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Anamorphic Encryption [PPY22]
• Proposed by Persiano, Phan, and Yung at Eurocrypt 2022. 

• Goal: allow users to communicate privately in authoritarian settings by 
concealing hidden messages inside of innocuous ciphertexts. 

• Technical realization: augment deployed primitives with “anamorphic 
extensions” that use a double key  to conceal “anamorphic messages”.𝖽𝗄
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Randomness Replacement [KPPYZ23]
• Randomness Replacement Transform  

• Input: randomness recoverable signature scheme  

• Input: pseudorandom encryption scheme  

• Output: anamorphic signature scheme  

•  is randomness recoverable if there exists a PPT  that, given 
, can recover .

𝖱𝖱𝖾𝗉
𝖲

𝗉𝗋𝖤
𝖺𝖲

𝖲 𝖱𝖱𝖾𝖼𝗈𝗏
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r) r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀)
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• Input: pseudorandom encryption scheme  

• Output: anamorphic signature scheme  

•  is randomness recoverable if there exists a PPT  that, given 
, can recover .

𝖱𝖱𝖾𝗉
𝖲

𝗉𝗋𝖤
𝖺𝖲

𝖲 𝖱𝖱𝖾𝖼𝗈𝗏
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r) r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀)

7

 
 

 

𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀) :
r ← 𝗉𝗋𝖤 . 𝖤𝗇𝖼(𝖽𝗄, 𝖺𝗆𝗌𝗀)
𝖺𝗌𝗂𝗀 ← 𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)
return 𝖺𝗌𝗂𝗀

 
 

 

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(𝗏𝗄, 𝗌𝗄) ← 𝖲 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝖽𝗄 ← 𝗉𝗋𝖤 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
return (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

 
 

 

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀) :
r ← 𝖱𝖱𝖾𝖼𝗈𝗏(𝗏𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀)
𝖺𝗆𝗌𝗀 ← 𝗉𝗋𝖤 . 𝖣𝖾𝖼(𝖽𝗄, r)
return 𝖺𝗆𝗌𝗀

RRep
𝖲

𝗉𝗋𝖤
𝖺𝖲
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• Stealthiness: dictator cannot distinguish honest and anamorphic signatures 

even when given keypair  [KPPYZ23].(𝗏𝗄, 𝗌𝗄)

• Robustness: honest signatures don’t anamorphically decrypt to valid 
anamorphic messages [BGHMR24].

• Private anamorphism: a recipient who knows the double key  and sees 
honest signatures cannot forge new signatures [KPPYZ23].

𝖽𝗄
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Part 1: Strengthening Robustness to Dictator Unforgeability
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Robustness [BGHMR24]
• Proposed by Banfi, Gegier, Hirt, Maurer, and Rito at Eurocrypt 2024.* 

• High level goal: honest signatures don’t anamorphically decrypt to valid 
anamorphic messages. 

• BGHMR list two primary motivations for robustness. 

• Usability: anamorphic messages will be sent in a network containing honest 
communication — anamorphic users need to identify what is what. 

• Security: (roughly) to prevent a dictator from initiating anamorphic channels 
with anamorphic users.  

• BGHMR propose two transforms that achieve robustness.

12

*Proposed originally for anamorphic encryption though we analyze a straightforward adaptation to signature schemes in our work. 



Randomness Identification with PRF [BGHMR24]
• Randomness Identification with PRF Transform  

• Input: randomness identifying signature scheme  

• Input: pseudorandom function  

• Output: anamorphic signature scheme  

•  is randomness identifying if there exists a PPT  that, given 
, can check whether  via .

𝖱𝖨𝖽𝖯
𝖲

𝗉𝗋𝖥
𝖺𝖲

𝖲 𝖱𝖨𝖽𝗍𝖿𝗒
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r) r′ = r 𝖱𝖨𝖽𝗍𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀, r′ )
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𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀 : 𝖼𝗍𝗋++ ) :
r ← 𝗉𝗋𝖥(𝖽𝗄, (𝖼𝗍𝗋, 𝖺𝗆𝗌𝗀))
𝖺𝗌𝗂𝗀 ← 𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)
return 𝖺𝗌𝗂𝗀

 
 

 

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(𝗏𝗄, 𝗌𝗄) ← 𝖲 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝖽𝗄 ← 𝗉𝗋𝖥 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
return (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

 
 

 
 

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀 : 𝖼𝗍𝗋++ ) :
forall 𝖺𝗆𝗌𝗀

r ← 𝗉𝗋𝖥(𝖽𝗄, (𝖼𝗍𝗋, 𝖺𝗆𝗌𝗀))
if 𝖱𝖨𝖽𝗍𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀, 𝗋) = 1

return 𝖺𝗆𝗌𝗀

RIdP
𝖲

𝗉𝗋𝖥
𝖺𝖲



Randomness Identification with PRF/XOR [BGHMR24]
• Randomness Identification with PRF/XOR Transform  

• Input: randomness identifying signature scheme  

• Input: pseudorandom function  

• Output: anamorphic signature scheme  

•  is randomness identifying if there exists a PPT  that, given 
, can check whether  via .

