ASIACRYPT 2024

Dictators? Friends? Forgers. *Breaking and Fixing Unforgeability Definitions for Anamorphic Signature Schemes*

Joseph Jaeger and Roy Stracovsky

Motivation

- Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.
- Goal: allow users to communicate privately in authoritarian settings by concealing hidden messages inside of innocuous ciphertexts.
- Technical realization: augment *deployed* primitives with "anamorphic extensions" that use a double key dk to conceal "anamorphic messages".

- Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.
- Goal: allow users to communicate privately in authoritarian settings by concealing hidden messages inside of innocuous ciphertexts.
- Technical realization: augment *deployed* primitives with "anamorphic extensions" that use a double key dk to conceal "anamorphic messages".

 $KeyGen(1^{\lambda}) \Rightarrow (pk, sk)$

Hashed ElGamal, RSA-OAEP, …

 $Enc(pk, msg) \Rightarrow ct$

 $Dec(\mathsf{sk}, \mathsf{ct}) \Rightarrow \mathsf{msg}$

- Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.
- Goal: allow users to communicate privately in authoritarian settings by concealing hidden messages inside of innocuous ciphertexts.
- Technical realization: augment *deployed* primitives with "anamorphic extensions" that use a double key dk to conceal "anamorphic messages".

 $KeyGen(1^{\lambda}) \Rightarrow (pk, sk)$

al,	locks like Hashed Elc
aKeyGen(1 ^{λ}) \Rightarrow (pk, sk, dk)	RSA-OAEP, ...
aEnc(pk, dk, msg, amsg) \Rightarrow act	
aDec(sk, dk, act) \Rightarrow amsg	

Hashed ElGamal, RSA-OAEP, …

 $Enc(pk, msg) \Rightarrow ct$

 $Dec(\mathsf{sk}, \mathsf{ct}) \Rightarrow \mathsf{msg}$

- Proposed by Persiano, Phan, and Yung at Eurocrypt 2022.
- Goal: allow users to communicate privately in authoritarian settings by concealing hidden messages inside of innocuous ciphertexts.
- Technical realization: augment *deployed* primitives with "anamorphic extensions" that use a double key dk to conceal "anamorphic messages".

al,	$akeyGen(1^{\lambda}) \Rightarrow (pk, sk, dk)$	looks like Hashed Elc
$aEnc(pk, dk, msg, amsg) \Rightarrow act$		
$aDec(sk, dk, act) \Rightarrow amsg$		

• Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

-
- Core idea: expand available stealthy channel bandwidth by concealing anamorphic messages in signatures.

• Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

-
- Core idea: expand available stealthy channel bandwidth by concealing anamorphic messages in signatures.

 $KeyGen(1^{\lambda}) \Rightarrow (vk, sk)$

ElGamal signatures, RSA-PSS, …

 $Sign(sk, msg) \Rightarrow sig$

Verify(vk, msg, sig) \Rightarrow accept/reject

• Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

-
- Core idea: expand available stealthy channel bandwidth by concealing anamorphic messages in signatures.

 $KeyGen(1^{\lambda}) \Rightarrow (vk, sk)$

ElGamal signatures, RSA-PSS, …

 $Sign(sk, msg) \Rightarrow sig$

 $Verify(vk, msg, sig) \Rightarrow accept/reject$

• Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

-
- Core idea: expand available stealthy channel bandwidth by concealing anamorphic messages in signatures.

KeyGen(1^{λ}) \Rightarrow (vk, sk)	ElGamal signatures, RSA-PSS, ...
Sign(sk, msg) \Rightarrow sig \approx_c asig	
Verify(vk, msg, sig) \Rightarrow a	even to dictator who knows sk

• Proposed by Kutylowski, Persiano, Phan, Yung, and Zawada at Crypto 2023.

-
- Core idea: expand available stealthy channel bandwidth by concealing anamorphic messages in signatures.

• Introduce new security definitions specific to (anamorphic) signatures.

