On the Spinor Genus and the Distinguishing Lattice Isomorphism Problem

Cong Ling & Jingbo Liu & Andrew Mendelsohn 13/12/2024

Lattice Isomorphism Problem: decide if two lattices are isomorphic and if so, find an isomorphism.

Lattice Isomorphism Problem: decide if two lattices are isomorphic and if so, find an isomorphism.

'Arithmetic Invariants': (efficiently computable) properties of lattices preserved under isomorphism.

Means: $\mathcal L$ and $f(\mathcal L)$ share an efficiently computable property.

Lattice Isomorphism Problem: decide if two lattices are isomorphic and if so, find an isomorphism.

'Arithmetic Invariants': (efficiently computable) properties of lattices preserved under isomorphism.

Means: $\mathcal L$ and $f(\mathcal L)$ share an efficiently computable property.

Examples: Class: $\mathcal{L} \sim \mathcal{L}'$ if related by a global isomorphism. Genus: $\mathcal{L} \sim \mathcal{L}'$ if related by local isomorphisms.

Lattice Isomorphism Problem: decide if two lattices are isomorphic and if so, find an isomorphism.

'Arithmetic Invariants': (efficiently computable) properties of lattices preserved under isomorphism.

Means: $\mathcal L$ and $f(\mathcal L)$ share an efficiently computable property.

Examples: Class: $\mathcal{L} \sim \mathcal{L}'$ if related by a global isomorphism. Genus: $\mathcal{L} \sim \mathcal{L}'$ if related by local isomorphisms.

Are there more relations? Yes!

In this talk: we discuss when a certain invariant (the 'spinor genus') is useful for solving LIP.

Why? vWD21 developed a KEM and signature scheme from LIP. ALW24 developed PKE. DPPvW22 developed an optimised signature scheme, HAWK, based on search LIP on rank-2 Hermitian module lattices. Submitted to NIST's PQC standardisation process.

$$\mathcal{L} = \mathcal{L}(B) = \{ \textbf{x} : \textbf{x} = \sum_{i=1}^{n} a_i \textbf{b}_i, a_i \in \mathbb{Z} \}$$

$$\mathcal{L} = \mathcal{L}(\mathsf{B}) = \{\mathsf{x} : \mathsf{x} = \sum_{i=1}^{\mathsf{n}} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\}$$

$$\begin{split} & \mathsf{GL}_n(\mathbb{Z}) = \{\mathsf{M} \in \mathsf{M}_n(\mathbb{Z}) : \mathsf{det}(\mathsf{M}) = \pm 1 \} \\ & \mathsf{O}_n(\mathbb{R}) = \{\mathsf{M} \in \mathsf{M}_n(\mathbb{R}) : \mathsf{M}^\mathsf{T}\mathsf{M} = \mathsf{I}_n \} \end{split}$$

Lattice isomorphism: $\mathcal{L} \cong \mathcal{L}' \Leftrightarrow$ there exists $O \in O_n(\mathbb{R}) : \mathcal{L}' = O \cdot \mathcal{L}$.

$$\mathcal{L} = \mathcal{L}(\mathsf{B}) = \{\mathsf{x} : \mathsf{x} = \sum_{i=1}^n a_i m{b}_i, a_i \in \mathbb{Z}\}$$

$$\begin{split} & \mathsf{GL}_n(\mathbb{Z}) = \{\mathsf{M} \in \mathsf{M}_n(\mathbb{Z}) : \mathsf{det}(\mathsf{M}) = \pm 1 \} \\ & \mathsf{O}_n(\mathbb{R}) = \{\mathsf{M} \in \mathsf{M}_n(\mathbb{R}) : \mathsf{M}^\mathsf{T}\mathsf{M} = \mathsf{I}_n \} \end{split}$$

 $\text{Lattice isomorphism: } \mathcal{L}\cong \mathcal{L}' \Leftrightarrow \text{there exists } O\in O_n(\mathbb{R}): \mathcal{L}'=O\cdot \mathcal{L}.$

$$\begin{split} & \text{Classes: } \mathcal{L} \sim \mathcal{L}' \Leftrightarrow \mathcal{L}' \cong \mathcal{L}. \\ & \text{Then } \{\text{Integer Lattices}\} / \sim \text{partitions the set into equivalence classes.} \\ & \text{Write } \mathcal{L} \in [\mathcal{L}']. \end{split}$$

$$\mathcal{L} = \mathcal{L}(\mathsf{B}) = \{ \mathsf{x} : \mathsf{x} = \sum_{i=1}^n a_i m{b}_i, a_i \in \mathbb{Z} \}$$

$$\begin{split} & \mathsf{GL}_n(\mathbb{Z}) = \{\mathsf{M} \in \mathsf{M}_n(\mathbb{Z}) : \mathsf{det}(\mathsf{M}) = \pm 1 \} \\ & \mathsf{O}_n(\mathbb{R}) = \{\mathsf{M} \in \mathsf{M}_n(\mathbb{R}) : \mathsf{M}^\mathsf{T}\mathsf{M} = \mathsf{I}_n \} \end{split}$$

 $\text{Lattice isomorphism: } \mathcal{L}\cong \mathcal{L}' \Leftrightarrow \text{there exists } O\in O_n(\mathbb{R}): \mathcal{L}'=O\cdot \mathcal{L}.$

```
 \begin{array}{l} \mbox{Classes: } \mathcal{L} \sim \mathcal{L}' \Leftrightarrow \mathcal{L}' \cong \mathcal{L}. \\ \mbox{Then } \{\mbox{Integer Lattices}\}/\sim \mbox{partitions the set into equivalence classes.} \\ \mbox{Write } \mathcal{L} \in [\mathcal{L}']. \end{array}
```

 $\begin{array}{l} \mbox{Search LIP: find } U\in GL_n(\mathbb{Z}) \mbox{ and } O\in O_n(\mathbb{R}) \mbox{ with } B'=OBU. \\ \mbox{Ask for } U \mbox{ since } OB=B'\Rightarrow O=B'B^{-1}. \end{array}$

Decision LIP: decide if a pair (U, O) exists for $\mathcal{L}, \mathcal{L}'$.

Distinguish LIP: Given $\mathcal{L}_0, \mathcal{L}_1$, and $\mathcal{L} \in [\mathcal{L}_b]$ for uniform $b \in \{0, 1\}$, find b.

