# Evasive LWE Assumptions: Definitions, Classes, and Counterexamples

Chris Brzuska<sup>1</sup>, Akin Ünal<sup>2</sup>, Ivy K. Y. Woo<sup>1</sup>

<sup>1</sup> Aalto University, Finland <sup>2</sup> ISTA, Austria

Asiacrypt @ Kolkata, 12 Dec 2024

Learning with Errors (LWE) Assumption

For random wide matrix **B**  $\leftarrow$   $\mathbb{Z}_a^{n \times m}$  and sample **c**  $\in \mathbb{Z}_a^n$ , hard to decide if **c**<sup>T</sup> equals

 $\mathbf{s}^{\mathsf{T}}\mathbf{B} + \mathbf{e}^{\mathsf{T}} \mod q$  or random

where  $\mathbf{s} \leftarrow \mathbb{Z}_q^n$  a uniform LWE secret,  $\mathbf{e} \approx \mathbf{0}$  a short error.

Learning with Errors (LWE) AssumptionFor random wide matrix  $\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$ ,( $\mathbf{B}, \mathbf{s}_{\leq i}^{\mathsf{T}} \mathbf{B}$ ) $\approx_c$ ( $\mathbf{B}, \mathbf{s}_{\leq i}^{\mathsf{T}} \mathbf{B}$ ) $\approx_c$ ( $\mathbf{B}, \mathbf{s}_{\leq i}^{\mathsf{T}} \mathbf{B}$ ) $\approx_c$ ( $\mathbf{B}, \mathbf{s}_q^{\mathsf{T}} \mathbf{a}$  uniform LWE secret.

- Notation:
  - ▶  $\therefore$  hides error term,  $\mathbf{s}_{\mathbf{x}}^{\mathsf{T}}\mathbf{B} = \mathbf{s}^{\mathsf{T}}\mathbf{B} + \mathbf{e}^{\mathsf{T}} \mod q$



- Notation:
  - ▶  $\therefore$  hides error term,  $\mathbf{s}_{\mathbf{x}}^{\mathsf{T}}\mathbf{B} = \mathbf{s}^{\mathsf{T}}\mathbf{B} + \mathbf{e}^{\mathsf{T}} \mod q$
  - For arbitrary **P**, write  $\mathbf{B}^{-1}(\mathbf{P})$  for short (Gaussian) preimages s.t.  $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P} \mod q$



- Notation:
  - ▶  $\therefore$  hides error term,  $\mathbf{s}_{\mathbf{x}}^{\mathsf{T}}\mathbf{B} = \mathbf{s}^{\mathsf{T}}\mathbf{B} + \mathbf{e}^{\mathsf{T}} \mod q$
  - For arbitrary **P**, write  $\mathbf{B}^{-1}(\mathbf{P})$  for short (Gaussian) preimages s.t.  $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P} \mod q$
- ▶ What if an (advanced) scheme requires leaking some short preimages **B**<sup>-1</sup>(**P**)?
- ▶ For many target **P**, unclear how to simulate **B**<sup>-1</sup>(**P**) in security proof

# **Evasive LWE**

| Evasive LWE Assumption | (informal) [Wee22] |
|------------------------|--------------------|
|------------------------|--------------------|

For random wide matrix  $\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$ , and any PPT generated  $\mathbf{P}$ ,

| lf   | <b>(B</b> ,  | Ρ, | <b>\$</b> _ <b>B</b> ,           | <b>SP</b> )  | $\approx_c$ | <b>(B</b> ,  | Ρ, | random, | random)       |
|------|--------------|----|----------------------------------|--------------|-------------|--------------|----|---------|---------------|
| Then | ( <b>B</b> , | Ρ, | <b>s</b> <sup>⊤</sup> <b>B</b> , | $B^{-1}(P))$ | $\approx_c$ | ( <b>B</b> , | Ρ, | random, | $B^{-1}(P)$ ) |

# **Evasive LWE**

| Evasive LWE | Assumption | (informal) | [Wee22] |
|-------------|------------|------------|---------|
|-------------|------------|------------|---------|

For random wide matrix **B**  $\leftarrow \mathbb{Z}_q^{n \times m}$ , and any PPT generated **P**,

| lf   | <b>(B</b> ,  | Ρ, | $\mathbf{\hat{S}}_{\mathbf{A}}^{T}\mathbf{B},$ | <u>\$</u> <b>P</b> ) | $\approx_c$ | <b>(B</b> ,  | Ρ, | random, | random)      |
|------|--------------|----|------------------------------------------------|----------------------|-------------|--------------|----|---------|--------------|
| Then | ( <b>B</b> , | Ρ, | <b>5</b> <sup>™</sup> <b>B</b> ,               | $B^{-1}(P))$         | $\approx_c$ | ( <b>B</b> , | Ρ, | random, | $B^{-1}(P))$ |

Intuition:

No other meaningful use of short preimage  $\mathbf{B}^{-1}(\mathbf{P})$ ,

except right-multiplying to 
$$\mathbf{s}_{\mathbf{x}}^{\mathsf{T}}\mathbf{B}$$
 to obtain  $\mathbf{s}_{\mathbf{x}}^{\mathsf{T}}\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{s}^{\mathsf{T}}\mathbf{P} + \underbrace{\mathbf{e}^{\mathsf{T}} \cdot \mathbf{B}^{-1}(\mathbf{P})}_{short} = \mathbf{s}_{\mathbf{x}}^{\mathsf{T}}\mathbf{P}$ 

