
ASIACRYPT 2024

Dictators? Friends? Forgers.
Breaking and Fixing Unforgeability Definitions for
Anamorphic Signature Schemes

Joseph Jaeger and Roy Stracovsky

 1

Motivation

2

Anamorphic Encryption [PPY22]
• Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.

• Goal: allow users to communicate privately in authoritarian settings by
concealing hidden messages inside of innocuous ciphertexts.

• Technical realization: augment deployed primitives with “anamorphic
extensions” that use a double key to conceal “anamorphic messages”.𝖽𝗄

3

Anamorphic Encryption [PPY22]
• Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.

• Goal: allow users to communicate privately in authoritarian settings by
concealing hidden messages inside of innocuous ciphertexts.

• Technical realization: augment deployed primitives with “anamorphic
extensions” that use a double key to conceal “anamorphic messages”.𝖽𝗄

3

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗉𝗄, 𝗌𝗄)

𝖤𝗇𝖼(𝗉𝗄, 𝗆𝗌𝗀) ⇒ 𝖼𝗍

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) ⇒ 𝗆𝗌𝗀

Hashed ElGamal,
RSA-OAEP, …

Anamorphic Encryption [PPY22]
• Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.

• Goal: allow users to communicate privately in authoritarian settings by
concealing hidden messages inside of innocuous ciphertexts.

• Technical realization: augment deployed primitives with “anamorphic
extensions” that use a double key to conceal “anamorphic messages”.𝖽𝗄

3

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗉𝗄, 𝗌𝗄)

𝖤𝗇𝖼(𝗉𝗄, 𝗆𝗌𝗀) ⇒ 𝖼𝗍

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) ⇒ 𝗆𝗌𝗀

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗉𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖤𝗇𝖼(𝗉𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀) ⇒ 𝖺𝖼𝗍

𝖺𝖣𝖾𝖼(𝗌𝗄, 𝖽𝗄, 𝖺𝖼𝗍) ⇒ 𝖺𝗆𝗌𝗀

Hashed ElGamal,
RSA-OAEP, …

looks like Hashed ElGamal,
RSA-OAEP, …

Anamorphic Encryption [PPY22]
• Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.

• Goal: allow users to communicate privately in authoritarian settings by
concealing hidden messages inside of innocuous ciphertexts.

• Technical realization: augment deployed primitives with “anamorphic
extensions” that use a double key to conceal “anamorphic messages”.𝖽𝗄

3

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗉𝗄, 𝗌𝗄)

𝖤𝗇𝖼(𝗉𝗄, 𝗆𝗌𝗀) ⇒ 𝖼𝗍

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) ⇒ 𝗆𝗌𝗀

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗉𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖤𝗇𝖼(𝗉𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀) ⇒ 𝖺𝖼𝗍

𝖺𝖣𝖾𝖼(𝗌𝗄, 𝖽𝗄, 𝖺𝖼𝗍) ⇒ 𝖺𝗆𝗌𝗀

≈c 𝖺𝖼𝗍

even to dictator
who knows 𝗌𝗄

Hashed ElGamal,
RSA-OAEP, …

looks like Hashed ElGamal,
RSA-OAEP, …

Anamorphic Signature Schemes [KPPYZ23]
• Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

• Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

4

Anamorphic Signature Schemes [KPPYZ23]
• Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

• Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

4

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄)

𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) ⇒ 𝗌𝗂𝗀

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀) ⇒ 𝖺𝖼𝖼𝖾𝗉𝗍/𝗋𝖾𝗃𝖾𝖼𝗍

ElGamal signatures,
RSA-PSS, …

Anamorphic Signature Schemes [KPPYZ23]
• Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

• Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

4

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄)

𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) ⇒ 𝗌𝗂𝗀

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀) ⇒ 𝖺𝖼𝖼𝖾𝗉𝗍/𝗋𝖾𝗃𝖾𝖼𝗍

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀) ⇒ 𝖺𝗌𝗂𝗀

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀) ⇒ 𝖺𝗆𝗌𝗀

ElGamal signatures,
RSA-PSS, …

looks like ElGamal signatures,
RSA-PSS, …

Anamorphic Signature Schemes [KPPYZ23]
• Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

• Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

4

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄)

𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) ⇒ 𝗌𝗂𝗀

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀) ⇒ 𝖺𝖼𝖼𝖾𝗉𝗍/𝗋𝖾𝗃𝖾𝖼𝗍

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀) ⇒ 𝖺𝗌𝗂𝗀

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀) ⇒ 𝖺𝗆𝗌𝗀

≈c 𝖺𝗌𝗂𝗀

even to dictator
who knows 𝗌𝗄

ElGamal signatures,
RSA-PSS, …

looks like ElGamal signatures,
RSA-PSS, …

Anamorphic Signature Schemes [KPPYZ23]
• Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

• Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

• Introduce new security definitions specific to (anamorphic) signatures.

4

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄)

𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) ⇒ 𝗌𝗂𝗀

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀) ⇒ 𝖺𝖼𝖼𝖾𝗉𝗍/𝗋𝖾𝗃𝖾𝖼𝗍

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀) ⇒ 𝖺𝗌𝗂𝗀

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀) ⇒ 𝖺𝗆𝗌𝗀

≈c 𝖺𝗌𝗂𝗀

even to dictator
who knows 𝗌𝗄

ElGamal signatures,
RSA-PSS, …

looks like ElGamal signatures,
RSA-PSS, …

Anamorphic Signatures, Deployed

5

Sender Receiver

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄
𝖽𝗄 𝖽𝗄

𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)

uses Schnorr to sign
messages, metadata,

headers, etc.

Anamorphic Signatures, Deployed

5

Sender Receiver

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗄

𝖽𝗄 𝖽𝗄

𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)

uses Schnorr to sign
messages, metadata,

headers, etc.