Lattice Isomorphism Problems

Pictorially

Quadratic Forms

Quadratic forms/ \mathbb{Z} : $f(\mathbf{x}) = \sum_{i,j}^{n} f_{ij} x_i x_j$ with $f_{ij} \in \mathbb{Z}$, $f_{ij} = f_{ji}$. Then $f(\mathbf{x}) = f_{11} x_1^2 + f_{12} x_1 x_2 + \ldots + f_{nn} x_n^2$.

Quadratic Forms

 $\begin{array}{l} \text{Quadratic forms/}\mathbb{Z}\text{: }f(\mathbf{x}) = \sum_{i,j}^n f_{ij}x_ix_j \text{ with } f_{ij} \in \mathbb{Z}\text{, } f_{ij} = f_{ji}\text{.} \end{array}$ $Then \ f(\mathbf{x}) = f_{11}x_1^2 + f_{12}x_1x_2 + \ldots + f_{nn}x_n^2.$

Alternatively: $f(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathsf{F} \mathbf{x}$, with F a symmetric matrix of f.

 $\label{eq:generalized_formula} \begin{array}{l} f \text{ and } g \text{ are equivalent over } \mathbb{Z} \text{ if } \exists \ U \in GL_n(\mathbb{Z}) : F = U^T G U. \\ \text{Then } f \sim_{\mathbb{Z}} g \text{ or } f \in [g] \text{ or } f \in \operatorname{class} g. \end{array}$

Quadratic Forms

 $\begin{array}{l} \text{Quadratic forms/}\mathbb{Z}\text{: }f(\mathbf{x}) = \sum_{i,j}^n f_{ij}x_ix_j \text{ with } f_{ij} \in \mathbb{Z}\text{, } f_{ij} = f_{ji}\text{.} \end{array}$

Alternatively: $f(\mathbf{x}) = \mathbf{x}^T F \mathbf{x}$, with F a symmetric matrix of f.

 $\label{eq:fand g} \begin{array}{l} \text{f and g are equivalent over } \mathbb{Z} \text{ if } \exists \ U \in GL_n(\mathbb{Z}): F = U^TGU. \\ \text{Then } f \sim_{\mathbb{Z}} g \text{ or } f \in [g] \text{ or } f \in \operatorname{class} g. \end{array}$

If B' = OBU: ${B'}^TB' = (OBU)^TOBU = U^TB^TBU$. B^TB is symmetric, integral, so corresponds to a quadratic form. If f a quad. form: $f(x) = x^TFx$; Cholesky \Rightarrow factor $F = B^TB$.

So we can move between quadratic forms and lattices over the integers.

Solving Lattice Isomorphism Problems

Arithmetic Invariants

Decision/Distinguish LIP is easy **if** there are efficiently computable invariants of quadratic forms which differ for forms in distinct classes (i.e. non-isomorphic lattices).

Determinants: $F = U^T G U \Rightarrow det F = det U^T det G det U = detG$.

Solving Lattice Isomorphism Problems

Arithmetic Invariants

Decision/Distinguish LIP is easy **if** there are efficiently computable invariants of quadratic forms which differ for forms in distinct classes (i.e. non-isomorphic lattices).

Determinants: $F = U^T G U \Rightarrow det F = det U^T det G det U = det G$.

So f, g share 'fingerprint': $(det, par, gcd, equivalence/{Q, R, Z_p})$.

So to instantiate LIP in cryptography, make sure forms have matching fingerprints!

Solving Lattice Isomorphism Problems

Arithmetic Invariants

Decision/Distinguish LIP is easy **if** there are efficiently computable invariants of quadratic forms which differ for forms in distinct classes (i.e. non-isomorphic lattices).

Determinants: $F = U^T G U \Rightarrow det F = det U^T det G det U = det G$.

So f, g share 'fingerprint': $(det, par, gcd, equivalence/{Q, R, Z_p})$.

So to instantiate LIP in cryptography, make sure forms have matching fingerprints!

We care about the notions of equivalence.

The Genus

Definition: let $\mathbb{Z}_{(p)} = \{ \frac{a}{b} | a \in \mathbb{Z}, b \neq 0, \gcd(b, p) = 1 \}.$

 $f\in \operatorname{gen} g \text{ iff } F=U_pGU_p^t \text{ for } U_p\in GI_n(\mathbb{Z}_{(p)}) \text{ for all } p \text{ (and over } \mathbb{R}).^1$

¹Alternatively, $U_p \in \mathbb{Z}_p$.

The Genus

Definition: let $\mathbb{Z}_{(p)} = \{ \frac{a}{b} | a \in \mathbb{Z}, b \neq 0, \gcd(b, p) = 1 \}.$

 $f\in \operatorname{gen} g \text{ iff } F=U_pGU_p^t \text{ for } U_p\in GI_n(\mathbb{Z}_{(p)}) \text{ for all } p \text{ (and over } \mathbb{R}).^1$

Each genus is a disjoint union of classes. So given f, we have

 $\operatorname{class} f \subset \operatorname{gen} f$

So given f,g, test if $\operatorname{gen} f=\operatorname{gen} g;$ if not, then $\operatorname{class} f\neq\operatorname{class} g.$

¹Alternatively, $U_p \in \mathbb{Z}_p$.

The Genus

Definition: let $\mathbb{Z}_{(p)} = \{ \frac{a}{b} | a \in \mathbb{Z}, b \neq 0, \gcd(b, p) = 1 \}.$

 $f\in \operatorname{gen} g \text{ iff } F=U_pGU_p^t \text{ for } U_p\in GI_n(\mathbb{Z}_{(p)}) \text{ for all } p \text{ (and over } \mathbb{R}).^1$

Each genus is a disjoint union of classes. So given f, we have

 $\operatorname{class} f \subset \operatorname{gen} f$

So given f, g, test if $\operatorname{gen} f = \operatorname{gen} g;$ if not, then $\operatorname{class} f \neq \operatorname{class} g.$

[BDG23] studies the genus in a cryptographic context.

Q: Are there more equivalence relations on the space of quadratic forms?

¹Alternatively, $U_p \in \mathbb{Z}_p$.

Overview

There is another equivalence relation on spaces of quadratic forms!

Overview

There is another equivalence relation on spaces of quadratic forms!

Informal description: let V/K be a vector space over a field. Then there is a homomorphism

Group of Rotations of $V \rightarrow K^{\times}/(K^{\times})^2$

The kernel is thus a proper normal subgroup of the group of rotations of V.

