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» Observation: ‘random’ lattices are good packings
» Gaussian Heuristic: A1(L) = %Mk([,)

» Seen as the hardest instances for lattice problems

Good packing

1 [
: e :

1
on the average ! i
[}

Seems harder?
Actually easier!

» Random? (projection of) invariant Haar measure over space of all
lattices with fixed dimension and determinant.
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LIP and the genus of a lattice
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Lattice Isomorphism Problem (LIP)

B,

/.

0

LIP: given isomorphic Lj, L,

L1 = E(Bl) compute O € O,(R) s.t. L2 =0-L;.

(unique up to Aut(L):={0 € O,(R): 0-L =L} 5/ 14
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- ===

» Many other works using LIP appeared recently



Distinghuish LIP
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E Let L1, L7 be two non-isomorphic lattices and let b < {1,2} uniform.
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{Definition: distinguish LIP (A—LIP)} ............................. .

E Let L1, L7 be two non-isomorphic lattices and let b < {1,2} uniform.
' Given L € [Lp], recover b.

,[Usual security assumption:} ...................................... S

Given:
1. some remarkable lattice £1
2. an auxiliary lattice £ with certain (good) geometric properties

Then: cryptographic scheme is secure if A-LIP on L3, L, is hard.

Goal: find an auxiliary lattice with the right geometric properties

Example: good packing, smoothing, covering..
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= auxilary lattice must have same (polytime-computable) invariants /
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» We consider integral lattices: (x,y) € Z for all x,y € L

-|Genus: pe=====cesceccccceceseesessssseccesesssssssseseesessea———a- N

Two integral lattices L1, £y C R"” are in the same genus if

L1 R7Zp = L2 Xz Zp for all primes p,

where Z, are the p-adic integers.

Some facts:
» The genus Gen(L) contains a finite number of isomorphism classes
» Genus equivalence is efficiently computable

» Covers all the other known efficiently computable invariantsx*
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Random distribution over a genus

[Theorem Smith-Minkowski-Siegel mass formula (Siegel, 1935)] ------ -

Any genus G contains a finite number of isom. classes and its mass

: 1 ]
: M@= X L@ i
] [£]€g .
E is efficiently computable. E
» Grows fast: M(G) > n") as n — oo
I[Deflnltlon distribution over Genusj ------------------------------ ~
E Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution E
i such that each class [£] € G is sampled with probability I\M;l((é)) 1

» Question: do these behave like random lattices?



,[Theorem (good packing): Minkowski-Hlawka theorem for fixed genus]--~

E Let G be any genus of dimension n > 6 such that rk]:p(g) > 6 for all
i primes p. Let C = %8; =~ 0.57. Then there exists a £ € G with

2

M(£)? > [(C - det(£)/ vol(B]))*"| = (5 MK(£))
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E Let G be any genus of dimension n > 6 such that rk]:p(g) > 6 for all
i primes p. Let C = %8; =~ 0.57. Then there exists a £ € G with

2

M(£)? > [(C - det(£)/ vol(B]))*"| = (5 MK(£))

» Essentially matches packing density of a random lattice.
» Similar result for simultaneous good primal and dual packing.

» For a constant 0 < ¢ <1 we get that

P [A1(£)? > [e? - (C - det(£)/ vol(B])*"|] > 1 — ¢".

» Similar result for smoothing parameter and covering radius.
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The tool: Siegel-Weil mass formula

,[Theorem: Siegel-Weil mass formula - average point counting] -------- .

For any genus G and integer m > 0, the expectation

N,, := E : 2:
= g X € £l = m)l,

is efficiently computable.

__________________________________________________________________

» Gives us the average-case counting we need!

,[Theorem: Upper bound] ............................................

Let G be any genus such that rkr,(G) > 6 for all primes p. Then

_ %)

e 74?(:%)nvol(li’i’) - m"?71/ det(G) for all m > 0.

S m e E—-———-

» Sufficient to prove main results with MH-like argument
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