KeyGen(1^{λ}) \Rightarrow (vk, sk)	Elgamal signatures, RSA-PSS, ...
Sign(sk, msg) \Rightarrow sig \approx_c asig	
Verify(vk, msg, sig) \Rightarrow a	even to dictator who knows sk

(1*^λ*) : $(e, d, N) \leftarrow$ RSA. KeyGen (1^{λ}) $\mathsf{vk} \leftarrow (e, N)$ $\mathsf{sk} \leftarrow (d, N)$ return (vk, sk)

Sign(sk, msg): $r \overset{\$}{\leftarrow} \{0,1\}^{\lambda_0}$ $w \leftarrow H(msg,r)$ $\alpha \leftarrow G_1(w) \oplus r$ $\gamma \leftarrow G_2(w)$ $\mathsf{sig} \leftarrow (0||w||\alpha||\gamma)^d \pmod{N}$ return sig

*a*₁ *λ*_{*(c, d, λ)*} \bigcup (*e*, *d*,*N*) ← . (1*^λ*) ← (*e*,*N*) ← (*d*,*N*) **returns** (,,le ale aKeyGen(1^{λ}): $(e, d, N) \leftarrow$ RSA. KeyGen (1^{λ}) $\mathsf{vk} \leftarrow (e, N)$ $\mathsf{sk} \leftarrow (d, N)$ $dk \leftarrow prE$. KeyGen (1^{λ}) $\bf return$ (vk, sk, dk)

Sign(sk, msg): $r \overset{\$}{\leftarrow} \{0,1\}^{\lambda_0}$ $w \leftarrow H(msg,r)$ α ← $G_1(w) \oplus r$ $\gamma \leftarrow G_2(w)$ $\mathsf{sig} \leftarrow (0||w||\alpha||\gamma)^d \pmod{N}$ return sig

*a*₁ *λ*_{*(c, d, λ)*} \bigcup (*e*, *d*,*N*) ← . (1*^λ*) ← (*e*,*N*) ← (*d*,*N*) **returns** (,,le ale aKeyGen(1^{λ}): $(e, d, N) \leftarrow$ RSA. KeyGen (1^{λ}) $\mathsf{vk} \leftarrow (e, N)$ $\mathsf{sk} \leftarrow (d, N)$ $dk \leftarrow prE$. KeyGen (1^{λ}) $\bf return$ (vk, sk, dk)

aSign(sk, dk, msg, amsg):

- *r* ← prE. Enc(dk, amsg)
- $w \leftarrow H(msg, r)$
- α ← $G_1(w)$ ⊕ *r*
- $\gamma \leftarrow G_2(w)$
- $\mathbf{sig} \leftarrow (0||w||\alpha||\gamma)^d \pmod{N}$

return return

*a*₁ *λ*_{*(c, d, λ)*} \bigcup (*e*, *d*,*N*) ← . (1*^λ*) ← (*e*,*N*) ← (*d*,*N*) **returns** (,,le ale aKeyGen(1^{λ}): $(e, d, N) \leftarrow$ RSA. KeyGen (1^{λ}) $\mathsf{vk} \leftarrow (e, N)$ $\mathsf{sk} \leftarrow (d, N)$ $dk \leftarrow prE$. KeyGen (1^{λ}) $\bf return$ (vk, sk, dk)

aDec(vk, dk, msg, asig) : $(b||w||a||\gamma) \leftarrow \text{assign}^e \pmod{N}$ $r \leftarrow G_1(w) \oplus \alpha$ $\mathsf{amsg} \leftarrow \mathsf{prE}$. Dec(dk, r) return amsg

aSign(sk, dk, msg, amsg):

- *r* ← prE. Enc(dk, amsg)
- $w \leftarrow H(msg, r)$
- α ← $G_1(w)$ ⊕ *r*
- $\gamma \leftarrow G_2(w)$
- $\mathbf{sig} \leftarrow (0||w||\alpha||\gamma)^d \pmod{N}$

return sig

*a*₁ *λ*_{*(c, d, λ)*} \bigcup (*e*, *d*,*N*) ← . (1*^λ*) ← (*e*,*N*) ← (*d*,*N*) **returns** (,,le ale aKeyGen(1^{λ}): $(e, d, N) \leftarrow$ RSA. KeyGen (1^{λ}) $\mathsf{vk} \leftarrow (e, N)$ $\mathsf{sk} \leftarrow (d, N)$ $dk \leftarrow prE$. KeyGen (1^{λ}) $\bf return$ (vk, sk, dk)

aDec(vk, dk, msg, asig) : $(b||w||a||\gamma)$ ← asig^e (mod N) $r \leftarrow G_1(w) \oplus \alpha$ $\mathsf{amsg} \leftarrow \mathsf{prE}$. Dec(dk, r) return amsg

aSign(sk, dk, msg, amsg):