We can use this normal subgroup applied to V_p to define an equivalence relation on lattices in V.

Overview

There is another equivalence relation on spaces of quadratic forms!

Informal description: let V/K be a vector space over a field. Then there is a homomorphism

Group of Rotations of $V \to K^{\times}/(K^{\times})^2$

The kernel is thus a proper normal subgroup of the group of rotations of V.

We can use this normal subgroup applied to V_p to define an equivalence relation on lattices in V.

This relation gives a partition finer than the genus but coarser than the class.

Setup

Let K be a number field. Let V/K be a vector space. Lattices live on V, i.e. $\mathcal{L} \subset V.$

The Spinor Genus Setup

Let K be a number field. Let V/K be a vector space. Lattices live on V, i.e. $\mathcal{L} \subset V.$

V is equipped with a quadratic form $\phi : V \to K$ (a 'quadratic space'). $O(V) = \{\sigma : V \to V : \phi(\sigma x) = \phi(x)\}$ $O^+(V) = \{\sigma \in O(V) : \det \sigma = 1\}.$

The Spinor Genus Setup

Let K be a number field. Let V/K be a vector space. Lattices live on V, i.e. $\mathcal{L} \subset V$.

V is equipped with a quadratic form $\phi : V \to K$ (a 'quadratic space'). $O(V) = \{\sigma : V \to V : \phi(\sigma x) = \phi(x)\}$ $O^+(V) = \{\sigma \in O(V) : \det \sigma = 1\}.$

 ϕ is regular if det $\phi \neq 0$.

 ϕ is anisotropic if there is no $\mathbf{x} \in \mathbf{V} \setminus 0$ such that $\phi(\mathbf{x}) = 0$.

The Spinor Genus Setup

Let K be a number field. Let V/K be a vector space. Lattices live on V, i.e. $\mathcal{L} \subset V$.

V is equipped with a quadratic form $\phi : V \to K$ (a 'quadratic space'). $O(V) = \{\sigma : V \to V : \phi(\sigma x) = \phi(x)\}$ $O^+(V) = \{\sigma \in O(V) : \det \sigma = 1\}.$

```
\phi is regular if det \phi \neq 0.
```

 ϕ is anisotropic if there is no $\mathbf{x} \in \mathbf{V} \setminus 0$ such that $\phi(\mathbf{x}) = 0$.

 \mathcal{L} and \mathcal{L}' lie in the same class iff there exists some $\beta \in O(V)$ such that $\mathcal{L}' = \beta \mathcal{L}$.

 \mathcal{L} and \mathcal{L}' lie in the same genus iff there exist $\beta_p \in O(V_p)$ such that $\mathcal{L}' = \beta_p \mathcal{L}$ for all primes p.

The Spinor Norm

Set $\mathbf{b}(\mathbf{x}, \mathbf{y}) = \frac{1}{2} \left(\phi(\mathbf{x} + \mathbf{y}) - \phi(\mathbf{x}) - \phi(\mathbf{y}) \right).$

Reflections: an involution τ is a reflection if for all $x \in V$ there is an anisotropic vector $y \in V$ such that

$$au(\mathbf{x}) = au_{\mathbf{y}}(\mathbf{x}) := \mathbf{x} - \frac{\mathbf{b}(\mathbf{x}, \mathbf{y})}{\phi(\mathbf{y})}\mathbf{y}$$

The Spinor Norm

Set $\mathbf{b}(\mathbf{x}, \mathbf{y}) = \frac{1}{2} \left(\phi(\mathbf{x} + \mathbf{y}) - \phi(\mathbf{x}) - \phi(\mathbf{y}) \right).$

Reflections: an involution τ is a reflection if for all $x \in V$ there is an anisotropic vector $y \in V$ such that

$$\tau(\mathbf{x}) = \tau_{\mathbf{y}}(\mathbf{x}) := \mathbf{x} - \frac{\mathbf{b}(\mathbf{x}, \mathbf{y})}{\phi(\mathbf{y})}\mathbf{y}$$

Theorem (Cartan-Dieudonné)

If V, ϕ is an n-d regular quadratic space, every element of O(V) is a product of at most n reflections.

The Spinor Norm

Set $\mathbf{b}(\mathbf{x}, \mathbf{y}) = \frac{1}{2} \left(\phi(\mathbf{x} + \mathbf{y}) - \phi(\mathbf{x}) - \phi(\mathbf{y}) \right).$

Reflections: an involution τ is a reflection if for all $x \in V$ there is an anisotropic vector $y \in V$ such that

$$\tau(\mathbf{x}) = \tau_{\mathbf{y}}(\mathbf{x}) := \mathbf{x} - \frac{\mathbf{b}(\mathbf{x}, \mathbf{y})}{\phi(\mathbf{y})}\mathbf{y}$$

Theorem (Cartan-Dieudonné)

If V, ϕ is an n-d regular quadratic space, every element of O(V) is a product of at most n reflections.

Spinor Norm: Let $\sigma \in O^+(V)$. Then by Cartan-Dieudonné, $\sigma = \prod_i \tau_{y_i}$. The map

$$\theta: \mathbf{O}^+(\mathbf{V}) \to \mathbf{K}^{\times}/(\mathbf{K}^{\times})^2, \ \sigma \mapsto \prod_{\mathbf{i}} \phi(\mathbf{y}_{\mathbf{i}})$$

is a multiplicative homomorphism called the spinor norm. Let $\Theta(V) := \ker \theta \trianglelefteq O^+(V)$.

The Spinor Norm

Set $\mathbf{b}(\mathbf{x}, \mathbf{y}) = \frac{1}{2} \left(\phi(\mathbf{x} + \mathbf{y}) - \phi(\mathbf{x}) - \phi(\mathbf{y}) \right).$

Reflections: an involution τ is a reflection if for all $x \in V$ there is an anisotropic vector $y \in V$ such that

$$\tau(\mathbf{x}) = \tau_{\mathbf{y}}(\mathbf{x}) := \mathbf{x} - \frac{\mathbf{b}(\mathbf{x}, \mathbf{y})}{\phi(\mathbf{y})}\mathbf{y}$$

Theorem (Cartan-Dieudonné)

If V, ϕ is an n-d regular quadratic space, every element of O(V) is a product of at most n reflections.

