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Lattices

Lattice

R-linearly independent b1, . . . , bn ∈ Rn

L(B) := {
∑

i xi bi : x ∈ Zn} ⊂ Rn,

basis B.

Infinitely many distinct bases

B′ = B · U,

for U ∈ GLn(Z).

Lattice (co)volume

det(L) := vol(Rn/L) = | det(B)|

0 b1

b2
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Lattice packings

First minimum

λ1(L) := min
x∈L\{0}

∥x∥2

Packing density

δ(L) =
vol(Bn

R)

det(L) , where R = 1
2λ1(L)

Minkowski’s Theorem (δ(L) ≤ 1)

λ1(L) ≤ 2 ·
det(L)1/n

vol(Bn
1)

1/n︸ ︷︷ ︸
Mk(L)

0
λ1

v

There exists a lattice L ⊂ Rn

with λ1(L) > 1
2 Mk(L).

Minkowski-Hlawka Theorem
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Good packings from random lattices

▶ Observation: ‘random’ lattices are good packings

▶ Gaussian Heuristic: λ1(L) ≈ 1
2 Mk(L)

▶ Seen as the hardest instances for lattice problems

Good packing
on the average

=⇒ There exists
a good packing

Seems harder?
Actually easier!

▶ Random? (projection of) invariant Haar measure over space of all
lattices with fixed dimension and determinant.

(details not important for this talk)
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Averaging formula and the Minkowski-Hlawka Theorem

Let L[n] be the space all lattices of dimension n and determinant 1,
then

E
L∈L[n]

∣∣L ∩ Bn
λ

∣∣ = 1 + vol(Bn
λ).

‘Average of one non-zero point per unit volume’

Average number of lattice points: Hlawka43, Siegel45

0

Pick λ = 1
2 Mk(n),

then EL∈L[n]

∣∣L ∩ Bn
λ

∣∣ = 2.

⇒ ∃L ∈ L[n] with |L ∩ Bn
λ| ≤ 2,

⇒ ∃L ∈ L[n] with λ1(L) > λ = 1
2 Mk(L)

Proof: Minkowski-Hlawka Theorem
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Lattice Isomorphism Problem (LIP)

0

(unique up to Aut(L) := {O ∈ On(R) : O · L = L})

L1 = L(B1)

B1
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Cryptography from LIP

▶ Idea: hide the structure of a ‘remarkable’ lattice by LIP.

▶ Decodable lattice =⇒ encryption scheme
▶ Gaussian sampleable lattice =⇒ signature scheme

DvW, EC 2022: On LIP, QFs, Remarkable Lattices, and Cryptography

▶ Encryption scheme based on LIP on Zn,

BGPSD, EC 2023: Just how hard are rotations of Zn?

Efficient signature scheme based on module-LIP on Zn

▶ now in round 2 of NIST call for additional signatures

DPPvW, AC 2022: HAWK scheme

▶ Many other works using LIP appeared recently
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Distinghuish LIP

Let L1,L2 be two non-isomorphic lattices and let b ← {1, 2} uniform.
Given L ∈ [Lb], recover b.

Definition: distinguish LIP (∆-LIP)

L1

?∼=

O · Lb

?∼=

L2

Given:
1. some remarkable lattice L1
2. an auxiliary lattice L2 with certain (good) geometric properties

Then: cryptographic scheme is secure if ∆-LIP on L1,L2 is hard.

Usual security assumption:

Goal: find an auxiliary lattice with the right geometric properties

Example: good packing, smoothing, covering..
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Invariants

det(L1) det(O · Lb) det(L2)
?
=

?
=

b1

b2

0

b1

b2

0 b1

b2

0

If det(L1) ̸= det(L2), then ∆LIP can be solved efficiently.

Lemma:

⇒ auxilary lattice must have same (polytime-computable) invariants
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Genus

▶ We consider integral lattices: ⟨x, y⟩ ∈ Z for all x, y ∈ L

Two integral lattices L1,L2 ⊂ Rn are in the same genus if

L1 ⊗Z Zp ∼= L2 ⊗Z Zp for all primes p,

where Zp are the p-adic integers.

