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Anamorphic Encryption [PPY22]

® Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.

® Goal: allow users to communicate privately in authoritarian settings by
concealing hidden messages inside of innocuous ciphertexts.

® Technical realization: augment deployed primitives with “anamorphic
extensions” that use a double key dk to conceal “anamorphic messages”.
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Anamorphic Signature Schemes [KPPYZ23]

® Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

® Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.
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Anamorphic Signature Schemes [KPPYZ23]

® Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

® Core idea: expand available stealthy channel bandwidth by concealing
anamorphic messages in signatures.

looks like EIGamal signatures,
RSA-PSS, ...

ElGamal signatures,
RSA-PSS, ...

even to dictator

who knows sk

® |ntroduce new security definitions specific to (anamorphic) signatures.
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Warmup Anamorphic Signature Scheme (RSA-PSS)

r < prE . Enc(dk, amsg)

dk < prE . KeyGen(1%)

aDec(vk, dk, msg, asig) :
(bllwlla|ly) < asig® (mod N)
r—Gw) @a
amsg « prE . Dec(dk, r)

® (Generalizes to any signature
scheme that with “recoverable”
signing randomness.

return amsg




Randomness Replacement [KPPYZ23]

® Randomness Replacement Transtorm RRep .
-
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Security Notions for Anamorphic Signatures

® Stealthiness: dictator cannot distinguish honest and anamorphic signatures
even when given keypair (vk, sk) [KPPYZ23].

® Robustness: honest signatures don’t anamorphically decrypt to valid
anamorphic messages [BGHMR24].

® Private anamorphism: a recipient who knows the double key dk and sees
honest signatures cannot forge new signatures [KPPYZ23].
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Part 1: Strengthening Robustness to Dictator Unforgeability

Observe a gap between the deployment scenario

of private anamorphism and its formalization.

Mount a practical attack a natural
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform n
to achieve recipient unforgeability.
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Robustness [BGHMR24]

® Proposed by Banfi, Gegier, Hirt, Maurer, and Rito at Eurocrypt 2024.*

® High level goal: honest signatures don’t anamorphically decrypt to valio
anamorphic messages.

® BGHMR list two primary motivations for robustness.

® Usability: anamorphic messages will be sent in a network containing honest
communication — anamorphic users need to identify what is what.

® Security: (roughly) to prevent a dictator from initiating anamorphic channels
with anamorphic users.

® BGHMR propose two transforms that achieve robustness.

*Proposed originally for anamorphic encryption though we analyze a straightforward adaptation to signature schemes in our work.
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Randomness Identification with PRF [BGHMR24]

® Randomness ldentification with PRF Transtorm RIdP .
—>

® |nput: randomness identifying signature scheme S > 25
prkE—»

® Input: pseudorandom function prF

® Output: anamorphic signature scheme aS

® S is randomness identitying it there exists a PPT RIdtfy that, given
sig < Sign(sk, msg; r), can check whether r’' = r via RIdtfy(vk, msg, sig, r').

13



Randomness Identification with PRF [BGHMR24]

® Randomness ldentification with PRF Transtorm RIdP .
—>

® |[nput: randomness identitying signature scheme S > 25
prk—»

® Input: pseudorandom function prF

® Output: anamorphic signature scheme aS

® S is randomness identifying if there exists a PPT RIdtfy that, given
sig < Sign(sk, msg; r), can check whether r’ = r via RIdtfy(vk, msg, sig, r’).

13




Randomness Identification with PRF/XOR [BGHMR24]

® Randomness ldentification with PRF/XOR Transform RIAPX

S—»

® Input: randomness identifying signature scheme S RIdPX TR

® Input: pseudorandom function prF pr- =

® Output: anamorphic signature scheme aS

® S is randomness identifying if there exists a PPT RIdtfy that, given
sig < Sign(sk, msg; r), can check whether r’ = r via RIdtfy(vk, msg, sig, r’).

- s Sk pri(dk ctr) @ amsg
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b2 {01}
aKeyGen(1%) = (vk, sk, dk) O..
Sign,aDec
msg
if b = 0 then
amsg «— |
if b = 1 then
sig < Sign(sk, msg)
amsg < aDec(vk, dk, msg, sig)
amsg
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Robustness Game [BGHMR24]

b (0,1)
aKeyGen(1%) = (vk, sk, dk) O..
Sign,aDec
msg
if » = 0 then
amsg «— |
if » = 1 then
sig < Sign(sk, msg)
amsg < aDec(vk, dk, msg, sig)
h* amsg

wins if b = b*
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Our Proposal: Dictator Unforgeability Game

R,
aKeyGen(1%) = (vk, sk, dk) 0.
(vk, sk) e (msg, amsg)
asig < aSign(sk, dk, msg, amsg)
S < SU{(msg,asig)}
asig
Ospec
(msg,asig))
amsg < aDec(vk, dk, msg, asig)
(msg*, asig’) amsg

amsg* « aDec(vk, dk, msg*, asig")

wins if (amsg™ # 1 )
A ((msg*, asig) & S)
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® Are the previously proposed transforms dictator unforgeable?