Spinor Norm: Let $\sigma \in O^+(V)$. Then by Cartan-Dieudonné, $\sigma = \prod_i \tau_{y_i}$. The map

$$\theta: \mathbf{O}^+(\mathbf{V}) \to \mathbf{K}^{\times}/(\mathbf{K}^{\times})^2, \ \sigma \mapsto \prod_{\mathbf{i}} \phi(\mathbf{y}_{\mathbf{i}})$$

is a multiplicative homomorphism called the spinor norm. Let $\Theta(V) := \ker \theta \trianglelefteq O^+(V)$. We will apply this to define an equivalence relation using localisations V_{p_i} like the genus.

Equivalence using $\ker \theta = \Theta(V_p) \trianglelefteq O^+(V_p)$

Definition: \mathcal{L} and \mathcal{L}' satisfy $S(\mathcal{L}, \mathcal{L}')$ if there exist $\gamma \in O^+(V)$ and $\delta_p \in \Theta(V_p)$: $\mathcal{L}' = \gamma \delta_p \mathcal{L} \forall p$.

This relation is an equivalence relation intermediate to the class and genus.

Equivalence using $\ker \theta = \Theta(V_p) \trianglelefteq O^+(V_p)$

Definition: \mathcal{L} and \mathcal{L}' satisfy $S(\mathcal{L}, \mathcal{L}')$ if there exist $\gamma \in O^+(V)$ and $\delta_p \in \Theta(V_p)$: $\mathcal{L}' = \gamma \delta_p \mathcal{L} \forall p$.

This relation is an equivalence relation intermediate to the class and genus.

Transitivity: suppose $\mathcal{L}, \mathcal{L}', \mathcal{L}''$ satisfy $S(\mathcal{L}, \mathcal{L}')$ and $S(\mathcal{L}', \mathcal{L}'')$. Then there are $\gamma_1, \gamma_2 \in O^+(V)$ and $\beta_{1p}, \beta_{2p} \in \Theta(V_p)$ such that $\mathcal{L} = \gamma_1 \beta_{1p} \mathcal{L}'$ and $\mathcal{L}' = \gamma_2 \beta_{2p} \mathcal{L}''$ for each prime p. Combining these,

$$\mathcal{L} = \gamma_1 \beta_{1\mathbf{p}} \gamma_2 \beta_{2\mathbf{p}} \mathcal{L}'' = (\gamma_1 \gamma_2) (\gamma_2^{-1} \beta_{1\mathbf{p}} \gamma_2 \beta_{2\mathbf{p}}) \mathcal{L}''$$

for each prime p. Since $\gamma_1\gamma_2 \in O^+(V)$ and $\gamma_2^{-1}\beta_{1p}\gamma_2\beta_{2p} \in \Theta(V_p)$, $S(\mathcal{L}, \mathcal{L}'')$ holds.

The Spinor Genus

Equivalence using $\ker \theta = \Theta(V_p) \trianglelefteq O^+(V_p)$

Definition: \mathcal{L} and \mathcal{L}' satisfy $S(\mathcal{L}, \mathcal{L}')$ if there exist $\gamma \in O^+(V)$ and $\delta_p \in \Theta(V_p)$: $\mathcal{L}' = \gamma \delta_p \mathcal{L} \forall p$.

This relation is an equivalence relation intermediate to the class and genus.

Transitivity: suppose $\mathcal{L}, \mathcal{L}', \mathcal{L}''$ satisfy $S(\mathcal{L}, \mathcal{L}')$ and $S(\mathcal{L}', \mathcal{L}'')$. Then there are $\gamma_1, \gamma_2 \in O^+(V)$ and $\beta_{1p}, \beta_{2p} \in \Theta(V_p)$ such that $\mathcal{L} = \gamma_1 \beta_{1p} \mathcal{L}'$ and $\mathcal{L}' = \gamma_2 \beta_{2p} \mathcal{L}''$ for each prime p. Combining these,

$$\mathcal{L} = \gamma_1 \beta_{1\mathbf{p}} \gamma_2 \beta_{2\mathbf{p}} \mathcal{L}'' = (\gamma_1 \gamma_2) (\gamma_2^{-1} \beta_{1\mathbf{p}} \gamma_2 \beta_{2\mathbf{p}}) \mathcal{L}''$$

for each prime p. Since $\gamma_1\gamma_2 \in O^+(V)$ and $\gamma_2^{-1}\beta_{1p}\gamma_2\beta_{2p} \in \Theta(V_p)$, $S(\mathcal{L}, \mathcal{L}'')$ holds.

Spinor Genera: the equivalence classes {Lattices on V}/S. If $S(\mathcal{L}, \mathcal{L}')$ holds, write $\mathcal{L} \in \operatorname{spn}(\mathcal{L}')$.

The Spinor Genus

Equivalence using $\ker \theta = \Theta(V_p) \trianglelefteq O^+(V_p)$

Definition: \mathcal{L} and \mathcal{L}' satisfy $S(\mathcal{L}, \mathcal{L}')$ if there exist $\gamma \in O^+(V)$ and $\delta_p \in \Theta(V_p)$: $\mathcal{L}' = \gamma \delta_p \mathcal{L} \forall p$.

This relation is an equivalence relation intermediate to the class and genus.

Transitivity: suppose $\mathcal{L}, \mathcal{L}', \mathcal{L}''$ satisfy $S(\mathcal{L}, \mathcal{L}')$ and $S(\mathcal{L}', \mathcal{L}'')$. Then there are $\gamma_1, \gamma_2 \in O^+(V)$ and $\beta_{1p}, \beta_{2p} \in \Theta(V_p)$ such that $\mathcal{L} = \gamma_1 \beta_{1p} \mathcal{L}'$ and $\mathcal{L}' = \gamma_2 \beta_{2p} \mathcal{L}''$ for each prime p. Combining these,

$$\mathcal{L} = \gamma_1 \beta_{1\mathbf{p}} \gamma_2 \beta_{2\mathbf{p}} \mathcal{L}'' = (\gamma_1 \gamma_2) (\gamma_2^{-1} \beta_{1\mathbf{p}} \gamma_2 \beta_{2\mathbf{p}}) \mathcal{L}''$$

for each prime p. Since $\gamma_1\gamma_2 \in O^+(V)$ and $\gamma_2^{-1}\beta_{1p}\gamma_2\beta_{2p} \in \Theta(V_p)$, $S(\mathcal{L}, \mathcal{L}'')$ holds.