# Evasive LWE

| Evasive LWE Assumption | (informal) [Wee22] |
|------------------------|--------------------|
|------------------------|--------------------|

For random wide matrix **B**  $\leftarrow \mathbb{Z}_q^{n \times m}$ , and any PPT generated **P**,

| lf   | ( <b>B</b> , | Ρ, | <b>\$</b> _ <b>B</b> ,            | s <sup>⊤</sup> P) | $\approx_c$ | <b>(B</b> ,  | Ρ, | random, | random)      |
|------|--------------|----|-----------------------------------|-------------------|-------------|--------------|----|---------|--------------|
| Then | ( <b>B</b> , | Ρ, | <b>\$</b> <sup>™</sup> <b>B</b> , | $B^{-1}(P))$      | $\approx_c$ | ( <b>B</b> , | Ρ, | random, | $B^{-1}(P))$ |

Intuition:

No other meaningful use of short preimage  $\mathbf{B}^{-1}(\mathbf{P})$ , except right-multiplying to  $\mathbf{s}_{\mathcal{B}}^{\mathsf{T}}\mathbf{B}$  to obtain  $\mathbf{s}_{\mathcal{B}}^{\mathsf{T}}\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{s}^{\mathsf{T}}\mathbf{P} + \underbrace{\mathbf{e}^{\mathsf{T}} \cdot \mathbf{B}^{-1}(\mathbf{P})}_{short} = \mathbf{s}_{\mathcal{A}}^{\mathsf{T}}\mathbf{P}$ 

- Usefulness: In security proof, suffices to argue pseudorandomness of s<sup>T</sup>B, s<sup>T</sup>P (No preimages involved anymore)
- [Wee22] Achieves first lattice-based ciphertext-policy attribute-based encryption (CP-ABE) with |ctxt| independent of policy size

# What Evasive LWE brings

Lattice-based primitives achieved from evasive LWE (+ LWE or other assumptions):

- CP-ABE [Wee22]
- Multi-authority ABE [WWW22;CLW24]
- Multi-input ABE [ARYY23]
- ABE for unbounded-depth circuits [HLL23; AKY24]

... and more

- Witness encryption [Tsa22; VWW22]
- Obfuscation for null-circuits [VWW22]
- Designated-verifier zkSNARK for UP [MPV24]
- Obfuscation for pseudorandom functions [BDJM+24]

1. [Wee22]:

For random **B**  $\leftarrow$   $\mathbb{Z}_q^{n \times m}$ , and any (**P**, aux)  $\leftarrow$   $\mathbb{S}$  Samp( $\mathfrak{S}_{rand}$ ) from randomness  $\mathfrak{S}_{rand}$ ,

If  $(\mathbf{B}, \mathbf{P}, \mathbf{s}_{\mathbf{T}}^{\mathsf{T}}\mathbf{B}, \mathbf{s}_{\mathbf{T}}^{\mathsf{T}}\mathbf{P}, \text{ aux}, \mathbf{s}_{rand}) \approx_{c} (\mathbf{B}, \mathbf{P}, \text{ random}, \text{ random}, \text{ aux}, \mathbf{s}_{rand})$ Then  $(\mathbf{B}, \mathbf{P}, \mathbf{s}_{\mathbf{T}}^{\mathsf{T}}\mathbf{B}, \mathbf{B}^{-1}(\mathbf{P}), \text{ aux}, \mathbf{s}_{rand}) \approx_{c} (\mathbf{B}, \mathbf{P}, \text{ random}, \mathbf{B}^{-1}(\mathbf{P}), \text{ aux}, \mathbf{s}_{rand})$ 

2. [ARYY23] :

For random **B**  $\leftarrow$   $\mathbb{Z}_{q}^{n \times m}$ , and any (**S**, **P**, aux)  $\leftarrow$   $\mathbb{S}$  Samp( $\mathfrak{S}_{rand}$ ) from randomness  $\mathfrak{S}_{rand}$ ,

If  $(\mathbf{B}, , \mathbf{SB}, \mathbf{SP}, \text{aux}, ) \approx_c (\mathbf{B}, , \text{random}, \text{random}, \text{aux},$ Then  $(\mathbf{B}, , \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}, ) \approx_c (\mathbf{B}, , \text{random}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux},$ 

3. [VWW22]:

For random **B**  $\leftarrow$   $\mathbb{Z}_{q}^{n \times m}$ , and any (**S**, **P**, aux)  $\leftarrow$   $\mathbb{S}$  Samp( $\mathfrak{S}_{rand}$ ) from randomness  $\mathfrak{S}_{rand}$ ,

If  $(, , \mathbf{SB}, \mathbf{SP}, aux, ) \approx_c (, , random, random, aux,$ Then  $(, , \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), aux, ) \approx_c (, , random, \mathbf{B}^{-1}(\mathbf{P}), aux,$ 

#### 4. [Tsa22] (with some reformulation):

For "random"  $\mathbf{B} \in \mathbb{Z}_q^{n \times m}$ , and any  $(\mathbf{S}, \mathbf{P}, \operatorname{aux}) \leftarrow \operatorname{Samp}(\mathbf{B}, \operatorname{td}_{\mathbf{B}}, \mathfrak{S}_{rand})$  from randomness  $\mathfrak{S}_{rand}$ ,

If  $(, , \mathbb{SB}, \mathbb{SP}, aux, ) \approx_c (, , random, random, aux,$ Then  $(, , \mathbb{SB}, \mathbb{B}^{-1}(\mathbb{P}), aux, ) \approx_c (, , random, \mathbb{B}^{-1}(\mathbb{P}), aux,$ 