- *r* ← prE. Enc(dk, amsg)
- $w \leftarrow H(msg, r)$

- $\mathbf{sig} \leftarrow (0||w||\alpha||\gamma)^d \pmod{N}$ return sig
- Generalizes to any signature scheme that with "recoverable" signing randomness.

$$
\alpha \leftarrow G_1(w) \oplus r
$$

$$
\gamma \leftarrow G_2(w)
$$

Randomness Replacement [KPPYZ23]

- **Randomness Replacement Transform RRep**
	- **Input:** randomness recoverable signature scheme S
	- **Input:** pseudorandom encryption scheme prE
	- **Output:** anamorphic signature scheme aS
- S is randomness recoverable if there exists a PPT RRecov that, given $sig \leftarrow Sign(sk, msg; r)$, can recover $r \leftarrow RRecov(vk, msg, sig)$.
-
-

RRep $S \rightarrow$ $prE \rightarrow$

► aS

Randomness Replacement [KPPYZ23]

- **Randomness Replacement Transform RRep**
	- **Input:** randomness recoverable signature scheme S
	- **Input:** pseudorandom encryption scheme prE
	- **Output:** anamorphic signature scheme aS
- S is randomness recoverable if there exists a PPT RRecov that, given $sig \leftarrow Sign(sk, msg; r)$, can recover $r \leftarrow RRecov(vk, msg, sig)$.

```
aKeyGen(1^{\lambda}):
(vk, sk) \leftarrow S. KeyGen(1^{\lambda})\mathsf{dk} \leftarrow \mathsf{prE} . KeyGen(1^{\lambda})return (vk, sk, dk)
```
aSign(sk, dk, msg, amsg): $r \leftarrow prE$. Enc(dk, amsg) $\mathsf{assign}(\mathsf{sk}, \mathsf{msg}; r)$ **return**

aDec(vk, dk, msg, asig): $r \leftarrow RRecov(vk, msg, \text{asig})$ $\mathsf{amsg} \leftarrow \mathsf{prE}$. Dec(dk, r) **return**

$$
S \rightarrow \text{RRep} \rightarrow a
$$

even when given keypair (vk, sk) [KPPYZ23].

• Stealthiness: dictator cannot distinguish honest and anamorphic signatures

• Stealthiness: dictator cannot distinguish honest and anamorphic signatures

- even when given keypair (vk, sk) [KPPYZ23].
- Robustness: honest signatures don't anamorphically decrypt to valid anamorphic messages [BGHMR24].

• Stealthiness: dictator cannot distinguish honest and anamorphic signatures

• Private anamorphism: a recipient who knows the double key dk and sees

- even when given keypair (vk, sk) [KPPYZ23].
- Robustness: honest signatures don't anamorphically decrypt to valid anamorphic messages [BGHMR24].
- honest signatures cannot forge new signatures [KPPYZ23].

Our Contributions

Robustness **Private Anamorphism**

Observe a gap between a stated goal of robustness and its formalization. ¹

Robustness **Private Anamorphism**

Observe a gap between a stated goal of robustness and its formalization.

Propose Dictator Unforgeability.

Robustness **Private Anamorphism**

1

Observe a gap between a stated goal of robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

Robustness **Private Anamorphism**

1

Observe a gap between a stated goal of robustness and its formalization.

Repair other prior anamorphic transforms to achieve dictator unforgeability.

Robustness **Private Anamorphism**

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

1

2

3

Observe a gap between a stated goal of robustness and its formalization.

Repair other prior anamorphic transforms to achieve dictator unforgeability.

Robustness **Private Anamorphism**

Observe a gap between the deployment scenario of private anamorphism and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

3

 \mathcal{P}

4

Observe a gap between a stated goal of robustness and its formalization.

Repair other prior anamorphic transforms to achieve dictator unforgeability.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

Observe a gap between the deployment scenario of private anamorphism and its formalization.

