Updatable Private Set Intersection Revisited: Extended Functionalities, Deletion, and Worst-Case Complexity

Saikrishna Badrinarayanan¹, Peihan Miao², Xinyi Shi², Max Tromanhauser³, Ruida Zeng²

¹LinkedIn, ²Brown University, ³Cornell University

Asiacrypt 2024

Today's Talk

- **1. The Updatable Private Set Intersection Setting**
- 2. Previous Results & Our Improvements
- **3. High-Level Construction Preview**
- 4. Evaluation

Private Set Intersection (PSI)

Alice

$X = \{x_1, x_2, \dots, x_n\}$

Very well studied... [HFH99, KS05, DT10, DMRY11, JL10, PSZ14, KKRT16, PRTY19, IKN+20, CGS22, RR22, ...]

Bob $Y = \{y_1, y_2, \dots, y_n\}$

$X \cap Y$

Previous Work

following regimes (with semi-honest security)

Paper	Functionality	Output	Updates	Complexity
[BMX22]		Two-Sided	Addition Oraly	<i>O</i> (<i>n</i>)
	PSI	One-Sided	Addition Only	$O^*(n \log N)$
		Two-Sided	Weak Deletion	O(nt)

where N is the total size of the input sets, n is the size of the update, and O^* denotes amortized complexity.

Badrinarayanan et al. (PETS '22) gave protocols for Updatable PSI in the

Our Work

Paper	Functionality	Functionality Output Updates		Complexity	
		Two-Sided		<i>O</i> (<i>n</i>)	
[BMX22]	PSI	One-Sided	Addition Only	$O^*(n \log N)$	
		Two-Sided	Weak Deletion	O(nt)	
	PSI, PSI-CA, PSI-SUM	One-Sided	Addition Only	$O(n \log N)$	
Ours	Circuit PSI	Secret Shared	Addition Only		

Our Work

Paper Functionality		Output Updates		Complexity	
		Two-Sided		O(n)	
[BMX22]	PSI	One-Sided	Addition Only	$O^*(n \log N)$	
		Two-Sided	Weak Deletion	O(nt)	
	PSI, PSI-CA, PSI-SUM	One-Sided	Addition Only	$O(n \log N)$	
	Circuit PSI	Secret Shared	Addition Only		
Ours	PSI, PSI-CA, PSI-SUM	One Cided	Single Deletion		
		Une-Sided			

Our Work

Paper Functionality		Output	Updates	Complexity	
		Two-Sided		<i>O</i> (<i>n</i>)	
[BMX22]	PSI	One-Sided	Addition Only	$O^*(n \log N)$	
		Two-Sided	Weak Deletion	O(nt)	
·					
	PSI, PSI-CA, PSI-SUM	One-Sided	Addition Only	$O(n \log N)$	
Ours	Circuit PSI	Secret Shared	Addition Only		
	PSI, PSI-CA, PSI-SUM	One Cided	Single Deletion		
	PSI, PSI-CA, PSI-SUM	Une-Sided	Arbitrary Deletion	$O(n \log^2 N)$	

(pk, sk_a, sk_b) for a 2-out-of-2 threshold, linearly homomorphic encryption scheme over \mathbb{F}

Bob $(\mathsf{pk},\mathsf{sk}_b), Y \in \mathbb{F}^N$

(pk, sk_a, sk_b) for a 2-out-of-2 threshold, linearly homomorphic encryption scheme over \mathbb{F}

Bob $(\mathsf{pk},\mathsf{sk}_b), Y \in \mathbb{F}^N$

 $c_1 = c_0 - \mathsf{Enc}_{\mathsf{pk}}(x)$

(pk, sk_a, sk_b) for a 2-out-of-2 threshold, linearly homomorphic encryption scheme over \mathbb{F}

Bob $(pk, sk_b), Y \in \mathbb{F}^N$

 $\alpha \leftarrow \mathbb{F}^{\times}$

 (pk, sk_a, sk_b) for a 2-out-of-2 threshold, linearly homomorphic encryption scheme over \mathbb{F}

 (pk, sk_a, sk_b) for a 2-out-of-2 threshold, linearly homomorphic encryption scheme over \mathbb{F}

Encrypted Database Modified from Path ORAM [SvS+13]

Keep the invariant that x will always appear either in the stash or in the root to leaf path to H(x) for some public hash function.