Spinor Genera: the equivalence classes {Lattices on V}/S. If $S(\mathcal{L}, \mathcal{L}')$ holds, write $\mathcal{L} \in \operatorname{spn}(\mathcal{L}')$. Lemma (Cassels)

- 1. The number of spinor genera in any genus is finite and a power of 2.
- 2. For all $n \ge 3$ there exist lattices whose genus contains multiple spinor genera.
- 3. If (V, ϕ) has dimension $n \ge 3$, $\mathcal{L} \subset V$, ϕ takes integral values on \mathcal{L} , and $\operatorname{gen}(\mathcal{L})$ contains multiple spinor genera, then either there exists p > 2: $p^{\frac{n(n-1)}{2}} |\det(\mathcal{L})$, or $2^{n(n-3)/2 + \lfloor (n+1)/2 \rfloor} |\det(\mathcal{L})$.

The Spinor Genus: Binary Case over the Integers

Consider primitive integral binary quadratic forms f, g over \mathbb{Z} .

EstesPall73, Theorem: If f and g are in the same genus, f and g are in the same spinor genus if and only if $f = gk^4$ for some k, under Gauss composition.

Equivalently for lattices, \mathcal{L} and \mathcal{L}' are in the same spinor genus iff $\mathcal{L}'^{-1}\mathcal{L} \in \mathcal{C}(\mathcal{O}_{l}(\mathcal{L}'))^{4}$.

The Spinor Genus: Binary Case over the Integers

Consider primitive integral binary quadratic forms f, g over \mathbb{Z} .

EstesPall73, Theorem: If f and g are in the same genus, f and g are in the same spinor genus if and only if $f = gk^4$ for some k, under Gauss composition.

Equivalently for lattices, \mathcal{L} and \mathcal{L}' are in the same spinor genus iff $\mathcal{L}'^{-1}\mathcal{L} \in \mathcal{C}(\mathcal{O}_{l}(\mathcal{L}'))^{4}$.

Q: can we extend this to forms over number fields? And can it be computed efficiently?

The Spinor Genus: Binary Case over the Integers

Consider primitive integral binary quadratic forms f, g over \mathbb{Z} .

EstesPall73, Theorem: If f and g are in the same genus, f and g are in the same spinor genus if and only if $f = gk^4$ for some k, under Gauss composition.

Equivalently for lattices, \mathcal{L} and \mathcal{L}' are in the same spinor genus iff $\mathcal{L}'^{-1}\mathcal{L} \in \mathcal{C}(\mathcal{O}_{I}(\mathcal{L}'))^{4}$.

Q: can we extend this to forms over number fields? And can it be computed efficiently?

Theorem (BiasseSong16, Class Group Quantum Computation)

Under GRH there is a quantum algorithm for computing the class group of an order \mathcal{O} in a number field K which runs in polynomial time in $n = \deg(K)$ and $\log(|\Delta|)$, where Δ is the discriminant of \mathcal{O} .

Ingredients for a Quantum Algorithm

f, g anisotropic binary quadratic forms over $\mathcal{O}_F \Rightarrow f$, g correspond to lattices of rank 2 over \mathcal{O}_F in V. V is a regular binary quadratic space over a number field F.

Fix a basis such that $V \cong F(\sqrt{-d})$ for some d. Write \mathcal{O}_V for the ring of integers of $F(\sqrt{-d})$.

Ingredients for a Quantum Algorithm

f, g anisotropic binary quadratic forms over $\mathcal{O}_F \Rightarrow f$, g correspond to lattices of rank 2 over \mathcal{O}_F in V. V is a regular binary quadratic space over a number field F.

Fix a basis such that $V \cong F(\sqrt{-d})$ for some d. Write \mathcal{O}_V for the ring of integers of $F(\sqrt{-d})$.

Recall the left order is $\mathcal{O}_{I}(\mathcal{L}_{2}) := \{x \in V : x\mathcal{L}_{2} \subset \mathcal{L}_{2}\} \subset V$, and a lattice is a left ideal in its left order.

Ingredients for a Quantum Algorithm

f, g anisotropic binary quadratic forms over $\mathcal{O}_F \Rightarrow f$, g correspond to lattices of rank 2 over \mathcal{O}_F in V. V is a regular binary quadratic space over a number field F. Fix a basis such that $V \cong F(\sqrt{-d})$ for some d. Write \mathcal{O}_V for the ring of integers of $F(\sqrt{-d})$.

Recall the left order is $\mathcal{O}_{I}(\mathcal{L}_{2}) := \{x \in V : x\mathcal{L}_{2} \subset \mathcal{L}_{2}\} \subset V$, and a lattice is a left ideal in its left order.

Lemma (EarnestEstes80)

A necessary and sufficient condition that \mathcal{L}_1 be in $\operatorname{spn}(\mathcal{L}_2)$ is that $\mathcal{L}_1\mathcal{L}_2^{-1}$ be in $\operatorname{spn}(\mathcal{O}_{\mathsf{I}}(\mathcal{L}_2))$.

Ingredients for a Quantum Algorithm

f, g anisotropic binary quadratic forms over $\mathcal{O}_F \Rightarrow f$, g correspond to lattices of rank 2 over \mathcal{O}_F in V. V is a regular binary quadratic space over a number field F. Fix a basis such that $V \cong F(\sqrt{-d})$ for some d. Write \mathcal{O}_V for the ring of integers of $F(\sqrt{-d})$.

 $\label{eq:Recall the left order is $\mathcal{O}_l(\mathcal{L}_2):=\{x\in V: x\mathcal{L}_2\subset \mathcal{L}_2\}\subset V$, and a lattice is a left ideal in its left order.}$

Lemma (EarnestEstes80)

A necessary and sufficient condition that \mathcal{L}_1 be in $\operatorname{spn}(\mathcal{L}_2)$ is that $\mathcal{L}_1\mathcal{L}_2^{-1}$ be in $\operatorname{spn}(\mathcal{O}_{\mathsf{I}}(\mathcal{L}_2))$.

 $\begin{array}{l} \mbox{Set } \mathcal{H}(\mathcal{O}) = \operatorname{gen}(\mathcal{O})/\operatorname{spn}(\mathcal{O}). \mbox{ For an } \mathcal{O}_{\mathsf{F}}\mbox{-order } \mathcal{O} \subset \mathsf{V}, \mbox{ let } \mathcal{I}(\mathcal{O}) = \mbox{group of invertible frac. } \mathcal{O}\mbox{-ideals, and } \mathcal{P}(\mathcal{O}) = \mbox{subgroup of principal invertible frac. ideals. Set } \mathcal{C}(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}). \end{array}$

Ingredients for a Quantum Algorithm

f, g anisotropic binary quadratic forms over $\mathcal{O}_F \Rightarrow f$, g correspond to lattices of rank 2 over \mathcal{O}_F in V. V is a regular binary quadratic space over a number field F. Fix a basis such that $V \cong F(\sqrt{-d})$ for some d. Write \mathcal{O}_V for the ring of integers of $F(\sqrt{-d})$.

