipient unforgeability.

36

Summary

Observe a gap between a stated goal of

Observe a gap between the deployment scenario

robustness and its formalization. of private anamorphism and its formalization.

Mount a practical attack a previously proposed Mount a practical attack a natural

robust anamorphic signature scheme. private anamorphic signature scheme.

Repair other prior anamorphic transforms to Repair (in two ways) a prior anamorphic transform n

achieve dictator unforgeability. to achieve recipient unforgeability.

37

Summary

Observe a gap between a stated goal of

Observe a gap between the deployment scenario

robustness and its formalization. of private anamorphism and its formalization.

O
Propose Dictator Unforgeability. i

Repair other prior anamorphic transforms to Repair (in two ways) a prior anamorphic transform n

achieve dictator unforgeability. to achieve recipient unforgeability.

38

Summary

Observe a gap between a stated goal of

Observe a gap between the deployment scenario

robustness and its formalization. of private anamorphism and its formalization.

O
Propose Dictator Unforgeability. i

Mount a practical attack a previously proposed Mount a practical attack a natural

robust anamorphic signature scheme. private anamorphic signature scheme.

39

Summary

6

4 C Yy
\\ JI»

i
| T

40

Vonholdt (https://www.deviantart.com/vonholdt)

Starry Artw (https://www.behance.net/starry artw)
Aleksandar Savic¢ (https://dribbble.com/almigor)

S/

https://www.behance.net/starry_artw
https://dribbble.com/almigor
https://www.deviantart.com/vonholdt