Propose Recipient Unforgeability.

1

 \mathcal{P}

3

4

Observe a gap between a stated goal of robustness and its formalization.

Repair other prior anamorphic transforms to achieve dictator unforgeability.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

1

2

3

Observe a gap between a stated goal of robustness and its formalization.

Repair other prior anamorphic transforms to achieve dictator unforgeability.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

1

2

3

Part 1: Strengthening Robustness to Dictator Unforgeability

Observe a gap between the deployment scenario Γ of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural *private* anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform to achieve recipient unforgeability.

5

6

7
Robustness [BGHMR24]

- Proposed by Banfi, Gegier, Hirt, Maurer, and Rito at Eurocrypt 2024.*
- High level goal: honest signatures don't anamorphically decrypt to valid anamorphic messages.
- BGHMR list two primary motivations for robustness.
	- Usability: anamorphic messages will be sent in a network containing honest communication — anamorphic users need to identify what is what.
	- Security: (roughly) to prevent a dictator from initiating anamorphic channels with anamorphic users.
- BGHMR propose two transforms that achieve robustness.

**Proposed originally for anamorphic encryption though we analyze a straightforward adaptation to signature schemes in our work.*

Randomness Identification with PRF [BGHMR24]

- Randomness Identification with PRF Transform RIdP
	- **Input:** randomness identifying signature scheme S
	- **Input: pseudorandom function prF**
	- **Output:** anamorphic signature scheme aS
- S is randomness identifying if there exists a PPT RIdtfy that, given $\text{sig} \leftarrow \text{Sign}(\textsf{sk}, \textsf{msg}; r)$, can check whether $r' = r$ via RIdtfy(vk, msg, sig, r').

Randomness Identification with PRF [BGHMR24]

- Randomness Identification with PRF Transform RIdP
	- **Input:** randomness identifying signature scheme S
	- **Input: pseudorandom function prF**
	- **Output:** anamorphic signature scheme aS
- S is randomness identifying if there exists a PPT RIdtfy that, given $\text{sig} \leftarrow \text{Sign}(\textsf{sk}, \textsf{msg}; r)$, can check whether $r' = r$ via RIdtfy(vk, msg, sig, r').

```
(1λ
) :
       (vk, sk) \leftarrow S. KeyGen(1^{\lambda})dk \leftarrow \mathsf{prF} . KeyGen(1^{\lambda})return (vk, sk, dk)
```
 $aDec(vk, dk, msg, asig: ctr++)$: **forall**

return


```
aSign(sk, dk, msg, amsg : ctr++):
       r \leftarrow \text{prF(dk, (ctr, amsg))}\text{asig} \leftarrow S. Sign(sk, msg; r)
```
Randomness Identification with PRF/XOR [BGHMR24]

- **Randomness Identification with PRF/XOR Transform RIdPX • Input:** randomness identifying signature scheme S
- - **Input: pseudorandom function prF**
	- **Output:** anamorphic signature scheme aS
- S is randomness identifying if there exists a PPT RIdtfy that, given $\text{sig} \leftarrow \text{Sign}(\textsf{sk}, \textsf{msg}; r)$, can check whether $r' = r$ via RIdtfy(vk, msg, sig, r').

```
(1λ
) :
       (vk, sk) \leftarrow S. KeyGen(1^{\lambda})dk \leftarrow \mathsf{prF} . KeyGen(1^{\lambda})return (vk, sk, dk)
```
 $aDec(vk, dk, msg, asig: ctr++)$: **forall** $r \leftarrow prF(dk, ctr) \oplus \text{amsg}$ **if** RIdtfy(vk, msg, sig, r) = 1 **return**

return

```
aSign(sk, dk, msg, amsg : ctr++):
       r \leftarrow prF(dk, ctr) \oplus \text{amsg}\text{asig} \leftarrow S. Sign(sk, msg; r)
```
RIdPX

 $S \rightarrow$

prF

Robustness Game [BGHMR24]

 $b \stackrel{\$}{\leftarrow} \{0,1\}$ a KeyGen $(1^{\lambda}) \Rightarrow$ (vk, sk, dk)

Robustness Game [BGHMR24]