### 4. [Tsa22] (with some reformulation):

For "random"  $\mathbf{B} \in \mathbb{Z}_{a}^{n \times m}$ , and any  $(\mathbf{S}, \mathbf{P}, \mathrm{aux}) \leftarrow \mathrm{Samp}(\mathbf{B}, \mathrm{td}_{\mathbf{B}}, \mathfrak{S}_{rand})$  from randomness  $\mathfrak{S}_{rand}$ ,

If  $(, , \mathbf{SB}, \mathbf{SP}, aux, ) \approx_c (, , random, random, aux,$ Then  $(, , \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), aux, ) \approx_c (, , random, \mathbf{B}^{-1}(\mathbf{P}), aux,$ 

- We ask: Are they the same? Or how different are they?
- Results: Counterexamples against some variants + Framework to classify them + Implications

Case 1 [ARYY23]:

For random **B**  $\leftarrow$  \$  $\mathbb{Z}_q^{n \times m}$ , and any (**S**, **P**, aux)  $\leftarrow$  \$ Samp( $\mathfrak{S}_{rand}$ ),

If  $(\mathbf{B}, , \mathbf{SB}, \mathbf{SP}, \text{aux}, ) \approx_c (\mathbf{B}, , \text{random}, \text{random}, \text{aux},$ Then  $(\mathbf{B}, , \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}, ) \approx_c (\mathbf{B}, , \text{random}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux},$ 

Case 1 [ARYY23]: For random  $\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$ , and any  $(\mathbf{S}, \mathbf{P}, \operatorname{aux}) \leftarrow \mathbb{S}_{anp}(\mathbf{P}_{rand})$ , If  $(\mathbf{B}, , \mathbf{SB}, \mathbf{SP}, \operatorname{aux}) \approx c (\mathbf{B}, , \operatorname{random}, \operatorname{random}, \operatorname{aux}, \mathbf{D})$ Then  $(\mathbf{B}, , \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), \operatorname{aux}) \approx c (\mathbf{B}, , \operatorname{random}, \mathbf{B}^{-1}(\mathbf{P}), \operatorname{aux}, \mathbf{D})$ Want to show: "If" is true (under plausible assumption); but "Then" is false

Case 1 [ARYY23]:

For random **B**  $\leftarrow$   $\mathbb{Z}_q^{n \times m}$ , and any (**S**, **P**, aux)  $\leftarrow$  Samp(srand),

If  $(\mathbf{B}, , \mathbf{SB}, \mathbf{SP}, \text{aux}, ) \approx_{c} (\mathbf{B}, , \text{random, random, aux},$ Then  $(\mathbf{B}, , \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}, ) \approx_{c} (\mathbf{B}, , \text{random, } \mathbf{B}^{-1}(\mathbf{P}), \text{aux},$ 

► Idea: Hide secret information in  $\mathbf{P} = (\mathbf{P}_1, \mathbf{P}_2)$ . Secret = short **x** satisfying  $\mathbf{P}_1 \mathbf{x} = \mathbf{0} \mod q$ Let  $\mathbf{P}_2 = \begin{pmatrix} \mathbf{x}^T \\ random \end{pmatrix} \implies \mathbf{s}_{c}^T \mathbf{P}_2 = random$ ; By LWE  $(\mathbf{s}_{c}^T \mathbf{B}, \mathbf{s}_{c}^T \mathbf{P}_1) \approx_c random$ 

Case 1 [ARYY23]:

For random **B**  $\leftarrow$   $\mathbb{Z}_q^{n \times m}$ , and any (**S**, **P**, aux)  $\leftarrow$  Samp(srand),

If  $(\mathbf{B}, ..., \mathbf{SB}, \mathbf{SP}, \text{aux}, ...) \approx_{c} (\mathbf{B}, ..., \text{random}, \text{random}, \text{aux},$ Then  $(\mathbf{B}, ..., \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux}, ...) \approx_{c} (\mathbf{B}, ..., \text{random}, \mathbf{B}^{-1}(\mathbf{P}), \text{aux},$ 

► Idea: Hide secret information in  $\mathbf{P} = (\mathbf{P}_1, \mathbf{P}_2)$ . Secret = short **x** satisfying  $\mathbf{P}_1 \mathbf{x} = \mathbf{0} \mod q$ Let  $\mathbf{P}_2 = \begin{pmatrix} \mathbf{x}^T \\ random \end{pmatrix} \implies \mathbf{s}_{c_1}^T \mathbf{P}_2 = random$ ; By LWE  $(\mathbf{s}_{c_1}^T \mathbf{B}, \mathbf{s}_{c_1}^T \mathbf{P}_1) \approx_c random$ 

Distinguish "Then":

Compute  $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}_2) = \mathbf{P}_2$ , therefore recover  $\mathbf{x}$ LHS:  $\mathbf{s}_{-}^{T}\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}_1) \cdot \mathbf{x} \approx \mathbf{s}_{-}^{T}\mathbf{P}_1 \cdot \mathbf{x} \approx \mathbf{0}$  RHS: random  $\cdot \mathbf{B}^{-1}(\mathbf{P}_1) \cdot \mathbf{x} \approx$  random