Anamorphic Signatures, Deployed

5

Sender Receiver

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗄

𝖽𝗄 𝖽𝗄

𝖺𝗌𝗂𝗀 ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)

uses Schnorr to sign
messages, metadata,

headers, etc.

contains hidden
message

Warmup Anamorphic Signature Scheme (RSA-PSS)

6

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(e, d, N) ← 𝖱𝖲𝖠 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗏𝗄 ← (e, N)
𝗌𝗄 ← (d, N)
return (𝗏𝗄, 𝗌𝗄)

𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) :
r $ {0,1}λ0

w ← H(𝗆𝗌𝗀, r)
α ← G1(w) ⊕ r
γ ← G2(w)
𝗌𝗂𝗀 ← (0∥w∥α∥γ)d (mod N)
return 𝗌𝗂𝗀

Warmup Anamorphic Signature Scheme (RSA-PSS)

6

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(e, d, N) ← 𝖱𝖲𝖠 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗏𝗄 ← (e, N)
𝗌𝗄 ← (d, N)
return (𝗏𝗄, 𝗌𝗄)

𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) :
r $ {0,1}λ0

w ← H(𝗆𝗌𝗀, r)
α ← G1(w) ⊕ r
γ ← G2(w)
𝗌𝗂𝗀 ← (0∥w∥α∥γ)d (mod N)
return 𝗌𝗂𝗀

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(e, d, N) ← 𝖱𝖲𝖠 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗏𝗄 ← (e, N)
𝗌𝗄 ← (d, N)
𝖽𝗄 ← 𝗉𝗋𝖤 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
return (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

Warmup Anamorphic Signature Scheme (RSA-PSS)

6

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(e, d, N) ← 𝖱𝖲𝖠 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗏𝗄 ← (e, N)
𝗌𝗄 ← (d, N)
return (𝗏𝗄, 𝗌𝗄)

𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) :
r $ {0,1}λ0

w ← H(𝗆𝗌𝗀, r)
α ← G1(w) ⊕ r
γ ← G2(w)
𝗌𝗂𝗀 ← (0∥w∥α∥γ)d (mod N)
return 𝗌𝗂𝗀

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(e, d, N) ← 𝖱𝖲𝖠 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗏𝗄 ← (e, N)
𝗌𝗄 ← (d, N)
𝖽𝗄 ← 𝗉𝗋𝖤 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
return (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀) :
r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)
w ← H(𝗆𝗌𝗀, r)
α ← G1(w) ⊕ r
γ ← G2(w)
𝗌𝗂𝗀 ← (0∥w∥α∥γ)d (mod N)
return 𝗌𝗂𝗀

Warmup Anamorphic Signature Scheme (RSA-PSS)

6

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(e, d, N) ← 𝖱𝖲𝖠 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗏𝗄 ← (e, N)
𝗌𝗄 ← (d, N)
return (𝗏𝗄, 𝗌𝗄)

𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) :
r $ {0,1}λ0

w ← H(𝗆𝗌𝗀, r)
α ← G1(w) ⊕ r
γ ← G2(w)
𝗌𝗂𝗀 ← (0∥w∥α∥γ)d (mod N)
return 𝗌𝗂𝗀

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀) :
(b∥w∥α∥γ) ← 𝖺𝗌𝗂𝗀e (mod N)
r ← G1(w) ⊕ α
𝖺𝗆𝗌𝗀 ← 𝗉𝗋𝖤 . 𝖣𝖾𝖼(𝖽𝗄, r)
return 𝖺𝗆𝗌𝗀

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(e, d, N) ← 𝖱𝖲𝖠 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗏𝗄 ← (e, N)
𝗌𝗄 ← (d, N)
𝖽𝗄 ← 𝗉𝗋𝖤 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
return (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀) :
r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)
w ← H(𝗆𝗌𝗀, r)
α ← G1(w) ⊕ r
γ ← G2(w)
𝗌𝗂𝗀 ← (0∥w∥α∥γ)d (mod N)
return 𝗌𝗂𝗀

Warmup Anamorphic Signature Scheme (RSA-PSS)

• Generalizes to any signature
scheme that with “recoverable”
signing randomness.

6

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(e, d, N) ← 𝖱𝖲𝖠 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗏𝗄 ← (e, N)
𝗌𝗄 ← (d, N)
return (𝗏𝗄, 𝗌𝗄)

𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) :
r $ {0,1}λ0

w ← H(𝗆𝗌𝗀, r)
α ← G1(w) ⊕ r
γ ← G2(w)
𝗌𝗂𝗀 ← (0∥w∥α∥γ)d (mod N)
return 𝗌𝗂𝗀

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀) :
(b∥w∥α∥γ) ← 𝖺𝗌𝗂𝗀e (mod N)
r ← G1(w) ⊕ α
𝖺𝗆𝗌𝗀 ← 𝗉𝗋𝖤 . 𝖣𝖾𝖼(𝖽𝗄, r)
return 𝖺𝗆𝗌𝗀

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(e, d, N) ← 𝖱𝖲𝖠 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗏𝗄 ← (e, N)
𝗌𝗄 ← (d, N)
𝖽𝗄 ← 𝗉𝗋𝖤 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
return (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀) :
r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)
w ← H(𝗆𝗌𝗀, r)
α ← G1(w) ⊕ r
γ ← G2(w)
𝗌𝗂𝗀 ← (0∥w∥α∥γ)d (mod N)
return 𝗌𝗂𝗀

Randomness Replacement [KPPYZ23]
• Randomness Replacement Transform

• Input: randomness recoverable signature scheme

• Input: pseudorandom encryption scheme

• Output: anamorphic signature scheme

• is randomness recoverable if there exists a PPT that, given
, can recover .