𝖱𝖨𝖽𝖯𝖷
𝖲

𝗉𝗋𝖥
𝖺𝖲

𝖲 𝖱𝖨𝖽𝗍𝖿𝗒
𝗌𝗂𝗀 ← 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r) r′ = r 𝖱𝖨𝖽𝗍𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀, r′ )
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𝖺𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗆𝗌𝗀 : 𝖼𝗍𝗋++ ) :
r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
𝖺𝗌𝗂𝗀 ← 𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀; r)
return 𝖺𝗌𝗂𝗀

 
 

 

𝖺𝖪𝖾𝗒𝖦𝖾𝗇(1λ) :
(𝗏𝗄, 𝗌𝗄) ← 𝖲 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝖽𝗄 ← 𝗉𝗋𝖥 . 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
return (𝗏𝗄, 𝗌𝗄, 𝖽𝗄)

 
 

 
 

𝖺𝖣𝖾𝖼(𝗏𝗄, 𝖽𝗄, 𝗆𝗌𝗀, 𝖺𝗌𝗂𝗀 : 𝖼𝗍𝗋++ ) :
forall 𝖺𝗆𝗌𝗀

r ← 𝗉𝗋𝖥(𝖽𝗄, 𝖼𝗍𝗋) ⊕ 𝖺𝗆𝗌𝗀
if 𝖱𝖨𝖽𝗍𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀, 𝗋) = 1

return 𝖺𝗆𝗌𝗀

RIdPX
𝖲

𝗉𝗋𝖥
𝖺𝖲



Robustness Game [BGHMR24]
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𝗆𝗌𝗀
if b = 0 then
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 b*

wins if b = b*



Revisiting Robustness Threat Model
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Sender Receiver

(𝗏𝗄, 𝗌𝗄) 𝗏𝗄

𝗌𝗄

𝖺𝗌𝗂𝗀

𝖽𝗄 𝖽𝗄

𝗌𝗂𝗀* ← f(𝗌𝗄)

𝖺𝗌𝗂𝗀* = g(𝖺𝗌𝗂𝗀, 𝗌𝗄)

reasonable attacks not captured by robustness
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(𝗆𝗌𝗀*, 𝖺𝗌𝗂𝗀*)
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Robustness Private Anamorphism

Observe a gap between a stated goal of  
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed 
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to  
achieve dictator unforgeability.

Observe a gap between the deployment scenario  
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural  
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform  
to achieve recipient unforgeability.

1

2

3

4

5

6

7

8



Private Anamorphism [KPPYZ23]
• Proposed alongside anamorphic signatures. 

• High level goal: a recipient who knows the double key  and sees honest 
signatures cannot forge new signatures. 

• KPPYZ discusses a primary motivation for private anamorphism. 

• Security: (roughly) to prevent a recipient from forging signatures on behalf 
of the sender.  

• KPPYZ provide a framework that achieves private anamorphism which covers 
the randomness replacement transform  as a special case.

𝖽𝗄

𝖱𝖱𝖾𝗉

26
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• Simulatability with random ciphertexts (SIM-$CT) 
asks that any adversary cannot distinguish between 
ciphertexts and random samples even knowing 
the symmetric key.

• How is this possible? We can leverage ideal models to make decryption of random 
samples consistent with a fixed key.

• Definition is modular — construction can build on a variety of ideal primitives (e.g. 
random oracle, ideal cipher) — and composable.

• Achieved by randomized block cipher modes.
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Robustness Private Anamorphism

Observe a gap between a stated goal of  
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed 
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to  
achieve dictator unforgeability.

Observe a gap between the deployment scenario  
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural  
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform  
to achieve recipient unforgeability.
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to achieve recipient unforgeability.
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Summary
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Robustness Private Anamorphism

Observe a gap between a stated goal of  
robustness and its formalization.

Propose Dictator Unforgeability.

Mount a practical attack a previously proposed 
robust anamorphic signature scheme.

Repair other prior anamorphic transforms to  
achieve dictator unforgeability.

Observe a gap between the deployment scenario  
of private anamorphism and its formalization.

Propose Recipient Unforgeability.

Mount a practical attack a natural  
private anamorphic signature scheme.

Repair (in two ways) a prior anamorphic transform  
to achieve recipient unforgeability.
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