Case 2 [VWW22]: For random  $\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$ , and any  $(\mathbf{S}, \mathbf{P}, \operatorname{aux}) \leftarrow \mathbb{S} \operatorname{Samp}(\texttt{s}_{rand})$ , If  $(, , \mathbb{SB}, \mathbb{SP}, \operatorname{aux}, ) \approx_c (, , \operatorname{random}, \operatorname{random}, \operatorname{aux}, \mathbb{SB}, \mathbb{B}^{-1}(\mathbf{P}), \operatorname{aux}, ) \approx_c (, , \operatorname{random}, \mathbb{B}^{-1}(\mathbf{P}), \operatorname{aux}, \mathbb{SB})$ 

Difference relative to Case 1: B not available

Case 2 [VWW22]: For random  $\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$ , and any  $(\mathbf{S}, \mathbf{P}, \operatorname{aux}) \leftarrow \mathbb{S} \operatorname{Samp}(\texttt{S}_{rand})$ , If  $(, , \mathbb{SB}, \mathbb{SP}, \operatorname{aux}, ) \approx_c (, , \operatorname{random}, \operatorname{random}, \operatorname{aux}, \mathbb{SB}, \mathbb{SP}, \operatorname{aux}, ) \approx_c (, , \operatorname{random}, \mathbb{B}^{-1}(\mathbf{P}), \operatorname{aux}, \mathbb{SP})$ 

Difference relative to Case 1: B not available

Idea: Extend to P = (P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>), put the random P<sub>3</sub> inside aux to help recover B
 We show: Given B<sup>-1</sup>(P<sub>3</sub>) and P<sub>3</sub>, can recover B via linear system B · B<sup>-1</sup>(P<sub>3</sub>) = P<sub>3</sub> mod q
 (Non-triviality: B<sup>-1</sup>(P<sub>3</sub>) distributed as Gaussian)

Case 2 [VWW22]: For random  $\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m}$ , and any  $(\mathbf{S}, \mathbf{P}, \operatorname{aux}) \leftarrow \mathbb{S} \operatorname{Samp}(\texttt{S}_{rand})$ , If  $(, , \mathbb{SB}, \mathbb{SP}, \operatorname{aux}, ) \approx_c (, , \operatorname{random}, \operatorname{random}, \operatorname{aux}, \mathbb{SB}, \mathbb{B}^{-1}(\mathbf{P}), \operatorname{aux}, ) \approx_c (, , \operatorname{random}, \mathbb{B}^{-1}(\mathbf{P}), \operatorname{aux}, \mathbb{SB})$ 

Difference relative to Case 1: B not available

- Idea: Extend to P = (P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>), put the random P<sub>3</sub> inside aux to help recover B
   We show: Given B<sup>-1</sup>(P<sub>3</sub>) and P<sub>3</sub>, can recover B via linear system B · B<sup>-1</sup>(P<sub>3</sub>) = P<sub>3</sub> mod q
   (Non-triviality: B<sup>-1</sup>(P<sub>3</sub>) distributed as Gaussian)
- Distinguish "Then":

Recover **B** using  $\mathbf{B}^{-1}(\mathbf{P}_3)$  and  $\mathbf{P}_3$ ; Rest is identical to Case 1

Case 3 [Tsa22] (with some reformulation) :

For "random"  $\mathbf{B} \in \mathbb{Z}_q^{n \times m}$ , and any  $(\mathbf{S}, \mathbf{P}, \operatorname{aux}) \leftarrow \operatorname{Samp}(\mathbf{B}, \operatorname{td}_{\mathbf{B}}, \mathfrak{S}_{rand})$ ,

If  $(, , \mathbf{SB}, \mathbf{SP}, aux, ) \approx_{c} (, , random, random, aux,$ Then  $(, , \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), aux, ) \approx_{c} (, , random, \mathbf{B}^{-1}(\mathbf{P}), aux,$ 

Difference: Samp inputs B

Case 3 [Tsa22] (with some reformulation) :

For "random"  $\mathbf{B} \in \mathbb{Z}_q^{n \times m}$ , and any  $(\mathbf{S}, \mathbf{P}, \operatorname{aux}) \leftarrow \operatorname{Samp}(\mathbf{B}, \operatorname{td}_{\mathbf{B}}, \mathfrak{S}_{rand})$ ,

If  $(, , \mathbf{SB}, \mathbf{SP}, aux, ) \approx_c (, , random, random, aux,$ Then  $(, , \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), aux, ) \approx_c (, , random, \mathbf{B}^{-1}(\mathbf{P}), aux,$ 

- Difference: Samp inputs B
- Idea: Generate PKE key-pair from B, s.t. B<sup>-1</sup>(P<sub>2</sub>) is decryption key Encrypt some secret vector, e.g. short x s.t. P<sub>1</sub> · x = 0 as before, put ctxt into aux

Case 3 [Tsa22] (with some reformulation) :

For "random"  $\mathbf{B} \in \mathbb{Z}_q^{n \times m}$ , and any  $(\mathbf{S}, \mathbf{P}, aux) \leftarrow \mathsf{Samp}(\mathbf{B}, \mathsf{td}_{\mathbf{B}}, \mathfrak{S}_{rand})$ ,

If  $(, , \mathbf{SB}, \mathbf{SP}, aux, ) \approx_{c} (, , random, random, aux,$ Then  $(, , \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), aux, ) \approx_{c} (, , random, \mathbf{B}^{-1}(\mathbf{P}), aux,$ 

- Difference: Samp inputs B
- Idea: Generate PKE key-pair from B, s.t. B<sup>-1</sup>(P<sub>2</sub>) is decryption key Encrypt some secret vector, e.g. short x s.t. P<sub>1</sub> · x = 0 as before, put ctxt into aux
- ► Dual-Regev PKE: public key = (**B**, **P**<sub>2</sub>), secret key = **B**<sup>-1</sup>(**P**<sub>2</sub>) ctxt = (**c**<sub>1</sub><sup>T</sup>, **c**<sub>2</sub><sup>T</sup>) = (**s**<sub>1</sub><sup>T</sup>**B**, **s**<sub>1</sub><sup>T</sup>**P**<sub>2</sub> + **x**<sup>T</sup>), decryption: **c**<sub>2</sub><sup>T</sup> - **c**<sub>1</sub><sup>T</sup> · **B**<sup>-1</sup>(**P**<sub>2</sub>) ≈ **x**<sup>T</sup>

Rest is identical to Case 1

Any variants might we still believe in?