 $b \stackrel{\$}{\leftarrow} \{0,1\}$ a KeyGen $(1^{\lambda}) \Rightarrow$ (vk, sk, dk)

Robustness Game [BGHMR24]

 $b \stackrel{\$}{\leftarrow} \{0,1\}$ a KeyGen $(1^{\lambda}) \Rightarrow$ (vk, sk, dk)

wins if $b = b^*$

* \leftarrow $f(\textsf{sk})$

S ← Ø a KeyGen $(1^{\lambda}) \Rightarrow$ (vk, sk, dk)

 $S \leftarrow \emptyset$ a KeyGen $(1^{\lambda}) \Rightarrow$ (vk, sk, dk) $(vk, sk) \longrightarrow (msg, amsg)$ (msg^*, asig) *) $\mathsf{amsg}^* \leftarrow \mathsf{aDec}(\mathsf{vk}, \mathsf{dk}, \mathsf{msg}^*, \mathsf{assign})$ *) **wins if** (amsg^{*} $\neq \perp$) \wedge ((msg*, asig *) ∉ *S*)

• Are the previously proposed transforms dictator unforgeable?

• Are the previously proposed transforms dictator unforgeable?

• Are the previously proposed transforms dictator unforgeable?

• Can we patch any of the transforms?

• Are the previously proposed transforms dictator unforgeable?

• Can we patch any of the transforms?

• Are the previously proposed transforms dictator unforgeable?

• Can we patch any of the transforms?

 $amsg = "meet at 2PM"$

 $amsg = "meet at 2PM"$ $r \leftarrow prF(dk, ctr) \oplus \text{amsg}$

 $amsg = "meet at 2PM"$ $\text{asig} \leftarrow \text{Sign}(\text{sk}, \text{msg}; r)$ $r \leftarrow prF(dk, ctr) \oplus \text{amsg}$ scheme is randomness recoverable e.g. ElGamal, Schnorr, RSA-PSS, .etc

 $amsg = "meet at 2PM"$

 $r \leftarrow prF(dk, ctr) \oplus \text{amsg}$

 $\mathsf{assign}(\mathsf{sk}, \mathsf{msg}; r)$

asig

scheme is randomness recoverable e.g. ElGamal, Schnorr, RSA-PSS, .etc

recoverable e.g. ElGamal, Schnorr, RSA-PSS, .etc

 $r \leftarrow RRecov(vk, sk, msg, \text{asig})$

 $r \leftarrow prF(dk, ctr) \oplus \text{amsg}$

 $\mathsf{assign}(\mathsf{sk}, \mathsf{msg}; r)$

scheme is randomness recoverable e.g. ElGamal, Schnorr, RSA-PSS, .etc

 $r^* \leftarrow r \bigoplus \text{amsg}'$

 $r \leftarrow RRecov(vk, sk, msg, \text{asig})$

 $* \leftarrow$ Sign(sk, msg; $r*$)

 $r \leftarrow prF(dk, ctr) \oplus \text{amsg}$

 $\mathsf{assign}(\mathsf{sk}, \mathsf{msg}; r)$

scheme is randomness recoverable e.g. ElGamal, Schnorr, RSA-PSS, .etc

asig

 $r^* \leftarrow r \bigoplus \text{amsg}'$ asig

 $r \leftarrow prF(dk, ctr) \oplus \text{amsg}$

 $\mathsf{assign}(\mathsf{sk}, \mathsf{msg}; r)$

scheme is randomness recoverable e.g. ElGamal, Schnorr, RSA-PSS, .etc

asig

 $r^* \leftarrow r \bigoplus \text{amsg}'$

 $r \leftarrow prF(dk, ctr) \oplus \text{amsg}$

 $\mathsf{assign}(\mathsf{sk}, \mathsf{msg}; r)$

scheme is randomness recoverable e.g. ElGamal, Schnorr, RSA-PSS, .etc

asig

 $r^* \leftarrow r \bigoplus \text{amsg}'$

 $r \leftarrow prF(dk, ctr) \oplus \text{amsg}$

 $\mathsf{assign}(\mathsf{sk}, \mathsf{msg}; r)$

scheme is randomness recoverable e.g. ElGamal, Schnorr, RSA-PSS, .etc

asig

 $r^* \leftarrow r \bigoplus \text{amsg}'$

Repairing Dictator Unforgeability of RRep and RIdP

Replaces signing randomness with pseudorandom encryptions i.e. $r \leftarrow prE$. Enc(dk, amsg)