 $\label{eq:Recall the left order is $\mathcal{O}_l(\mathcal{L}_2):=\{x\in V: x\mathcal{L}_2\subset \mathcal{L}_2\}\subset V$, and a lattice is a left ideal in its left order.}$

Lemma (EarnestEstes80)

A necessary and sufficient condition that \mathcal{L}_1 be in $\operatorname{spn}(\mathcal{L}_2)$ is that $\mathcal{L}_1\mathcal{L}_2^{-1}$ be in $\operatorname{spn}(\mathcal{O}_{\mathsf{I}}(\mathcal{L}_2))$.

 $\begin{array}{l} \mbox{Set } \mathcal{H}(\mathcal{O}) = \operatorname{gen}(\mathcal{O})/\operatorname{spn}(\mathcal{O}). \mbox{ For an } \mathcal{O}_{\mathsf{F}}\mbox{-order } \mathcal{O} \subset \mathsf{V}, \mbox{ let } \mathcal{I}(\mathcal{O}) = \mbox{group of invertible frac. } \mathcal{O}\mbox{-ideals, and } \mathcal{P}(\mathcal{O}) = \mbox{subgroup of principal invertible frac. ideals. Set } \mathcal{C}(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}). \end{array}$

Lemma (EarnestEstes81)

Let F be a number field and \mathcal{O}_F a PID. Let \mathcal{O} be a degree 2 order over \mathcal{O}_F . Then $\mathcal{H}(\mathcal{O}) \cong \mathcal{C}(\mathcal{O})^2 / \mathcal{C}(\mathcal{O})^4$.

Ingredients for a Quantum Algorithm

f, g anisotropic binary quadratic forms over $\mathcal{O}_F \Rightarrow f$, g correspond to lattices of rank 2 over \mathcal{O}_F in V. V is a regular binary quadratic space over a number field F. Fix a basis such that $V \cong F(\sqrt{-d})$ for some d. Write \mathcal{O}_V for the ring of integers of $F(\sqrt{-d})$.

 $\label{eq:recall} \text{Recall the left order is } \mathcal{O}_l(\mathcal{L}_2) := \{ \textbf{x} \in \textbf{V}: \textbf{x}\mathcal{L}_2 \subset \mathcal{L}_2 \} \subset \textbf{V} \text{, and a lattice is a left ideal in its left order.}$

Lemma (EarnestEstes80)

A necessary and sufficient condition that \mathcal{L}_1 be in $\operatorname{spn}(\mathcal{L}_2)$ is that $\mathcal{L}_1\mathcal{L}_2^{-1}$ be in $\operatorname{spn}(\mathcal{O}_{\mathsf{I}}(\mathcal{L}_2))$.

 $\begin{array}{l} \mbox{Set } \mathcal{H}(\mathcal{O}) = \operatorname{gen}(\mathcal{O})/\operatorname{spn}(\mathcal{O}). \mbox{ For an } \mathcal{O}_{\mathsf{F}}\mbox{-order } \mathcal{O} \subset \mathsf{V}, \mbox{ let } \mathcal{I}(\mathcal{O}) = \mbox{group of invertible frac. } \mathcal{O}\mbox{-ideals, and } \mathcal{P}(\mathcal{O}) = \mbox{subgroup of principal invertible frac. ideals. Set } \mathcal{C}(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}). \end{array}$

Lemma (EarnestEstes81)

Let F be a number field and \mathcal{O}_F a PID. Let \mathcal{O} be a degree 2 order over \mathcal{O}_F . Then $\mathcal{H}(\mathcal{O}) \cong \mathcal{C}(\mathcal{O})^2 / \mathcal{C}(\mathcal{O})^4$.

So $\operatorname{spn}(\mathcal{O})/\operatorname{cls}^+(\mathcal{O}) \cong \mathcal{C}(\mathcal{O})^4$, and lattices $\mathcal{L}_1, \mathcal{L}_2 \subset V$ in the same genus are in the same proper spinor genus iff $\mathcal{L}_1 \mathcal{L}_2^{-1}$ is a quartic residue in the class group of the left order of \mathcal{L}_2 in V.

Theorem

Let \mathcal{O}_F be a PID. Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus. Let V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g . Then $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generates an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in $\mathcal{O}_V \Rightarrow$ a quantum poly. time algorithm to decide if $f \in \operatorname{spn}(g)$.

Theorem

Let \mathcal{O}_F be a PID. Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus. Let V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g . Then $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generates an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in $\mathcal{O}_V \Rightarrow$ a quantum poly. time algorithm to decide if $f \in \operatorname{spn}(g)$.

Proof, simple case: $\mathcal{O}_{\mathsf{l}}(\mathcal{L}_{g})$ is a maximal order.

1. f, g are anisotropic \Rightarrow V is isomorphic to a quadratic field extension of F. Compute a basis of $\mathcal{O}_{l}(\mathcal{L}_{g})$ and so compute the class group, obtaining a generating set of prime ideals for $\mathcal{C}(\mathcal{O}_{l}(\mathcal{L}_{g}))$ in quantum poly. time + their defining relations.

Theorem

Let \mathcal{O}_F be a PID. Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus. Let V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g . Then $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generates an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in $\mathcal{O}_V \Rightarrow$ a quantum poly. time algorithm to decide if $f \in \operatorname{spn}(g)$.

Proof, simple case: $\mathcal{O}_{\mathsf{l}}(\mathcal{L}_{g})$ is a maximal order.

1. f, g are anisotropic \Rightarrow V is isomorphic to a quadratic field extension of F. Compute a basis of $\mathcal{O}_{l}(\mathcal{L}_{g})$ and so compute the class group, obtaining a generating set of prime ideals for $\mathcal{C}(\mathcal{O}_{l}(\mathcal{L}_{g}))$ in quantum poly. time + their defining relations.