Any variants might we still believe in?

Observations:

▶ Randomness *€*<sub>rand</sub> is crucial:

Distinguisher can rerun Samp given  $\mathcal{F}_{rand} \implies$  Cannot "hide" secrets into problem instance

 $\implies$  When given  $\mathcal{F}_{rand}$ , none of the counterexamples works

Any variants might we still believe in?

Observations:

▶ Randomness *€*<sub>rand</sub> is crucial:

Distinguisher can rerun Samp given  $\mathbf{s}_{rand} \implies$  Cannot "hide" secrets into problem instance

 $\implies$  When given  $\mathcal{F}_{rand}$ , none of the counterexamples works

- ▶ Cases 1 and 2: Exploit linear system  $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P} \mod q$ , distinguish "Then" by
  - ▶ using **B** and  $\mathbf{B}^{-1}(\mathbf{P})$  to recover **P**, and/or
  - ▶ using **P** and **B**<sup>-1</sup>(**P**) to recover **B**
  - $\implies$  A plausible assumption should prohibit these

Any variants might we still believe in?

Observations:

▶ Randomness *€*<sub>rand</sub> is crucial:

Distinguisher can rerun Samp given  $\mathbf{s}_{rand} \implies$  Cannot "hide" secrets into problem instance

 $\implies$  When given  $\mathcal{F}_{rand}$ , none of the counterexamples works

- ▶ Cases 1 and 2: Exploit linear system  $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P} \mod q$ , distinguish "Then" by
  - ▶ using **B** and  $\mathbf{B}^{-1}(\mathbf{P})$  to recover **P**, and/or
  - ▶ using **P** and **B**<sup>-1</sup>(**P**) to recover **B**
  - $\implies$  A plausible assumption should prohibit these
- Case 3: Samp should not input B

1. Public-coin: P ←s Samp(*S*<sub>rand</sub>)

If (B, P, SB, SP, aux, rightarrow random)  $\approx_c$  (B, P, random, random, aux, rightarrow random) Then (B, P, SB,  $B^{-1}(P)$ , aux, rightarrow random)  $\approx_c$  (B, P, random,  $B^{-1}(P)$ , aux, rightarrow random)

1. Public-coin:  $\mathbf{P} \leftarrow \text{$} \text{Samp}(\boldsymbol{\mathscr{S}}_{rand})$ 

If (B, P, SB, SP, aux, rightarrow random)  $\approx_c$  (B, P, random, random, aux, rightarrow random) Then (B, P, SB,  $B^{-1}(P)$ , aux, rightarrow random)  $\approx_c$  (B, P, random,  $B^{-1}(P)$ , aux, rightarrow random)

2. (Private-coin) Binding:  $(\mathbf{S}, \mathbf{P}, aux) \leftarrow \text{Samp}(\mathfrak{S}_{rand})$ 

If  $(B, P, SB, SP, aux, ) \approx_c (B, P, random, random, aux, )$ Then  $(B, P, SB, B^{-1}(P), aux, ) \approx_c (B, P, random, B^{-1}(P), aux, )$ 

1. Public-coin: P ←\$ Samp(*S*<sub>rand</sub>)

If (B, P, SB, SP, aux, rightarrow random)  $\approx_c$  (B, P, random, random, aux, rightarrow random) Then (B, P, SB,  $B^{-1}(P)$ , aux, rightarrow random)  $\approx_c$  (B, P, random,  $B^{-1}(P)$ , aux, rightarrow random)

- 2. (Private-coin) Binding:  $(S, P, aux) \leftarrow Samp(\texttt{S}_{rand})$ 
  - If  $(\mathbf{B}, \mathbf{P}, \mathbf{SB}, \mathbf{SP}, \text{aux}, ) \approx_c (\mathbf{B}, \mathbf{P}, \text{ random}, \text{ random}, \text{ aux},$ Then  $(\mathbf{B}, \mathbf{P}, \mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P}), \text{ aux}, ) \approx_c (\mathbf{B}, \mathbf{P}, \text{ random}, \mathbf{B}^{-1}(\mathbf{P}), \text{ aux},$
- 3. (Private-coin) Hiding:  $(\mathbf{S}, \mathbf{P}, aux) \leftarrow \text{Samp}(\texttt{S}_{rand})$

If  $(, , , \SB, SP, aux, ) \approx_c (, , random, random, aux, and P provably "sufficiently hidden given aux"$  $Then <math>(, , , \SB, B^{-1}(P), aux, ) \approx_c (, , random, B^{-1}(P), aux, )$ 

# Hiding Evasive LWE: What does "P sufficiently hidden" mean

► Our proposal: Hiding Evasive LWE parametrised by *l* ∈ {1,2...,*q*}. Define "P hidden given aux":

```
For (S, P, aux) \leftarrow Samp(\ref{eq:rand}),(P, aux) \approx_c(P + R, aux)where each entry of R uniform over \{0, 1, \dots, \ell\}.
```