[KPPYZ23] IBGHMRZ24] IBGHMRZ24]

S—» S—»
RRep = 23S — aS
prk —» prk—»

X

S—»

RIAPX BgEN

X

prE —»
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Dictator Unforgeability of Transforms

® Are the previously proposed transforms dictator unforgeable?

[KPPYZ23] I BGHMRZ24] IBGHMRZ24]

S—> S—»> S—>
RRep gl - 3S RIAPX BN
prE—> prF—> prE—>
rob

X X

® Can we patch any of the transforms?
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Dictator Attacking RIdPX

Dictator

amsg = "meet at 2PM"
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Repairing Dictator Unforgeability of RRep and RIdP

Replaces signing randomness with Replaces signing randomness with
pseudorandom encryptions i.e. pseudorandom function outputs i.e.

r < prE . Enc(dk, amsg) r < prF(dk, (ctr,amsg))
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Part 2: Strengthening Private Anamorphism to Recipient Unforgeability

Observe a gap between a stated goal of

robustness and its formalization.
O,
Propose Dictator Unforgeability. i

Mount a practical attack a previously proposed
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to

achieve dictator unforgeability.
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Private Anamorphism [KPPYZ23]

® Proposed alongside anamorphic signatures.

® High level goal: a recipient who knows the double key dk and sees honest
signatures cannot forge new signatures.

® KPPYZ discusses a primary motivation for private anamorphism.

® Security: (roughly) to prevent a recipient from forging signatures on behalf
of the sender.

® KPPYZ provide a framework that achieves private anamorphism which covers
the randomness replacement transtorm RRep as a special case.

26
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Private Anamorphism Game [KPPYZ23]

S0
aKeyGen(1%) = (vk, sk, dk)
(vk, dk) msg
sig < Sign(sk, msg)
S« SU{(msg,sig)}
(msg”*, sig’) sig

wins if Verify(vk, msg*,sig ) = 1
A ((msg®, sig ) & S)
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asig.,asig ., ..., aslg |
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amsg 4+ amsg = prF(dk, 7 + 1)

r' < prF(dk, 7 + 1) @ amsg’

= prF(dk,Z + 1) @ prF(dk,Z + 1)
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Recipient Attacking RRep: The Attack

asig . asig., ..., asl
asig. < aSign(sk, dk, msg., amsg) M» amsg. < aDec(vk, dk, msg, asig )

| please covertly send me amsg’
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r' < prF(dk, 7 + 1) @ amsg’

= prF(dk,Z + 1) @ prF(dk, £
= () triggers backdoor!

asig < Sign(sk, msg; 1)

= sk msg* of choosing!
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Repairing Recipient Unforgeability of RRep

SUF-CMA security is insufficient

Attack takes advantage of
chosen randomness.

IND$-CPA security is insufficient

Attack takes advantage of the
“controllability” of ciphertexts by recipient
who knows the symmetric key.
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Repairing Recipient Unforgeability of RRep

SUF-CMA security is insufficient

Attack takes advantage of
chosen randomness.

IND$-CPA security is insufficient

Attack takes advantage of the
“controllability” of ciphertexts by recipient
who knows the symmetric key.

® Attack leverages insufficiencies in both signature scheme and pseudorandom encryption.
Can regain security by requiring stronger security properties of either one component.
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property on signature scheme S. "

RREp paN
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Repairing Recipient Unforgeability of RRep

® Can achieve recipient unforgeability by requiring stronger

property on signature scheme S. "

RRep paN

. re—»
® Unforgeability under chosen randomness attack P

(SUF-CRA security) akin to SUF-CMA security except adversary
queries for signatures on messages and randomness of its choosing.

® \We prove that RSA-PSS and Rabin signatures are SUF-CRA secure, hence
anamorphic RSA-PSS and Rabin from RRep are recipient unforgeable.

® \We are unable to prove some signature schemes such as Boneh-Boyen are
SUF-CRA secure — can we still achieve recipient-unforgeable schemes?
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Repairing Recipient Unforgeability of RRep

® Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme prE. S—»

RREp paN
prE -
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Repairing Recipient Unforgeability of RRep

® Achieve recipient unforgeability by requiring stronger
property on pseudorandom encryption scheme prE. S—»

RRep paN
® Simulatability with random ciphertexts (SIM-$CT) prE —»
asks that any adversary cannot distinguish between
ciphertexts and random samples even knowing
the symmetric key.

® How is this possible? \We can leverage ideal models to make decryption of random
samples consistent with a fixed key:.

® Definition is modular — construction can build on a variety of ideal primitives (e.g.
random oracle, ideal cipher) — and composable.

® Achieved by randomized block cipher modes.
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Summary

Mount a practical attack a previously proposed Mount a practical attack a natural

robust anamorphic signature scheme. private anamorphic signature scheme.

Repair other prior anamorphic transforms to Repair (in two ways) a prior anamorphic transform n

achieve dictator unforgeability. to achieve recipient unforgeability.
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