Encrypted Database: Get

Want to Get(x)

Encrypted Database: Get

Want to Get(x) $\rightarrow \{c_0, c_1, c_2, c_3, c_8, c_9\}$

Want to update with *x*

Want to update with *x* (1) Choose a random path

Want to update with *x* (2) Remove all elements on path

2, 3

Want to update with *x* (3) Add x to pool

2, 3, x

Want to update with *x* (4) Push elements down

2, *x*

Want to update with *x* (4) Push elements down

 ${\mathcal X}$

Want to update with *x* (4) Push elements down

Want to update with *x* (5) Send encrypted updates

Enc({x,0}, {0,0}, {2,3})

N	N_d	Protocol	Comm. (MB)	Total Running Time (s)			
				LAN	200Mbps	$50 \mathrm{Mbps}$	5Mbps
2^{20}		RR22	149	31.1	38.4	51.9	258
		$CGS22 (C-PSI_1)$	2190	31.0	135	414	3771
		$CGS22 (C-PSI_2)$	1408	24.3	92.8	268	3872

[RR22] Blazing Fast PSI from Improved OKVS and Subfield VOLE (CCS '22) [CGS22] Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF (PETs '22)

Communication cost and running time comparing addition only UPSI to standard PSI

N	N_d	Protocol	Comm. (MB)	Total Running Time (s)			
				LAN	$200 \mathrm{Mbps}$	$50 \mathrm{Mbps}$	$5 \mathrm{Mbps}$
2^{20}		RR22	149	31.1	38.4	51.9	258
		$CGS22 (C-PSI_1)$	2190	31.0	135	414	3771
		$CGS22 (C-PSI_2)$	1408	24.3	92.8	268	3872
	2^{6}		3.03	7.59	8.14	8.46	12.6
	2^{8}	$\Pi_{UPSI-Add_{ca}}$	11.8	29.6	30.6	32.0	48.7
	2^{10}		45.7	116	121	127	194

Communication cost and running time comparing addition only UPSI to standard PSI

[RR22] Blazing Fast PSI from Improved OKVS and Subfield VOLE (CCS '22) **[CGS22]** Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF (PETs '22)

N	N_d	Protocol	Comm. (MB)	Total Running Time (s)			
				LAN	$200 \mathrm{Mbps}$	50Mbps	5Mbps
			140	01 1	90.4		050
		RR22	149	31.1	38.4	51.9	258
	_	$CGS22 (C-PSI_1)$	2190	31.0	135	414	3771
2 ²⁰		$CGS22 (C-PSI_2)$	1408	24.3	92.8	268	3872
	2^{6}	$\Pi_{UPSI-Add_{Ca}}$	3.03	7.59	8.14	8.46	12.6
	2^{8}		11.8	29.6	30.6	32.0	48.7
	2^{10}		45.7	116	121	127	194
	2^{6}		5.70	11.8	12.5	13.1	21.5
	2^{8}	$\Pi_{UPSI-Add_{sum}}$	22.3	45.9	47.2	49.3	82.0
	2^{10}		87.1	178	184	195	321

Communication cost and running time comparing addition only UPSI to standard PSI

[RR22] Blazing Fast PSI from Improved OKVS and Subfield VOLE (CCS '22) **[CGS22]** Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF (PETs '22)

N	N.	Protocol	Comm (MB)	Total Running Time (s)			
	$\int I \mathbf{v} d$			LAN	200Mbps	$50 \mathrm{Mbps}$	5Mbps
		BB22	1/10	21 1	38 /	51 0	258
				01.1	105.4		200
	-	CGS22 (C-PSI ₁)	2190	31.0	135	414	3771
		$CGS22 (C-PSI_2)$	1408	24.3	92.8	268	3872
	2^{6}		3.03	7.59	8.14	8.46	12.6
	2^8	$\Pi_{UPSI-Add_{ca}}$	11.8	29.6	30.6	32.0	48.7
2^{20}	2^{10}		45.7	116	121	127	194
	2^{6}	$\Pi_{UPSI-Add_{sum}}$	5.70	11.8	12.5	13.1	21.5
	2^{8}		22.3	45.9	47.2	49.3	82.0
	2^{10}		87.1	178	184	195	321
	2^{6}	$\Pi_{UPSI-Add_{circuit}}$	17.1	81.7	83.1	85.3	110
	2^{8}		67.0	318	327	330	427
	2^{10}		264	1251	1263	1295	1674

Communication cost and running time comparing addition only UPSI to standard PSI

[RR22] Blazing Fast PSI from Improved OKVS and Subfield VOLE (CCS '22) **[CGS22]** Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF (PETs '22)