Replaces signing randomness with pseudorandom function outputs i.e. $r \leftarrow prF(dk, (ctr, amsg))$

Repairing Dictator Unforgeability of RRep and RIdP

Replaces signing randomness with pseudorandom encryptions i.e. $r \leftarrow prE$. Enc(dk, amsg)

Replaces signing randomness with pseudorandom function outputs i.e. $r \leftarrow prF(dk, (ctr, amsg))$

Repairing Dictator Unforgeability of RRep and RIdP

Replaces signing randomness with pseudorandom encryptions i.e. $r \leftarrow prE$. Enc(dk, amsg)

Replaces signing randomness with pseudorandom function outputs i.e. $r \leftarrow prF(dk, (ctr, msg, \text{amsg}))$

Part 2: Strengthening Private Anamorphism to Recipient Unforgeability

Private Anamorphism [KPPYZ23]

- Proposed alongside anamorphic signatures.
- \bullet High level goal: a recipient who knows the double key dk and sees honest signatures cannot forge new signatures.
- KPPYZ discusses a primary motivation for private anamorphism.
	- Security: (roughly) to prevent a recipient from forging signatures on behalf of the sender.
- KPPYZ provide a framework that achieves private anamorphism which covers the randomness replacement transform RRep as a special case.

Private Anamorphism Game [KPPYZ23]

S ← Ø a KeyGen $(1^{\lambda}) \Rightarrow$ (vk, sk, dk) (vk, dk)

Private Anamorphism Game [KPPYZ23]

S ← Ø a KeyGen $(1^{\lambda}) \Rightarrow$ (vk, sk, dk) (vk, dk) —

Private Anamorphism Game [KPPYZ23]

 $\textbf{wins if } \textsf{Verify}(\textsf{vk}, \textsf{msg}^*, \textsf{sig})$ * $) = 1$ \wedge ((msg*, sig *) ∉ *S*)

Revisiting Anamorphic Threat Model

Revisiting Anamorphic Threat Model

• Recall RRep replaces signing randomness with $r \leftarrow prE$. Enc(dk, amsg).

• Recall RRep replaces signing randomness with $r \leftarrow prE$. Enc(dk, amsg).

backdoor: outputs sk when signing $r = 0$ $r = 0$

still SUF-CMA secure!

• Recall RRep replaces signing randomness with $r \leftarrow prE$. Enc(dk, amsg).

backdoor: outputs sk when signing $r = 0$ $r = 0$

blockcipher used in counter mode i.e. $Enc(dk, \text{amsg}) := prF(dk, \text{ctr++}) \oplus \text{amsg}$ 2 *still IND\$-CPA secure!*

still SUF-CMA secure!

• Recall RRep replaces signing randomness with $r \leftarrow prE$. Enc(dk, amsg).

backdoor: outputs sk when signing $r = 0$ $r = 0$

blockcipher used in counter mode i.e. $Enc(dk, \text{amsg}) := prF(dk, \text{ctr++}) \oplus \text{amsg}$ 2 *still IND\$-CPA secure!*

still SUF-CMA secure!

Sender Receiver

 $\textsf{assign}(\textsf{sk}, \textsf{dk}, \textsf{msg}_i, \textsf{amsg}_i)$

Sender Receiver

 $\mathsf{assign}, \mathsf{assign}, ..., \mathsf{assign}_\ell$

 $\textsf{assign}(\textsf{sk}, \textsf{dk}, \textsf{msg}_i, \textsf{amsg}_i)$

SUF-CMA security is insufficient

Attack takes advantage of chosen randomness.

IND\$-CPA security is insufficient

Attack takes advantage of the "controllability" of ciphertexts by recipient who knows the symmetric key.

AND

SUF-CMA security is insufficient

Attack takes advantage of chosen randomness.

IND\$-CPA security is insufficient

Attack takes advantage of the "controllability" of ciphertexts by recipient who knows the symmetric key.

AND

• Attack leverages insufficiencies in *both* signature scheme and pseudorandom encryption. Can regain security by requiring stronger security properties of *either one* component.