𝖱𝖱𝖾𝗉
𝖲

𝗉𝗋𝖤
𝖺𝖲

𝖲 𝖱𝖱𝖾𝖼𝗈𝗏
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r) r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀)

7

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲

Randomness Replacement [KPPYZ23]
• Randomness Replacement Transform

• Input: randomness recoverable signature scheme

• Input: pseudorandom encryption scheme

• Output: anamorphic signature scheme

• is randomness recoverable if there exists a PPT that, given
, can recover .

𝖱𝖱𝖾𝗉
𝖲

𝗉𝗋𝖤
𝖺𝖲

𝖲 𝖱𝖱𝖾𝖼𝗈𝗏
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r) r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀)

7

𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀) :
r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)
𝖺𝗌𝗂𝗀 ← 𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)
return 𝖺𝗌𝗂𝗀

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(𝗏𝗄, 𝗌𝗄) ← 𝖲 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝖽𝗄 ← 𝗉𝗋𝖤 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
return (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀) :
r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)
𝖺𝗆𝗌𝗀 ← 𝗉𝗋𝖤 . 𝖣𝖾𝖼(𝖽𝗄, r)
return 𝖺𝗆𝗌𝗀

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲

Security Notions for Anamorphic Signatures

8

Security Notions for Anamorphic Signatures
• Stealthiness: dictator cannot distinguish honest and anamorphic signatures

even when given keypair [KPPYZ23].(𝗏𝗄, 𝗌𝗄)

8

Security Notions for Anamorphic Signatures
• Stealthiness: dictator cannot distinguish honest and anamorphic signatures

even when given keypair [KPPYZ23].(𝗏𝗄, 𝗌𝗄)

• Robustness: honest signatures don’t anamorphically decrypt to valid
anamorphic messages [BGHMR24].

8

Security Notions for Anamorphic Signatures
• Stealthiness: dictator cannot distinguish honest and anamorphic signatures

even when given keypair [KPPYZ23].(𝗏𝗄, 𝗌𝗄)

• Robustness: honest signatures don’t anamorphically decrypt to valid
anamorphic messages [BGHMR24].

• Private anamorphism: a recipient who knows the double key and sees
honest signatures cannot forge new signatures [KPPYZ23].

𝖽𝗄

8

Our Contributions

9

Summary

10

Robustness Private Anamorphism

Summary

10

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

1

Summary

10

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

1

2

Summary

10

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

1

2

3

Summary

10

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

1

2

3

4

Summary

10

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

1

2

3

4

5

Summary

10

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

1

2

3

4

5

6

Summary

10

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural
private anamorphic signature scheme.

1

2

3

4

5

6

7

Summary

10

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform
to achieve recipient unforgeability.

1

2

3

4

5

6

7

8

Part 1: Strengthening Robustness to Dictator Unforgeability

11

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform
to achieve recipient unforgeability.

1

2

3

4

5

6

7

8

Robustness [BGHMR24]
• Proposed by Banfi, Gegier, Hirt, Maurer, and Rito at Eurocrypt 2024.*

• High level goal: honest signatures don’t anamorphically decrypt to valid
anamorphic messages.

• BGHMR list two primary motivations for robustness.

• Usability: anamorphic messages will be sent in a network containing honest
communication — anamorphic users need to identify what is what.

• Security: (roughly) to prevent a dictator from initiating anamorphic channels
with anamorphic users.

• BGHMR propose two transforms that achieve robustness.

12

*Proposed originally for anamorphic encryption though we analyze a straightforward adaptation to signature schemes in our work.

Randomness Identification with PRF [BGHMR24]
• Randomness Identification with PRF Transform

• Input: randomness identifying signature scheme

• Input: pseudorandom function

• Output: anamorphic signature scheme

• is randomness identifying if there exists a PPT that, given
, can check whether via .

𝖱𝖨𝖽𝖯
𝖲

𝗉𝗋𝖥
𝖺𝖲

𝖲 𝖱𝖨𝖽𝗍𝖿𝗒
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r) r′ = r 𝖱𝖨𝖽𝗍𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀, r′)

13

RIdP
𝖲

𝗉𝗋𝖥
𝖺𝖲

Randomness Identification with PRF [BGHMR24]
• Randomness Identification with PRF Transform

• Input: randomness identifying signature scheme

• Input: pseudorandom function

• Output: anamorphic signature scheme

• is randomness identifying if there exists a PPT that, given
, can check whether via .

𝖱𝖨𝖽𝖯
𝖲

𝗉𝗋𝖥
𝖺𝖲

𝖲 𝖱𝖨𝖽𝗍𝖿𝗒
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r) r′ = r 𝖱𝖨𝖽𝗍𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀, r′)

13

𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀 : 𝖼𝗍𝗋++) :
r ← 𝗉𝗋𝖥(𝖽𝗄, (𝖼𝗍𝗋, 𝖺𝗆𝗌𝗀))
𝖺𝗌𝗂𝗀 ← 𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)
return 𝖺𝗌𝗂𝗀

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(𝗏𝗄, 𝗌𝗄) ← 𝖲 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝖽𝗄 ← 𝗉𝗋𝖥 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
return (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀 : 𝖼𝗍𝗋++) :
forall 𝖺𝗆𝗌𝗀

r ← 𝗉𝗋𝖥(𝖽𝗄, (𝖼𝗍𝗋, 𝖺𝗆𝗌𝗀))
if 𝖱𝖨𝖽𝗍𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀, 𝗋) = 1

return 𝖺𝗆𝗌𝗀

RIdP
𝖲

𝗉𝗋𝖥
𝖺𝖲

Randomness Identification with PRF/XOR [BGHMR24]
• Randomness Identification with PRF/XOR Transform

• Input: randomness identifying signature scheme

• Input: pseudorandom function

• Output: anamorphic signature scheme

• is randomness identifying if there exists a PPT that, given
, can check whether via .