Genus:

Some facts:

▶ The genus Gen(L) contains a finite number of isomorphism classes

▶ Genus equivalence is efficiently computable
(if factorization det(L)2 is known.)

▶ Covers all the other known efficiently computable invariants*
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Motivation

Do there exist lattices L ∈ gen(Zn) with

▶ λ1(L) ≥ Ω(Mk(L)/
√
log(n)), or

▶ ηε(L) ≤ ηε(Zn)/
√
log(n) ≈

√
log(1/ε)/ log(n) for ε < n−ω(1)?

BGPSD, EC 2023: Just how hard are rotations of Zn?

Conjecture: for n ≥ 85 there exists a lattice L ∈ gen(Zn) with

▶ λ1(L) ≥ 4√72n = θ(Mk(L)/ 4√n).

ARLW, WCC 2024: PKE from LIP

For any lattice L1, does there exist a lattice L2 ∈ Gen(L1) such that

▶ λ1(L) = Mk(L)/θ(1) for L = L2,L∗2 ?

DvW, EC 2022: On LIP, QFs, Remarkable Lattices, and Cryptography

▶ Need: a Minkowski-Hlawka-like Theorem within any fixed genus
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Random distribution over a genus

Any genus G contains a finite number of isom. classes and its mass

M(G) :=
∑

[L]∈G

1
|Aut(L)|

,

is efficiently computable. (given the prime factorization of det(G)2)

Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)

▶ Grows fast: M(G) ≥ nΩ(n2) as n →∞

Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution
such that each class [L] ∈ G is sampled with probability w(L)

M(G).

Definition: distribution over Genus

▶ Question: do these behave like random lattices?
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Definition: distribution over Genus

▶ Question: do these behave like random lattices?
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Main result

Let G be any genus of dimension n ≥ 6 such that rkFp(G) ≥ 6 for all
primes p. Let C = 7ζ(3)

9ζ(2) ≈ 0.57. Then there exists a L ∈ G with

λ1(L)2 ≥
⌈(

C · det(L)/ vol(Bn
1)

)2/n
⌋
≈

(
1
2 Mk(L)

)2
.

Theorem (good packing): Minkowski-Hlawka theorem for fixed genus

▶ Essentially matches packing density of a random lattice.

▶ Similar result for simultaneous good primal and dual packing.

▶ For a constant 0 < c ≤ 1 we get that

P
[
λ1(L)2 ≥

⌈
c2 ·

(
C · det(L)/ vol(Bn

1
)2/n

⌋]
> 1− cn.

▶ Similar result for smoothing parameter and covering radius.
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The tool: Siegel-Weil mass formula

For any genus G and integer m > 0, the expectation

Nm := E
[L]←D(G)

|{x ∈ L : ∥x∥2 = m}|,

is efficiently computable. (given the prime factorization of m det(G)2)

Theorem: Siegel-Weil mass formula - average point counting

▶ Gives us the average-case counting we need!

Let G be any genus such that rkFp(G) ≥ 6 for all primes p. Then

Nm ≤
9ζ(2)
7ζ(3)

n vol(Bn
1) ·m

n/2−1/ det(G) for all m > 0.

Theorem: Upper bound

▶ Sufficient to prove main results with MH-like argument
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Conclusion

▶ The genus is the strongest known efficient invariant for LIP

▶ Well studied from a mathematical perspective (long ago!).

Thanks to the Smith-Minkowski-Siegel mass formula any genus
▶ contains a finite but typically large number of isom. classes.
▶ has a natural randomness distribution

Thanks to the Siegel-Weil mass formula we can show for any genus:
▶ ∃ good primal and dual packings
▶ ∃ good smoothing
▶ ∃ good coverings

=⇒ usefull for instantiating LIP-based cryptography

‘Random lattices in a genus behave like fully random lattices’

Thanks!
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