• Can achieve recipient unforgeability by requiring stronger property on signature scheme S.

- Can achieve recipient unforgeability by requiring stronger property on signature scheme S.
- Unforgeability under chosen randomness attack (SUF-CRA security) akin to SUF-CMA security except adversary queries for signatures on messages *and randomness* of its choosing.

- Can achieve recipient unforgeability by requiring stronger property on signature scheme S.
- Unforgeability under chosen randomness attack (SUF-CRA security) akin to SUF-CMA security except adversary queries for signatures on messages *and randomness* of its choosing.
- anamorphic RSA-PSS and Rabin from RRep are recipient unforgeable.

• We prove that RSA-PSS and Rabin signatures are SUF-CRA secure, hence

- Can achieve recipient unforgeability by requiring stronger property on signature scheme S.
- Unforgeability under chosen randomness attack (SUF-CRA security) akin to SUF-CMA security except adversary queries for signatures on messages *and randomness* of its choosing.
- anamorphic RSA-PSS and Rabin from RRep are recipient unforgeable.
-

• We prove that RSA-PSS and Rabin signatures are SUF-CRA secure, hence

• We are unable to prove some signature schemes such as Boneh-Boyen are SUF-CRA secure — can we still achieve recipient-unforgeable schemes?

• Achieve recipient unforgeability by requiring stronger property on pseudorandom encryption scheme prE.
- Achieve recipient unforgeability by requiring stronger property on pseudorandom encryption scheme prE.
- Simulatability with random ciphertexts (SIM-\$CT) asks that any adversary cannot distinguish between ciphertexts and random samples even knowing the symmetric key.

- Achieve recipient unforgeability by requiring stronger property on pseudorandom encryption scheme prE.
- Simulatability with random ciphertexts (SIM-\$CT) asks that any adversary cannot distinguish between ciphertexts and random samples even knowing the symmetric key.
	- *How is this possible?* We can leverage ideal models to make decryption of random samples consistent with a fixed key.

- Achieve recipient unforgeability by requiring stronger property on pseudorandom encryption scheme prE.
- Simulatability with random ciphertexts (SIM-\$CT) asks that any adversary cannot distinguish between ciphertexts and random samples even knowing the symmetric key.
	- *How is this possible?* We can leverage ideal models to make decryption of random samples consistent with a fixed key.
- Definition is modular construction can build on a variety of ideal primitives (e.g. random oracle, ideal cipher) — and composable.

- Achieve recipient unforgeability by requiring stronger property on pseudorandom encryption scheme prE.
- Simulatability with random ciphertexts (SIM-\$CT) asks that any adversary cannot distinguish between ciphertexts and random samples even knowing the symmetric key.
	- *How is this possible?* We can leverage ideal models to make decryption of random samples consistent with a fixed key.
- Definition is modular construction can build on a variety of ideal primitives (e.g. random oracle, ideal cipher) — and composable.
- Achieved by randomized block cipher modes*.*

Conclusion

Observe a gap between a stated goal of robustness and its formalization.

Repair other prior anamorphic transforms to achieve dictator unforgeability.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

1

2

3

Observe a gap between a stated goal of robustness and its formalization.

Repair other prior anamorphic transforms to achieve dictator unforgeability.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

Propose Recipient Unforgeability.

Mount a practical attack a natural *private* anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform to achieve recipient unforgeability.

1

2

3

4

6

7

Observe a gap between a stated goal of robustness and its formalization.

Repair other prior anamorphic transforms to achieve dictator unforgeability.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform to achieve recipient unforgeability.

1

2

3

4

Observe a gap between a stated goal of robustness and its formalization.

Repair other prior anamorphic transforms to achieve dictator unforgeability.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

1

2

3

Observe a gap between a stated goal of robustness and its formalization.

Repair other prior anamorphic transforms to achieve dictator unforgeability.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed *robust* anamorphic signature scheme.

1

2

3

Starry Artw ([https://www.behance.net/starry_artw\)](https://www.behance.net/starry_artw) Aleksandar Savić (<https://dribbble.com/almigor>)

Vonholdt [\(https://www.deviantart.com/vonholdt\)](https://www.deviantart.com/vonholdt)