𝖱𝖨𝖽𝖯𝖷
𝖲

𝗉𝗋𝖥
𝖺𝖲

𝖲 𝖱𝖨𝖽𝗍𝖿𝗒
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r) r′ = r 𝖱𝖨𝖽𝗍𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀, r′)

14

𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀 : 𝖼𝗍𝗋++) :
r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
𝖺𝗌𝗂𝗀 ← 𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)
return 𝖺𝗌𝗂𝗀

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(𝗏𝗄, 𝗌𝗄) ← 𝖲 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝖽𝗄 ← 𝗉𝗋𝖥 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
return (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀 : 𝖼𝗍𝗋++) :
forall 𝖺𝗆𝗌𝗀

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
if 𝖱𝖨𝖽𝗍𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀, 𝗋) = 1

return 𝖺𝗆𝗌𝗀

RIdPX
𝖲

𝗉𝗋𝖥
𝖺𝖲

Robustness Game [BGHMR24]

15

b $ {0,1}
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

Robustness Game [BGHMR24]

15

b $ {0,1}
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝗆𝗌𝗀
if b = 0 then

𝖺𝗆𝗌𝗀 ← ⊥
if b = 1 then

𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)
𝖺𝗆𝗌𝗀 ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀)

𝖺𝗆𝗌𝗀

O𝖲𝗂𝗀𝗇,𝖺𝖣𝖾𝖼

Robustness Game [BGHMR24]

15

b $ {0,1}
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

𝗆𝗌𝗀
if b = 0 then

𝖺𝗆𝗌𝗀 ← ⊥
if b = 1 then

𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)
𝖺𝗆𝗌𝗀 ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀)

𝖺𝗆𝗌𝗀

O𝖲𝗂𝗀𝗇,𝖺𝖣𝖾𝖼

 b*

wins if b = b*

Revisiting Robustness Threat Model

16

Sender Receiver

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗄

𝖺𝗌𝗂𝗀 ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)

𝖽𝗄 𝖽𝗄
attacks captured by robustness

Revisiting Robustness Threat Model

16

Sender Receiver

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗄

𝖺𝗌𝗂𝗀 ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)

𝖽𝗄 𝖽𝗄

𝗌𝗂𝗀* ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀*)

attacks captured by robustness

Revisiting Robustness Threat Model

17

Sender Receiver

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗄

𝖺𝗌𝗂𝗀 ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)

𝖽𝗄 𝖽𝗄

𝗌𝗂𝗀* ← f(𝗌𝗄)

reasonable attacks not captured by robustness

Revisiting Robustness Threat Model

18

Sender Receiver

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗄

𝖺𝗌𝗂𝗀

𝖽𝗄 𝖽𝗄

𝗌𝗂𝗀* ← f(𝗌𝗄)

reasonable attacks not captured by robustness

Revisiting Robustness Threat Model

18

Sender Receiver

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗄

𝖺𝗌𝗂𝗀

𝖽𝗄 𝖽𝗄

𝗌𝗂𝗀* ← f(𝗌𝗄)

𝖺𝗌𝗂𝗀* = g(𝖺𝗌𝗂𝗀, 𝗌𝗄)

reasonable attacks not captured by robustness

Our Proposal: Dictator Unforgeability Game

19

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

Our Proposal: Dictator Unforgeability Game

19

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝗌𝗄)

Our Proposal: Dictator Unforgeability Game

19

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝗌𝗄)

(𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)
𝖺𝗌𝗂𝗀 ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)
S ← S ∪ {(𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)}
𝖺𝗌𝗂𝗀

O𝖺𝖲𝗂𝗀𝗇

Our Proposal: Dictator Unforgeability Game

19

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝗌𝗄)

(𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)
𝖺𝗌𝗂𝗀 ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)
S ← S ∪ {(𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)}
𝖺𝗌𝗂𝗀

O𝖺𝖲𝗂𝗀𝗇

(𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)
𝖺𝗆𝗌𝗀 ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)
𝖺𝗆𝗌𝗀

O𝖺𝖣𝖾𝖼

Our Proposal: Dictator Unforgeability Game

19

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝗌𝗄)

(𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)
𝖺𝗌𝗂𝗀 ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)
S ← S ∪ {(𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)}
𝖺𝗌𝗂𝗀

O𝖺𝖲𝗂𝗀𝗇

(𝗆𝗌𝗀*, 𝖺𝗌𝗂𝗀*)
𝖺𝗆𝗌𝗀* ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀*, 𝖺𝗌𝗂𝗀*)

wins if (𝖺𝗆𝗌𝗀* ≠ ⊥)
∧ ((𝗆𝗌𝗀*, 𝖺𝗌𝗂𝗀*) ∉ S)

(𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)
𝖺𝗆𝗌𝗀 ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)
𝖺𝗆𝗌𝗀

O𝖺𝖣𝖾𝖼

Dictator Unforgeability of Transforms
• Are the previously proposed transforms dictator unforgeable?

20

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲 RIdP

𝖲

𝗉𝗋𝖥
𝖺𝖲 RIdPX

𝖲

𝗉𝗋𝖥
𝖺𝖲

[KPPYZ23] [BGHMR24]

rob

[BGHMR24]

rob

Dictator Unforgeability of Transforms
• Are the previously proposed transforms dictator unforgeable?

20

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲 RIdP

𝖲

𝗉𝗋𝖥
𝖺𝖲 RIdPX

𝖲

𝗉𝗋𝖥
𝖺𝖲

[KPPYZ23] [BGHMR24]

rob

[BGHMR24]

rob

Dictator Unforgeability of Transforms
• Are the previously proposed transforms dictator unforgeable?

• Can we patch any of the transforms?

20

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲 RIdP

𝖲

𝗉𝗋𝖥
𝖺𝖲 RIdPX

𝖲

𝗉𝗋𝖥
𝖺𝖲

[KPPYZ23] [BGHMR24]

rob

[BGHMR24]

rob

Dictator Unforgeability of Transforms
• Are the previously proposed transforms dictator unforgeable?

