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• Frequency estimation 
How many times does x appear in the data? 
Count-min sketch, HeavyKeeper

• Membership queries 
Is x in the set? 
Bloom filter, Cuckoo filter, Counting 
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Adversarial 
correctness 

PDS in adversarial settings

• Adversary can interfere with the correct 
functionality of the PDS 
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• How can we provably protect PDS in 
adversarial settings?
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Adversarial 
correctness 

This work

Privacy 

• Adversary can interfere with the correct 
functionality of a class of AMQ-PDS w/ 
deletions, e.g.,Counting and Cuckoo Filters 

• Adversary could try to learn about the 
elements represented by the PDS 
 

• How can we provably protect e.g. Counting 
and Cuckoo Filters in adversarial settings?

Secure AMQ-PDS 
W/ deletions 
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Counting filter: insert(..)
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Counting filter: delete(y)
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Counting filter: query(x)
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Counting filter: query(x)
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2 2 0 1 0 1 2 1
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False positives and negatives ? 

Counting filter: query(x)
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0

m counters

1 row

False positives: Pr[FP] = f(m, k, n) 

False negatives: often assumed not to occur 

Counting filter: query(x)

Honest 
setting 
only!

number of 
elements in 

filter

number of hash 
functions

size of 
filter

2 2 0 1 0 1 2 11
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What can go wrong? [CPS19]
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What can go wrong? 

> 0 > 0 * * * * > 0 > 0> 0
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What could go wrong, beyond the paper focus?

Bloom filter

inflate the 
cardinality 
estimate 
[PR22]

HyperLogLog cause 
frequency of 
an element to 
be 
unexpectedly 
overestimated 
[MFS23]

Count-min sketch

tamper with 
the false 
positive 
probability

27



How do we define secure PDS?

AMQ-PDS[  ] 

insert 
query 
delete 

H

28



How do we define secure PDS?

AMQ-PDS[  ] 

insert 
query 
delete 

29



How do we define secure PDS?

Game-based notions 
[NY15, CPS19] 

Specific adversarial 
goal

AMQ-PDS[  ] 

insert 
query 
delete 

30



How do we define secure PDS?

Simulation-based notions 
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Real world Ideal world
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Real world

Simulation-based framework
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adversary interacts 
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Simulation-based framework
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Adversarial correctness
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Adversarial correctness
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Adversarial correctness

≤ (qins + 2qqry + qdel) ⋅ Pr[FP |qins] + . . .

function of 
the number of 
different 

oracle calls

maximal 
false positive 
probability 
given q_ins 
elementsReal world

AMQ-PDS[  ] 

insert 
query 
delete 

adversary interacts 
with a concrete  
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Ideal world

Simulator 

insertSim 
querySim 
deleteSim 

−

simulator provides  
an honest view  
of the AMQ-PDS

term(FP,q)
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Adversarial correctness

≤ term(FP,q) + 2Pr[IF |qins] + ε
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Adversarial correctness

any 
adversarial 

goal

adversary interacts 
with a concrete  
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Adversarial correctness

adversary interacts 
with a concrete  

AMQ-PDS

Real world

≤

Ideal world
finding a false 
positive given 

q_ins 
insertions, 

q_del deletions, 
q_qry queries

finding a false 
positive given 

q_ins 
insertions, 

q_del deletions, 
q_qry queries

simulator provides  
an honest view  
of the AMQ-PDS
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Adversarial correctness

adversary interacts 
with a concrete  

AMQ-PDS

Pr[FP |qins]

Real world

≤

finding a false 
positive given 

q_ins 
insertions, 

q_del deletions, 
q_qry queries

41

+ term(FP,q) + 2Pr[IF |qins] + ε



Adversarial correctness

adversary interacts 
with a concrete  

AMQ-PDS

Pr[FP |qins]

Real world

≤

* * * * * * * **

PRF(.)

Counting filter

finding a false 
positive given 

q_ins 
insertions, 

q_del deletions, 
q_qry queries
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Securing Counting filters in practice

honest setting 

Maximum counter value is 15 

User makes  insertions, 
deletions and queries

220
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Securing Counting filters in practice

ε = 2−128

adversarial setting 
w/ deletions 

adversarial setting 
w/o deletions 

Maximum counter value is 15 

User makes  insertions, 
deletions and queries

220

honest setting 
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• Our work formalises the honest ‘view’ for AMQ-PDS with 
deletions, which is distinct from the one for the 
insertion-only case ([FPUV22]). 

• Deletions notably enhance adversarial power.

• However, with proper parameter selection, claimed 
correctness under adversaries remains achievable even in 
the presence of deletions.

Final remarks

46



Future works

47



• Privacy of AMQ-PDS w/ deletions (see [FPUV22] for w/o 
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• Privacy of AMQ-PDS w/ deletions (see [FPUV22] for w/o 
deletions) 

• Consider other PDS in adversarial settings (see [MFS23], 
[CPS19] for frequancy estimation PDS and their 
adversarial correctness)

Future works
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User Server

* * * * * * * **

Future work

insert 
query 
delete 
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What if the server is malicious  
and the user is honest? 

Future work

User Server

* * * * * * * **insert 
query 
delete 
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Thank you! 
Follow up/parallel work: 

• Privacy implications of AMQ-based PQ TLS 
authentication (CoNEXT24) 
• https://dl.acm.org/doi/10.1145/3680121.3697813  

• Probabilistic Data Structures in the Wild: A 
Security Analysis of Redis  

• https://eprint.iacr.org/2024/1312 

• Scalable Probabilistic Data Structures in 
Adverserial Enviroments (Raguso, Masters project) 
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Thank you! 

Full paper: https://eprint.iacr.org/2024/1911
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• MFS23 
• https://eprint.iacr.org/2023/1366 

• FPUV22  
• https://eprint.iacr.org/2022/1186  

• PR22 
• https://eprint.iacr.org/2021/1139 

• CPS19   
• https://eprint.iacr.org/2019/1221  

• NY15  
• https://eprint.iacr.org/2015/543  

• FN  
• https://blog.fleek.network/post/bloom-and-
cuckoo-filters-for-cache-summarization/
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