2. The relations form a lattice Λ , and $\mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g})) \cong \mathbb{Z}^{n}/\Lambda$ via $\mathcal{I} \mapsto (e_{1},...,e_{n}) + \Lambda$ for $\mathcal{I} = \prod_{i=1}^{n} \mathfrak{p}_{i}^{e_{i}}$.

Theorem

Let \mathcal{O}_F be a PID. Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus. Let V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g . Then $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generates an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in $\mathcal{O}_V \Rightarrow$ a quantum poly. time algorithm to decide if $f \in \operatorname{spn}(g)$.

Proof, simple case: $\mathcal{O}_{\mathsf{I}}(\mathcal{L}_{g})$ is a maximal order.

1. f, g are anisotropic \Rightarrow V is isomorphic to a quadratic field extension of F. Compute a basis of $\mathcal{O}_{l}(\mathcal{L}_{g})$ and so compute the class group, obtaining a generating set of prime ideals for $\mathcal{C}(\mathcal{O}_{l}(\mathcal{L}_{g}))$ in quantum poly. time + their defining relations.

2. The relations form a lattice Λ , and $\mathcal{C}(\mathcal{O}_{l}(\mathcal{L}_{g})) \cong \mathbb{Z}^{n}/\Lambda$ via $\mathcal{I} \mapsto (e_{1}, ..., e_{n}) + \Lambda$ for $\mathcal{I} = \prod_{i=1}^{n} \mathfrak{p}_{i}^{e_{i}}$. 3. \mathbb{Z}^{n}/Λ is an abelian group $\Rightarrow \mathcal{C}(\mathcal{O}_{l}(\mathcal{L}_{g})) \cong \bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$ for some integers d_{i} , where the factors d_{i} are obtained by the quantum algorithm. We want the image of $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ in $\bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$.

Theorem

Let \mathcal{O}_F be a PID. Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus. Let V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g . Then $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generates an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in $\mathcal{O}_V \Rightarrow$ a quantum poly. time algorithm to decide if $f \in \operatorname{spn}(g)$.

Proof, simple case: $\mathcal{O}_{\mathsf{I}}(\mathcal{L}_{g})$ is a maximal order.

1. f, g are anisotropic \Rightarrow V is isomorphic to a quadratic field extension of F. Compute a basis of $\mathcal{O}_{I}(\mathcal{L}_{g})$ and so compute the class group, obtaining a generating set of prime ideals for $\mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g}))$ in quantum poly. time + their defining relations.

2. The relations form a lattice Λ , and $\mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g})) \cong \mathbb{Z}^{n}/\Lambda$ via $\mathcal{I} \mapsto (e_{1}, ..., e_{n}) + \Lambda$ for $\mathcal{I} = \prod_{i=1}^{n} \mathfrak{p}_{i}^{e_{i}}$. 3. \mathbb{Z}^{n}/Λ is an abelian group $\Rightarrow \mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g})) \cong \bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$ for some integers d_{i} , where the factors d_{i} are obtained by the quantum algorithm. We want the image of $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ in $\bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$.

4. $\mathcal{O}_{l}(\mathcal{L}_{g})$ a maximal order \Rightarrow can write $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ as a product of primes in our generating set, reduced mod the relations between the prime ideals. Map $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1} \mapsto (f_{1}, ..., f_{n}) + \Lambda$ for some exponents f_{i} .

Theorem

Let \mathcal{O}_F be a PID. Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus. Let V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g . Then $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generates an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in $\mathcal{O}_V \Rightarrow$ a quantum poly. time algorithm to decide if $f \in \operatorname{spn}(g)$.

Proof, simple case: $\mathcal{O}_{\mathsf{I}}(\mathcal{L}_{g})$ is a maximal order.

1. f, g are anisotropic \Rightarrow V is isomorphic to a quadratic field extension of F. Compute a basis of $\mathcal{O}_{I}(\mathcal{L}_{g})$ and so compute the class group, obtaining a generating set of prime ideals for $\mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g}))$ in quantum poly. time + their defining relations.

2. The relations form a lattice Λ , and $\mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g})) \cong \mathbb{Z}^{n}/\Lambda$ via $\mathcal{I} \mapsto (e_{1}, ..., e_{n}) + \Lambda$ for $\mathcal{I} = \prod_{i=1}^{n} \mathfrak{p}_{i}^{e_{i}}$. 3. \mathbb{Z}^{n}/Λ is an abelian group $\Rightarrow \mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g})) \cong \bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$ for some integers d_{i} , where the factors d_{i} are obtained by the quantum algorithm. We want the image of $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ in $\bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$.

4. $\mathcal{O}_{l}(\mathcal{L}_{g})$ a maximal order \Rightarrow can write $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ as a product of primes in our generating set, reduced mod the relations between the prime ideals. Map $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1} \mapsto (f_{1}, ..., f_{n}) + \Lambda$ for some exponents f_{i} . 5. The algorithm also outputs vectors \overline{g}_{i} of order d_{i} which form a basis of $\mathbb{Z}^{n}/\Lambda \cong \bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$ [Cohen].

Theorem

Let \mathcal{O}_F be a PID. Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus. Let V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g . Then $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generates an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in $\mathcal{O}_V \Rightarrow$ a quantum poly. time algorithm to decide if $f \in \operatorname{spn}(g)$.

Proof, simple case: $\mathcal{O}_{\mathsf{I}}(\mathcal{L}_{g})$ is a maximal order.

1. f, g are anisotropic \Rightarrow V is isomorphic to a quadratic field extension of F. Compute a basis of $\mathcal{O}_{l}(\mathcal{L}_{g})$ and so compute the class group, obtaining a generating set of prime ideals for $\mathcal{C}(\mathcal{O}_{l}(\mathcal{L}_{g}))$ in quantum poly. time + their defining relations.

2. The relations form a lattice Λ , and $\mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g})) \cong \mathbb{Z}^{n}/\Lambda$ via $\mathcal{I} \mapsto (e_{1}, ..., e_{n}) + \Lambda$ for $\mathcal{I} = \prod_{i=1}^{n} \mathfrak{p}_{i}^{e_{i}}$. 3. \mathbb{Z}^{n}/Λ is an abelian group $\Rightarrow \mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g})) \cong \bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$ for some integers d_{i} , where the factors d_{i} are obtained by the quantum algorithm. We want the image of $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ in $\bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$.