• Can we patch any of the transforms?

20

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲 RIdP

𝖲

𝗉𝗋𝖥
𝖺𝖲 RIdPX

𝖲

𝗉𝗋𝖥
𝖺𝖲

[KPPYZ23] [BGHMR24]

rob

[BGHMR24]

rob

Dictator Unforgeability of Transforms
• Are the previously proposed transforms dictator unforgeable?

• Can we patch any of the transforms?

21

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲 RIdP

𝖲

𝗉𝗋𝖥
𝖺𝖲 RIdPX

𝖲

𝗉𝗋𝖥
𝖺𝖲

[KPPYZ23] [BGHMR24]

rob

[BGHMR24]

rob

Dictator Attacking RIdPX

22

Sender ReceiverDictator

Dictator Attacking RIdPX

22

Sender ReceiverDictator

𝖺𝗆𝗌𝗀 = "meet at 2PM"

Dictator Attacking RIdPX

22

Sender ReceiverDictator

𝖺𝗆𝗌𝗀 = "meet at 2PM"

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀

Dictator Attacking RIdPX

22

Sender ReceiverDictator

𝖺𝗆𝗌𝗀 = "meet at 2PM"

𝖺𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀

scheme is randomness
recoverable e.g. ElGamal,

Schnorr, RSA-PSS, .etc

Dictator Attacking RIdPX

22

Sender ReceiverDictator

𝖺𝗆𝗌𝗀 = "meet at 2PM"

𝖺𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
𝖺𝗌𝗂𝗀

scheme is randomness
recoverable e.g. ElGamal,

Schnorr, RSA-PSS, .etc

Dictator Attacking RIdPX

22

Sender ReceiverDictator

𝖺𝗆𝗌𝗀 = "meet at 2PM"

𝖺𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
𝖺𝗌𝗂𝗀

r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗌𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)
scheme is randomness

recoverable e.g. ElGamal,
Schnorr, RSA-PSS, .etc

Dictator Attacking RIdPX

22

Sender ReceiverDictator

𝖺𝗆𝗌𝗀 = "meet at 2PM"

𝖺𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
𝖺𝗌𝗂𝗀

r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗌𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)

r* ← r ⊕ 𝖺𝗆𝗌𝗀′

scheme is randomness
recoverable e.g. ElGamal,

Schnorr, RSA-PSS, .etc

Dictator Attacking RIdPX

22

Sender ReceiverDictator

𝖺𝗆𝗌𝗀 = "meet at 2PM"

𝖺𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
𝖺𝗌𝗂𝗀

r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗌𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)

r* ← r ⊕ 𝖺𝗆𝗌𝗀′

𝖺𝗌𝗂𝗀* ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r*)

scheme is randomness
recoverable e.g. ElGamal,

Schnorr, RSA-PSS, .etc

Dictator Attacking RIdPX

22

Sender ReceiverDictator

𝖺𝗆𝗌𝗀 = "meet at 2PM"

𝖺𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
𝖺𝗌𝗂𝗀

r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗌𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)

r* ← r ⊕ 𝖺𝗆𝗌𝗀′

𝖺𝗌𝗂𝗀* ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r*)
𝖺𝗌𝗂𝗀*

scheme is randomness
recoverable e.g. ElGamal,

Schnorr, RSA-PSS, .etc

Dictator Attacking RIdPX

22

Sender ReceiverDictator

𝖺𝗆𝗌𝗀 = "meet at 2PM"

𝖺𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
𝖺𝗌𝗂𝗀

r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗌𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)

r* ← r ⊕ 𝖺𝗆𝗌𝗀′

𝖺𝗌𝗂𝗀* ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r*)
𝖺𝗌𝗂𝗀*

𝖺𝗆𝗌𝗀* ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀*)

scheme is randomness
recoverable e.g. ElGamal,

Schnorr, RSA-PSS, .etc

Dictator Attacking RIdPX

22

Sender ReceiverDictator

𝖺𝗆𝗌𝗀 = "meet at 2PM"

𝖺𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
𝖺𝗌𝗂𝗀

r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗌𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)

r* ← r ⊕ 𝖺𝗆𝗌𝗀′

𝖺𝗌𝗂𝗀* ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r*)
𝖺𝗌𝗂𝗀*

𝖺𝗆𝗌𝗀* ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀*)
𝖺𝗆𝗌𝗀* = 𝖺𝗆𝗌𝗀 ⊕ 𝖺𝗆𝗌𝗀′ = "meet at 4PM"

scheme is randomness
recoverable e.g. ElGamal,

Schnorr, RSA-PSS, .etc

Repairing Dictator Unforgeability of RRep and RIdP

23

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲 RIdP

𝖲

𝗉𝗋𝖥
𝖺𝖲

Replaces signing randomness with
pseudorandom encryptions i.e.

 r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)

Replaces signing randomness with
pseudorandom function outputs i.e.

 r ← 𝗉𝗋𝖥(𝖽𝗄, (𝖼𝗍𝗋, 𝖺𝗆𝗌𝗀))

Repairing Dictator Unforgeability of RRep and RIdP

23

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲 RIdP

𝖲

𝗉𝗋𝖥
𝖺𝖲

Replaces signing randomness with
pseudorandom encryptions i.e.

 r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)

Replaces signing randomness with
pseudorandom function outputs i.e.

 r ← 𝗉𝗋𝖥(𝖽𝗄, (𝖼𝗍𝗋, 𝖺𝗆𝗌𝗀))

authenticated encryption (AEAD)

strongly randomness recoverable

Repairing Dictator Unforgeability of RRep and RIdP

24

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲 RIdP

𝖲

𝗉𝗋𝖥
𝖺𝖲

Replaces signing randomness with
pseudorandom encryptions i.e.

 r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)

Replaces signing randomness with
pseudorandom function outputs i.e.

 r ← 𝗉𝗋𝖥(𝖽𝗄, (𝖼𝗍𝗋, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀))

authenticated encryption (AEAD)

strongly randomness recoverable strongly randomness recoverable

Part 2: Strengthening Private Anamorphism to Recipient Unforgeability

25

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform
to achieve recipient unforgeability.