▶ Interpretation: **R** some noise; **P** cannot be approximated given aux

# Hiding Evasive LWE: What does "P sufficiently hidden" mean

► Our proposal: Hiding Evasive LWE parametrised by *l* ∈ {1,2...,*q*}. Define "P hidden given aux":

For  $(\mathbf{S}, \mathbf{P}, aux) \leftarrow Samp(\mathfrak{S}_{rand})$ ,

 $({\bf P}, \ \mbox{ aux}) \qquad \approx_c \qquad ({\bf P}+{\bf R}, \ \ \mbox{ aux})$  where each entry of  ${\bf R}$  uniform over  $\{0,1,\ldots,\ell\}.$ 

- ▶ Interpretation: **R** some noise; **P** cannot be approximated given aux
- Increase ℓ ⇐→ P "more hidden" ⇐→ weaker Hiding Evasive LWE assumption E.g. ℓ = q: P is pseudorandom conditioned on aux (Prior works: ℓ = 0, false by our counterexample)
- We cannot find counterexample even when  $\ell = 1$

(We thank an anonymous reviewer for sharing with us a counterexample against a prior proposal of Hiding Evasive LWE!)

## Implications on Related Prior Works

- ► [ARYY23; AKY24]:
  - Security proofs do not directly use the stated variant, but another one: aux = (aux<sub>1</sub>, aux<sub>2</sub>), where **P** efficiently computable from aux<sub>2</sub>
  - Special case of Private-coin Binding Evasive LWE

### Implications on Related Prior Works

- ▶ [ARYY23; AKY24]:
  - Security proofs do not directly use the stated variant, but another one: aux = (aux<sub>1</sub>, aux<sub>2</sub>), where **P** efficiently computable from aux<sub>2</sub>
  - Special case of Private-coin Binding Evasive LWE
- ▶ [Tsa22]:
  - Assumption lets Samp input **B** (and its trapdoor), morally false by our result
  - Instance in security proof does not exploit this; Output P independent of B
  - Our speculation: Scheme may be reproved via the proposed private-coin evasive LWEs

### Implications on Related Prior Works

- ▶ [ARYY23; AKY24]:
  - Security proofs do not directly use the stated variant, but another one: aux = (aux<sub>1</sub>, aux<sub>2</sub>), where **P** efficiently computable from aux<sub>2</sub>
  - Special case of Private-coin Binding Evasive LWE
- ▶ [Tsa22]:
  - Assumption lets Samp input **B** (and its trapdoor), morally false by our result
  - Instance in security proof does not exploit this; Output P independent of B
  - Our speculation: Scheme may be reproved via the proposed private-coin evasive LWEs
- ▶ [VWW22]:
  - Assumption does not require P sufficiently hidden, false by our result
  - ▶ We show: For the instance in security proof [VWW22, Lemma 5.2], P can be proven sufficiently hidden ⇒ Remains secure assuming Private-coin Hiding Evasive LWE

# [VWW22]: Proving P hidden

Outputs of Samp:

► 
$$\mathbf{S} := \left\{ \hat{\mathbf{S}}_{i,b} \right\}_{i \in [h], b \in \{0,1\}}, \quad \mathbf{P} := \left( \hat{\mathbf{S}}_{j,0} \mathbf{A}_j + \mathbf{E}_{j,0}, \ \hat{\mathbf{S}}_{j,1} \mathbf{A}_j + \mathbf{E}_{j,1} \right) \text{ where } \mathbf{A}_j \text{ uniform}$$
  
►  $aux := \left\{ \mathbf{A}_{i-1}^{-1} (\hat{\mathbf{S}}_{i,b} \mathbf{A}_i + \mathbf{E}_{i,b}) \right\}_{i \ge j+1, b \in \{0,1\}}, \quad \left\{ \hat{\mathbf{S}}_{i,b} \right\}_{i \in [h], b \in \{0,1\}}$ 

# [VWW22]: Proving P hidden

Outputs of Samp:

► 
$$\mathbf{S} := \left\{ \hat{\mathbf{S}}_{i,b} \right\}_{i \in [h], b \in \{0,1\}}, \quad \mathbf{P} := \left( \hat{\mathbf{S}}_{j,0} \mathbf{A}_j + \mathbf{E}_{j,0}, \ \hat{\mathbf{S}}_{j,1} \mathbf{A}_j + \mathbf{E}_{j,1} \right) \text{ where } \mathbf{A}_j \text{ uniform}$$
  
►  $aux := \left\{ \mathbf{A}_{i-1}^{-1} (\hat{\mathbf{S}}_{i,b} \mathbf{A}_i + \mathbf{E}_{i,b}) \right\}_{i \ge j+1, b \in \{0,1\}}, \quad \left\{ \hat{\mathbf{S}}_{i,b} \right\}_{i \in [h], b \in \{0,1\}}$ 

- [VWW22] showed
  - $(,,,\mathbf{SB},\mathbf{SP},\mathbf{aux},)$   $\approx_c$  (,,,random,random,aux,

Invoke Hiding Evasive LWE, remains to show  $\mathbf{P} \approx_c \mathbf{P} + \mathbf{R}$  where  $\mathbf{R}$  uniform over  $\{0, 1, \dots, \ell\}$ 

Observation: **E**<sub>j,b</sub> in **P** independent of aux

# [VWW22]: Proving P hidden

Outputs of Samp:

► 
$$\mathbf{S} := \left\{ \hat{\mathbf{S}}_{i,b} \right\}_{i \in [h], b \in \{0,1\}}, \quad \mathbf{P} := \left( \hat{\mathbf{S}}_{j,0} \mathbf{A}_j + \mathbf{E}_{j,0}, \ \hat{\mathbf{S}}_{j,1} \mathbf{A}_j + \mathbf{E}_{j,1} \right) \text{ where } \mathbf{A}_j \text{ uniform}$$
  
►  $aux := \left\{ \mathbf{A}_{i-1}^{-1} (\hat{\mathbf{S}}_{i,b} \mathbf{A}_i + \mathbf{E}_{i,b}) \right\}_{i \ge j+1, b \in \{0,1\}}, \quad \left\{ \hat{\mathbf{S}}_{i,b} \right\}_{i \in [h], b \in \{0,1\}}$ 

- [VWW22] showed
  - $(, , \mathbf{SB}, \mathbf{SP}, aux, ) \approx_{c} (, , random, random, aux,$ Invoke Hiding Evasive LWE, remains to show  $\mathbf{P} \approx_{c} \mathbf{P} + \mathbf{R}$  where **R** uniform over  $\{0, 1, \dots, \ell\}$
- Observation: E<sub>i,b</sub> in P independent of aux

$$\mathbf{P} = \left(\hat{\mathbf{S}}_{j,0}\mathbf{A}_j + \mathbf{E}_{j,0}, \ \hat{\mathbf{S}}_{j,1}\mathbf{A}_j + \mathbf{E}_{j,1}\right) \approx_s \left(\hat{\mathbf{S}}_{j,0}\mathbf{A}_j + \mathbf{E}_{j,0} + \mathbf{R}_0, \ \hat{\mathbf{S}}_{j,1}\mathbf{A}_j + \mathbf{E}_{j,1} + \mathbf{R}_1\right) = \mathbf{P} + \mathbf{R}_{j,0}$$

by noise-flooding, for  $\mathbf{R} = (\mathbf{R}_0, \mathbf{R}_1) \ll (\mathbf{E}_{j,0}, \mathbf{E}_{j,1})$ , e.g.  $\ell = \lambda^{O(1)}$  for parameters in [VWW22]

- Borrowing ideas from [VWW22], we prove an obfuscation-based counterexample
- Applies to all private-coin variants (priors ones + our proposed ones)
- Evidence of difference between public- vs. private-coin

- Borrowing ideas from [VWW22], we prove an obfuscation-based counterexample
- Applies to all private-coin variants (priors ones + our proposed ones)
- Evidence of difference between public- vs. private-coin
- ▶ Idea: Let Obf be null-iO scheme, let aux contain obfuscation  $\tilde{C} = \text{Obf}(C)$  of a circuit *C*:
  - With SP + E' hardwired (E' sampled by Samp)
  - ▶ Input matrices: tall  $\mathbf{M}_1 \in \mathbb{Z}_q^{m \times n}$  and wide  $\mathbf{M}_2 \in \mathbb{Z}_q^{n \times m}$
  - ▶ Output 1 if  $(SP + E') M_1M_2$  is low-norm, else output 0

- Borrowing ideas from [VWW22], we prove an obfuscation-based counterexample
- Applies to all private-coin variants (priors ones + our proposed ones)
- Evidence of difference between public- vs. private-coin
- ▶ Idea: Let Obf be null-iO scheme, let aux contain obfuscation  $\tilde{C} = \text{Obf}(C)$  of a circuit C:
  - With SP + E' hardwired (E' sampled by Samp)
  - ▶ Input matrices: tall  $\mathbf{M}_1 \in \mathbb{Z}_q^{m \times n}$  and wide  $\mathbf{M}_2 \in \mathbb{Z}_q^{n \times m}$
  - ▶ Output 1 if  $(SP + E') M_1M_2$  is low-norm, else output 0
- ► Distinguishing "Then":
  - ▶  $\tilde{C}(\mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P})) = 1$  w.h.p., since  $\mathbf{SB} \cdot \mathbf{B}^{-1}(\mathbf{P}) \approx \mathbf{SP} + \mathbf{E}'$
  - ▶  $\tilde{C}(\text{random}, \mathbf{B}^{-1}(\mathbf{P})) = 0$  w.h.p., since random  $\cdot \mathbf{B}^{-1}(\mathbf{P}) \approx \mathbf{SP} + \mathbf{E}'$
- Note: B, P not needed for distinguishing. Applies to both Binding + Hiding Evasive LWE

▶ We prove: For uniform  $\mathbf{A} \leftarrow \mathbb{Z}_q^{m \times m}$ ,

 $\Pr\left[\exists \mathbf{M}_1 \in \mathbb{Z}_q^{m \times n}, \mathbf{M}_2 \in \mathbb{Z}_q^{n \times m} : \mathbf{A} - \mathbf{M}_1 \mathbf{M}_2 \text{ is short}\right] \le \operatorname{negl}(\lambda) \tag{1}$ 

Proving "If" by noise-flooding + LWE + null-iO security:

(B, P, SB, SP,  $\tilde{C}_{SP+E'}$ )  $\approx_s (B, P, SB, SP, \tilde{C}_{SP+E'}) / \text{noise-flooding, E' large}$   $\approx_c (B, P, \text{ random}_1, \text{ random}_2, \tilde{C}_{\text{random}_2+E'}) / \text{LWE}$   $\approx_c (B, P, \text{ random}_1, \text{ random}_2, \tilde{C}_{\text{random}_3}) / \text{claim (1) + null-iO}$  $\approx_c (B, P, \text{ random}_1, \text{ random}_2, \tilde{C}_{SP+E'}) / \text{LWE}$ 