4. $\mathcal{O}_{l}(\mathcal{L}_{g})$ a maximal order \Rightarrow can write $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ as a product of primes in our generating set, reduced mod the relations between the prime ideals. Map $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1} \mapsto (f_{1}, ..., f_{n}) + \Lambda$ for some exponents f_{i} . 5. The algorithm also outputs vectors \overline{g}_{i} of order d_{i} which form a basis of $\mathbb{Z}^{n}/\Lambda \cong \bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$ [Cohen]. 6. To test for quartic residuosity: write $(f_{1}, ..., f_{n}) = \sum_{i} \lambda_{i} \overline{g}_{i}$ for some $\lambda_{i} \in \mathbb{Z}/d_{i}\mathbb{Z}$, i = 1, ..., n. As a matrix-vector equation: $(f_{1}, ..., f_{n})^{T} = G \cdot \lambda$. Compute $G^{-1} \cdot (f_{1}, ..., f_{n})^{T} = \lambda$; if $\lambda_{i} = 4\gamma_{i} \mod d_{i}$ for some $\gamma_{i} \in \mathbb{Z}/d_{i}\mathbb{Z}$ and all i = 1, ..., n, conclude that $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ is a quartic residue in $\mathcal{C}(\mathcal{O}_{l}(\mathcal{L}_{g}))$.

Theorem

Let \mathcal{O}_F be a PID. Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus. Let V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g . Then $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generates an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in $\mathcal{O}_V \Rightarrow$ a quantum poly. time algorithm to decide if $f \in \operatorname{spn}(g)$.

Proof, simple case: $\mathcal{O}_{\mathsf{I}}(\mathcal{L}_{g})$ is a maximal order.

1. f, g are anisotropic \Rightarrow V is isomorphic to a quadratic field extension of F. Compute a basis of $\mathcal{O}_{l}(\mathcal{L}_{g})$ and so compute the class group, obtaining a generating set of prime ideals for $\mathcal{C}(\mathcal{O}_{l}(\mathcal{L}_{g}))$ in quantum poly. time + their defining relations.

2. The relations form a lattice Λ , and $\mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g})) \cong \mathbb{Z}^{n}/\Lambda$ via $\mathcal{I} \mapsto (e_{1}, ..., e_{n}) + \Lambda$ for $\mathcal{I} = \prod_{i=1}^{n} \mathfrak{p}_{i}^{e_{i}}$. 3. \mathbb{Z}^{n}/Λ is an abelian group $\Rightarrow \mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g})) \cong \bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$ for some integers d_{i} , where the factors d_{i} are obtained by the quantum algorithm. We want the image of $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ in $\bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$.

4. $\mathcal{O}_{l}(\mathcal{L}_{g})$ a maximal order \Rightarrow can write $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ as a product of primes in our generating set, reduced mod the relations between the prime ideals. Map $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1} \mapsto (f_{1}, ..., f_{n}) + \Lambda$ for some exponents f_{i} . 5. The algorithm also outputs vectors \overline{g}_{i} of order d_{i} which form a basis of $\mathbb{Z}^{n}/\Lambda \cong \bigoplus_{i} \mathbb{Z}/d_{i}\mathbb{Z}$ [Cohen]. 6. To test for quartic residuosity: write $(f_{1}, ..., f_{n}) = \sum_{i} \lambda_{i} \overline{g}_{i}$ for some $\lambda_{i} \in \mathbb{Z}/d_{i}\mathbb{Z}$, i = 1, ..., n. As a matrix-vector equation: $(f_{1}, ..., f_{n})^{T} = G \cdot \lambda$. Compute $G^{-1} \cdot (f_{1}, ..., f_{n})^{T} = \lambda$; if $\lambda_{i} = 4\gamma_{i} \mod d_{i}$ for some $\gamma_{i} \in \mathbb{Z}/d_{i}\mathbb{Z}$ and all i = 1, ..., n, conclude that $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ is a quartic residue in $\mathcal{C}(\mathcal{O}_{l}(\mathcal{L}_{g}))$. 7. If $\mathcal{L}_{f} \cdot \mathcal{L}_{g}^{-1}$ is a quartic residue in $\mathcal{C}(\mathcal{O}_{l}(\mathcal{L}_{g}))$, then $f \in \operatorname{spn}(g)$; otherwise, $f \notin \operatorname{spn}(g)$.

Consequences

Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus; V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g ; and $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generate an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in \mathcal{O}_V .

Consequences

Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus; V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g ; and $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generate an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in \mathcal{O}_V .

Corollary

Suppose $gcd(|\mathcal{C}(\mathcal{O}_{\mathsf{I}}(\mathcal{L}_{\mathsf{g}}))|, 2) = 1$. Then $\mathsf{f} \in spn(\mathsf{g})$.

Consequences

Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus; V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g ; and $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generate an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in \mathcal{O}_V .

Corollary

Suppose $gcd(|\mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g}))|, 2) = 1$. Then $f \in spn(g)$.

Corollary

Let F be the maximal totally real subfield of $\mathbb{Q}(\zeta_n)$ and $n \in S := \{4, 8, 16, 32, 64, 128, 256\}$ (and assuming GRH, $n \in S \cup \{512\}$). Then there is a quantum poly. time algorithm to decide if $f \in \operatorname{spn}(g)$.

Consequences

Let f, g be anisotropic integral binary quadratic forms over \mathcal{O}_F in the same genus; V be the quadratic space containing \mathcal{L}_f , \mathcal{L}_g ; and $\mathcal{L}_f \cdot \mathcal{L}_g^{-1}$ generate an ideal coprime to the conductor of $\mathcal{O}_I(\mathcal{L}_g)$ in \mathcal{O}_V .

Corollary

Suppose $gcd(|\mathcal{C}(\mathcal{O}_{I}(\mathcal{L}_{g}))|, 2) = 1$. Then $f \in spn(g)$.

Corollary

Let F be the maximal totally real subfield of $\mathbb{Q}(\zeta_n)$ and $n \in S := \{4, 8, 16, 32, 64, 128, 256\}$ (and assuming GRH, $n \in S \cup \{512\}$). Then there is a quantum poly. time algorithm to decide if $f \in \operatorname{spn}(g)$.

Corollary

Let $F=\mathbb{Q}(\zeta_n)$ be a cyclotomic field and

 $\mathsf{n} \in \{1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84\}$

Then there is a quantum poly. time algorithm to decide if $f\in {\rm spn}(g).$

IMPERIAL

Thank you. Questions?

On the Spinor Genus and the Distinguishing Lattice Isomorphism Problem 13/12/2024