1

2

3

4

5

6

7

8

Private Anamorphism [KPPYZ23]
• Proposed alongside anamorphic signatures.

• High level goal: a recipient who knows the double key and sees honest
signatures cannot forge new signatures.

• KPPYZ discusses a primary motivation for private anamorphism.

• Security: (roughly) to prevent a recipient from forging signatures on behalf
of the sender.

• KPPYZ provide a framework that achieves private anamorphism which covers
the randomness replacement transform as a special case.

𝖽𝗄

𝖱𝖱𝖾𝗉

26

Private Anamorphism Game [KPPYZ23]

27

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝖽𝗄)

Private Anamorphism Game [KPPYZ23]

27

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝖽𝗄)

𝗆𝗌𝗀
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)
S ← S ∪ {(𝗆𝗌𝗀, 𝗌𝗂𝗀)}
𝗌𝗂𝗀

O𝖲𝗂𝗀𝗇

Private Anamorphism Game [KPPYZ23]

27

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝖽𝗄)

𝗆𝗌𝗀
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)
S ← S ∪ {(𝗆𝗌𝗀, 𝗌𝗂𝗀)}
𝗌𝗂𝗀

O𝖲𝗂𝗀𝗇

(𝗆𝗌𝗀*, 𝗌𝗂𝗀*)

wins if 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀*, 𝗌𝗂𝗀*) = 1
∧ ((𝗆𝗌𝗀*, 𝗌𝗂𝗀*) ∉ S)

Revisiting Anamorphic Threat Model

28

Sender

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)

𝖽𝗄 𝖽𝗄

Revisiting Anamorphic Threat Model

28

Sender

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)

𝖽𝗄 𝖽𝗄

𝖺𝗌𝗂𝗀 ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)

Revisiting Anamorphic Threat Model

28

Sender

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)

𝖽𝗄 𝖽𝗄

𝖺𝗌𝗂𝗀 ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)

influence

Our Proposal: Recipient Unforgeability Game

29

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝖽𝗄)

Our Proposal: Recipient Unforgeability Game

29

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝖽𝗄)

𝗆𝗌𝗀
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)
S ← S ∪ {(𝗆𝗌𝗀, 𝗌𝗂𝗀)}
𝗌𝗂𝗀

O𝖲𝗂𝗀𝗇

Our Proposal: Recipient Unforgeability Game

29

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝖽𝗄)

𝗆𝗌𝗀
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)
S ← S ∪ {(𝗆𝗌𝗀, 𝗌𝗂𝗀)}
𝗌𝗂𝗀

O𝖲𝗂𝗀𝗇

(𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)
𝖺𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)
S ← S ∪ {(𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)}
𝖺𝗌𝗂𝗀

O𝖺𝖲𝗂𝗀𝗇

Our Proposal: Recipient Unforgeability Game

29

S ← Ø
𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) ⇒ (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)
(𝗏𝗄, 𝖽𝗄)

𝗆𝗌𝗀
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀)
S ← S ∪ {(𝗆𝗌𝗀, 𝗌𝗂𝗀)}
𝗌𝗂𝗀

O𝖲𝗂𝗀𝗇

(𝗆𝗌𝗀*, 𝗌𝗂𝗀*)

wins if 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀*, 𝗌𝗂𝗀*) = 1
∧ ((𝗆𝗌𝗀*, 𝗌𝗂𝗀*) ∉ S)

(𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)
𝖺𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀)
S ← S ∪ {(𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)}
𝖺𝗌𝗂𝗀

O𝖺𝖲𝗂𝗀𝗇

Recipient Attacking RRep: The Ingredients

• Recall replaces signing randomness with .𝖱𝖱𝖾𝗉 r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)

30

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲

Recipient Attacking RRep: The Ingredients

• Recall replaces signing randomness with .𝖱𝖱𝖾𝗉 r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)

30

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲

backdoor: outputs when signing
randomness

𝗌𝗄
r = 01

still SUF-CMA secure!

Recipient Attacking RRep: The Ingredients

• Recall replaces signing randomness with .𝖱𝖱𝖾𝗉 r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)

30

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲

blockcipher used in counter mode
i.e. 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀) := 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋++) ⊕ 𝖺𝗆𝗌𝗀

backdoor: outputs when signing
randomness

𝗌𝗄
r = 01

2

still SUF-CMA secure!

still IND$-CPA secure!

Recipient Attacking RRep: The Ingredients

• Recall replaces signing randomness with .𝖱𝖱𝖾𝗉 r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)

30

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲

blockcipher used in counter mode
i.e. 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀) := 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋++) ⊕ 𝖺𝗆𝗌𝗀

backdoor: outputs when signing
randomness

𝗌𝗄
r = 01

2

still SUF-CMA secure!

still IND$-CPA secure!
yet recipient forgeable

Recipient Attacking RRep: The Attack

31

Sender Receiver

Recipient Attacking RRep: The Attack

31

Sender Receiver

𝖺𝗌𝗂𝗀i ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗆𝗌𝗀i)
𝖺𝗌𝗂𝗀0, 𝖺𝗌𝗂𝗀1, …, 𝖺𝗌𝗂𝗀ℓ