#### Extras: Issue on Distribution of **B** (appearing in Eprint)

- ▶ In proceedings version, we further generalise evasive LWEs in multiple directions:
  - 1. Public-coin variant: Allow secret S with arbitrary public distribution + "public-coin" leakage
  - 2. All variants: Also cover ring settings
  - 3. All variants: Allow **B** with arbitrary distribution

#### Extras: Issue on Distribution of **B** (appearing in Eprint)

- ▶ In proceedings version, we further generalise evasive LWEs in multiple directions:
  - 1. Public-coin variant: Allow secret S with arbitrary public distribution + "public-coin" leakage
  - 2. All variants: Also cover ring settings
  - 3. All variants: Allow **B** with arbitrary distribution
- Subsequently we realise simple counterexample against (3)

### Extras: Issue on Distribution of **B** (appearing in Eprint)

- ▶ In proceedings version, we further generalise evasive LWEs in multiple directions:
  - 1. Public-coin variant: Allow secret S with arbitrary public distribution + "public-coin" leakage
  - 2. All variants: Also cover ring settings
  - 3. All variants: Allow B with arbitrary distribution
- Subsequently we realise simple counterexample against (3)
- Let B, P be both block diagonal

$$\underbrace{\begin{pmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{pmatrix}}_{\mathbf{B}} \underbrace{\begin{pmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{U}_{21} & \mathbf{U}_{22} \end{pmatrix}}_{\mathbf{U}} = \underbrace{\begin{pmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \end{pmatrix}}_{\mathbf{P}}$$

 $\implies$  **B**<sub>1</sub>**U**<sub>12</sub> = **B**<sub>2</sub>**U**<sub>21</sub> = **0**, i.e. obtain Ajtai trapdoors of **B**<sub>1</sub>, **B**<sub>2</sub>

- Interesting open question: What is the boundary on distributions of B?
- Our opinion for now: Stay with uniform B as in prior works

#### Summary

- Background, Evasive LWEs in prior works
- Counterexamples against 3 existing private-coin variants (assuming LWE)
- Proposed plausible classes: Public-coin, Private-coin Binding, Private-coin Hiding
- Implications to prior works + Re-prove [VWW22]
- Appearing in Eprint:
  - Provable obfuscation-based counterexample against all private-coin variants (assuming null-iO + LWE)
  - On arbitrary distribution of B

Ivy K. Y. Woo Aalto University, Finland

≤ivy.woo@aalto.fi

ivyw.000

Thank You!

## References I

- [AKY24] Shweta Agrawal, Simran Kumari, and Shota Yamada. "Attribute Based Encryption for Turing Machines from Lattices". In: CRYPTO 2024, Part III. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14922. LNCS. Springer, Cham, Aug. 2024, pp. 352–386. DOI: 10.1007/978-3-031-68382-4\_11.
- [ARYY23] Shweta Agrawal, Mélissa Rossi, Anshu Yadav, and Shota Yamada. "Constant Input Attribute Based (and Predicate) Encryption from Evasive and Tensor LWE". In: *CRYPTO 2023, Part IV*. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14084. LNCS. Springer, Cham, Aug. 2023, pp. 532–564. DOI: 10.1007/978-3-031-38551-3\_17.
- [BDJM+24] Pedro Branco, Nico Döttling, Abhishek Jain, Giulio Malavolta, Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. *Pseudorandom Obfuscation and Applications*. Cryptology ePrint Archive, Paper 2024/1742. https://eprint.iacr.org/2024/1742. 2024.
- [CLW24] Valerio Cini, Russell W. F. Lai, and Ivy K. Y. Woo. "Lattice-based Multi-Authority/Client Attribute-based Encryption for Circuits". In: 4 (2024). To appear in CiC 2024 (4).

## References II

- [HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. "Attribute-based encryption for circuits of unbounded depth from lattices". In: 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2023, pp. 415–434.
- [MPV24] Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. "Adaptively Sound Zero-Knowledge SNARKs for UP". In: CRYPTO 2024, Part X. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14929. LNCS. Springer, Cham, Aug. 2024, pp. 38–71. DOI: 10.1007/978-3-031-68403-6\_2.
- [Tsa22] Rotem Tsabary. "Candidate Witness Encryption from Lattice Techniques". In: CRYPTO 2022, Part I. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13507. LNCS. Springer, Cham, Aug. 2022, pp. 535–559. DOI: 10.1007/978-3-031-15802-5\_19.
- [VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. "Witness Encryption and Null-IO from Evasive LWE". In: ASIACRYPT 2022, Part I. Ed. by Shweta Agrawal and Dongdai Lin. Vol. 13791. LNCS. Springer, Cham, Dec. 2022, pp. 195–221. DOI: 10.1007/978-3-031-22963-3\_7.

## References III

- [Wee22] Hoeteck Wee. "Optimal broadcast encryption and CP-ABE from evasive lattice assumptions". In: Advances in Cryptology–EUROCRYPT 2022: 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May 30–June 3, 2022, Proceedings, Part II. Springer. 2022, pp. 217–241.
- [WWW22] Brent Waters, Hoeteck Wee, and David J Wu. "Multi-authority ABE from lattices without random oracles". In: *Theory of Cryptography Conference*. Springer. 2022, pp. 651–679.