Recipient Attacking RRep: The Attack

31

Sender Receiver

𝖺𝗌𝗂𝗀i ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗆𝗌𝗀i)
𝖺𝗌𝗂𝗀0, 𝖺𝗌𝗂𝗀1, …, 𝖺𝗌𝗂𝗀ℓ 𝖺𝗆𝗌𝗀i ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗌𝗂𝗀i)

Recipient Attacking RRep: The Attack

31

Sender Receiver

𝖺𝗌𝗂𝗀i ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗆𝗌𝗀i)
𝖺𝗌𝗂𝗀0, 𝖺𝗌𝗂𝗀1, …, 𝖺𝗌𝗂𝗀ℓ 𝖺𝗆𝗌𝗀i ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗌𝗂𝗀i)

𝖺𝗆𝗌𝗀′ = 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
please covertly send me 𝖺𝗆𝗌𝗀′

𝖺𝗆𝗌𝗀′

Recipient Attacking RRep: The Attack

31

Sender Receiver

𝖺𝗌𝗂𝗀i ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗆𝗌𝗀i)
𝖺𝗌𝗂𝗀0, 𝖺𝗌𝗂𝗀1, …, 𝖺𝗌𝗂𝗀ℓ 𝖺𝗆𝗌𝗀i ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗌𝗂𝗀i)

𝖺𝗆𝗌𝗀′ = 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
please covertly send me 𝖺𝗆𝗌𝗀′

𝖺𝗆𝗌𝗀′

r′ ← 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝖺𝗆𝗌𝗀′

Recipient Attacking RRep: The Attack

31

Sender Receiver

𝖺𝗌𝗂𝗀i ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗆𝗌𝗀i)
𝖺𝗌𝗂𝗀0, 𝖺𝗌𝗂𝗀1, …, 𝖺𝗌𝗂𝗀ℓ 𝖺𝗆𝗌𝗀i ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗌𝗂𝗀i)

𝖺𝗆𝗌𝗀′ = 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
please covertly send me 𝖺𝗆𝗌𝗀′

𝖺𝗆𝗌𝗀′

r′ ← 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝖺𝗆𝗌𝗀′

= 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)

Recipient Attacking RRep: The Attack

31

Sender Receiver

𝖺𝗌𝗂𝗀i ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗆𝗌𝗀i)
𝖺𝗌𝗂𝗀0, 𝖺𝗌𝗂𝗀1, …, 𝖺𝗌𝗂𝗀ℓ 𝖺𝗆𝗌𝗀i ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗌𝗂𝗀i)

𝖺𝗆𝗌𝗀′ = 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
please covertly send me 𝖺𝗆𝗌𝗀′

𝖺𝗆𝗌𝗀′

r′ ← 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝖺𝗆𝗌𝗀′

= 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
= 0

Recipient Attacking RRep: The Attack

31

Sender Receiver

𝖺𝗌𝗂𝗀i ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗆𝗌𝗀i)
𝖺𝗌𝗂𝗀0, 𝖺𝗌𝗂𝗀1, …, 𝖺𝗌𝗂𝗀ℓ 𝖺𝗆𝗌𝗀i ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗌𝗂𝗀i)

𝖺𝗆𝗌𝗀′ = 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
please covertly send me 𝖺𝗆𝗌𝗀′

𝖺𝗆𝗌𝗀′

𝖺𝗌𝗂𝗀′ ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r′)

r′ ← 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝖺𝗆𝗌𝗀′

= 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
= 0

Recipient Attacking RRep: The Attack

31

Sender Receiver

𝖺𝗌𝗂𝗀i ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗆𝗌𝗀i)
𝖺𝗌𝗂𝗀0, 𝖺𝗌𝗂𝗀1, …, 𝖺𝗌𝗂𝗀ℓ 𝖺𝗆𝗌𝗀i ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗌𝗂𝗀i)

𝖺𝗆𝗌𝗀′ = 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
please covertly send me 𝖺𝗆𝗌𝗀′

𝖺𝗆𝗌𝗀′

𝖺𝗌𝗂𝗀′ ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r′)

r′ ← 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝖺𝗆𝗌𝗀′

= 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
= 0 triggers backdoor!

Recipient Attacking RRep: The Attack

31

Sender Receiver

𝖺𝗌𝗂𝗀i ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗆𝗌𝗀i)
𝖺𝗌𝗂𝗀0, 𝖺𝗌𝗂𝗀1, …, 𝖺𝗌𝗂𝗀ℓ 𝖺𝗆𝗌𝗀i ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗌𝗂𝗀i)

𝖺𝗆𝗌𝗀′ = 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
please covertly send me 𝖺𝗆𝗌𝗀′

𝖺𝗆𝗌𝗀′

𝖺𝗌𝗂𝗀′ ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r′)

r′ ← 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝖺𝗆𝗌𝗀′

= 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
= 0

= 𝗌𝗄
𝖺𝗌𝗂𝗀′ = 𝗌𝗄

triggers backdoor!

Recipient Attacking RRep: The Attack

31

Sender Receiver

𝖺𝗌𝗂𝗀i ← 𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗆𝗌𝗀i)
𝖺𝗌𝗂𝗀0, 𝖺𝗌𝗂𝗀1, …, 𝖺𝗌𝗂𝗀ℓ

use to forge on any
 of choosing!

𝗌𝗄 𝗌𝗂𝗀*

𝗆𝗌𝗀*

𝖺𝗆𝗌𝗀i ← 𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀i, 𝖺𝗌𝗂𝗀i)

𝖺𝗆𝗌𝗀′ = 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
please covertly send me 𝖺𝗆𝗌𝗀′

𝖺𝗆𝗌𝗀′

𝖺𝗌𝗂𝗀′ ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r′)

r′ ← 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝖺𝗆𝗌𝗀′

= 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1) ⊕ 𝗉𝗋𝖥(𝖽𝗄, ℓ + 1)
= 0

= 𝗌𝗄
𝖺𝗌𝗂𝗀′ = 𝗌𝗄

triggers backdoor!

Repairing Recipient Unforgeability of RRep

32

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲

SUF-CMA security is insufficient

Attack takes advantage of
chosen randomness.

IND$-CPA security is insufficient

Attack takes advantage of the
“controllability” of ciphertexts by recipient

who knows the symmetric key.

AND

Repairing Recipient Unforgeability of RRep

32

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲

SUF-CMA security is insufficient

Attack takes advantage of
chosen randomness.

IND$-CPA security is insufficient

Attack takes advantage of the
“controllability” of ciphertexts by recipient

who knows the symmetric key.

AND

• Attack leverages insufficiencies in both signature scheme and pseudorandom encryption.
Can regain security by requiring stronger security properties of either one component.

𝖲
RRep

𝗉𝗋𝖤
𝖺𝖲

Repairing Recipient Unforgeability of RRep

33

• Can achieve recipient unforgeability by requiring stronger
property on signature scheme .𝖲 𝖲

RRep
𝗉𝗋𝖤

𝖺𝖲

Repairing Recipient Unforgeability of RRep

33

• Can achieve recipient unforgeability by requiring stronger
property on signature scheme .𝖲

• Unforgeability under chosen randomness attack
(SUF-CRA security) akin to SUF-CMA security except adversary
queries for signatures on messages and randomness of its choosing.

𝖲
RRep

𝗉𝗋𝖤
𝖺𝖲

Repairing Recipient Unforgeability of RRep

33

• Can achieve recipient unforgeability by requiring stronger
property on signature scheme .𝖲

• Unforgeability under chosen randomness attack
(SUF-CRA security) akin to SUF-CMA security except adversary
queries for signatures on messages and randomness of its choosing.

• We prove that RSA-PSS and Rabin signatures are SUF-CRA secure, hence
anamorphic RSA-PSS and Rabin from RRep are recipient unforgeable.

𝖲
RRep

𝗉𝗋𝖤
𝖺𝖲

Repairing Recipient Unforgeability of RRep

33

• Can achieve recipient unforgeability by requiring stronger
property on signature scheme .𝖲

• Unforgeability under chosen randomness attack
(SUF-CRA security) akin to SUF-CMA security except adversary
queries for signatures on messages and randomness of its choosing.

• We prove that RSA-PSS and Rabin signatures are SUF-CRA secure, hence
anamorphic RSA-PSS and Rabin from RRep are recipient unforgeable.

• We are unable to prove some signature schemes such as Boneh-Boyen are
SUF-CRA secure — can we still achieve recipient-unforgeable schemes?

𝖲
RRep

𝗉𝗋𝖤
𝖺𝖲

Repairing Recipient Unforgeability of RRep

33

𝖲
RRep

𝗉𝗋𝖤
𝖺𝖲

Repairing Recipient Unforgeability of RRep

34

• Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme .𝗉𝗋𝖤 𝖲

RRep
𝗉𝗋𝖤

𝖺𝖲

Repairing Recipient Unforgeability of RRep

34

• Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme .𝗉𝗋𝖤

• Simulatability with random ciphertexts (SIM-$CT)
asks that any adversary cannot distinguish between
ciphertexts and random samples even knowing
the symmetric key.

𝖲
RRep

𝗉𝗋𝖤
𝖺𝖲

Repairing Recipient Unforgeability of RRep

34

• Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme .𝗉𝗋𝖤

• Simulatability with random ciphertexts (SIM-$CT)
asks that any adversary cannot distinguish between
ciphertexts and random samples even knowing
the symmetric key.

• How is this possible? We can leverage ideal models to make decryption of random
samples consistent with a fixed key.

𝖲
RRep

𝗉𝗋𝖤
𝖺𝖲

Repairing Recipient Unforgeability of RRep

34

• Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme .𝗉𝗋𝖤

• Simulatability with random ciphertexts (SIM-$CT)
asks that any adversary cannot distinguish between
ciphertexts and random samples even knowing
the symmetric key.

• How is this possible? We can leverage ideal models to make decryption of random
samples consistent with a fixed key.

• Definition is modular — construction can build on a variety of ideal primitives (e.g.
random oracle, ideal cipher) — and composable.

𝖲
RRep

𝗉𝗋𝖤
𝖺𝖲

Repairing Recipient Unforgeability of RRep

34

• Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme .𝗉𝗋𝖤

• Simulatability with random ciphertexts (SIM-$CT)
asks that any adversary cannot distinguish between
ciphertexts and random samples even knowing
the symmetric key.

• How is this possible? We can leverage ideal models to make decryption of random
samples consistent with a fixed key.

• Definition is modular — construction can build on a variety of ideal primitives (e.g.
random oracle, ideal cipher) — and composable.

• Achieved by randomized block cipher modes.

𝖲
RRep

𝗉𝗋𝖤
𝖺𝖲

Repairing Recipient Unforgeability of RRep

34

Conclusion

35

Summary

36

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform
to achieve recipient unforgeability.

1

2

3

4

5

6

7

8

Summary

37

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform
to achieve recipient unforgeability.

1

2

3

4

5

6

7

8

Summary

38

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform
to achieve recipient unforgeability.

1

2

3

4

5

6

7

8

Summary

39

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform
to achieve recipient unforgeability.

1

2

3

4

5

6

7

8

Summary

40

Robustness Private Anamorphism

Observe a gap between a stated goal of
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to
achieve dictator unforgeability.

Observe a gap between the deployment scenario
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform
to achieve recipient unforgeability.

1

2

3

4

5

6

7

8

57

Starry Artw (https://www.behance.net/starry_artw)
Aleksandar Savić (https://dribbble.com/almigor)

Vonholdt (https://www.deviantart.com/vonholdt)

https://www.behance.net/starry_artw
https://dribbble.com/almigor
https://www.deviantart.com/vonholdt

