
PDS in Adversarial
Settings

Deletions and
Dishonesty

Joint work with Keran Kocher Ella Kummer Anupama Unnikrishnan

Mia Filić

ETH Zurich

1

https://www.iacr.org/cryptodb/data/author.php?authorkey=13239

Probabilistic Data Structures (PDS)

A way to

compactly represent
(tons of) data

and

provide approximate
answers to queries
about that data

2

Probabilistic Data Structures (PDS)

• Frequency estimation
How many times does x appear in the data?
Count-min sketch, HeavyKeeper

A way to

compactly represent
(tons of) data

and

provide approximate
answers to queries
about that data

2

Probabilistic Data Structures (PDS)

• Frequency estimation
How many times does x appear in the data?
Count-min sketch, HeavyKeeper

• Membership queries
Is x in the set?
Bloom filter, Cuckoo filter, Counting
filter

A way to

compactly represent
(tons of) data

and

provide approximate
answers to queries
about that data

2

Probabilistic Data Structures (PDS)

• Frequency estimation
How many times does x appear in the data?
Count-min sketch, HeavyKeeper

• Membership queries
Is x in the set?
Bloom filter, Cuckoo filter, Counting
filter

• Cardinality estimation
How many distinct elements are in the set?
HyperLogLog, KMV estimator

A way to

compactly represent
(tons of) data

and

provide approximate
answers to queries
about that data

2

Where are PDS used?

3

Where are PDS used?

identify possible
DoS threats
(network-
monitoring
systems)

Count-min sketch

4

Counting and Cuckoo filter

cache
summarisation
for content
routing

Where are PDS used?

HyperLogLog

identify possible
DoS threats
(network-
monitoring
systems)

Count-min sketch

count the
number of
distinct
Facebook users

Counting and Cuckoo filter

cache
summarisation
for content
routing

Cuckoo filter

within
certificate
revocation
checking systems

5

What can go wrong?

count the
number of
distinct
Facebook users

identify possible
DoS threats
(network-
monitoring
systems)

Count-min sketch

6

Counting and Cuckoo filter

cache
summarisation
for content
routing

Cuckoo filter

within
certificate
revocation
checking systems

HyperLogLog

count the
number of
distinct
Facebook users

Adversarial
correctness

PDS in adversarial settings

• Adversary can interfere with the correct
functionality of the PDS

• What can an adversary learn about the
elements stored in the PDS?

• How can we provably protect PDS in
adversarial settings?

7

Adversarial
correctness

PDS in adversarial settings

Privacy

• Adversary can interfere with the correct
functionality of the PDS

• Adversary could try to learn about the
elements represented by the PDS

• How can we provably protect PDS in
adversarial settings?

8

Adversarial
correctness

PDS in adversarial settings

Privacy

• Adversary can interfere with the correct
functionality of the PDS

• Adversary could try to learn about the
elements represented by the PDS

• How can we provably protect PDS in
adversarial settings?

(e.g.,[FPUV22])

8

Adversarial
correctness

PDS in adversarial settings

Privacy

• Adversary can interfere with the correct
functionality of the PDS

• Adversary could try to learn about the
elements represented by the PDS

• How can we provably protect PDS in
adversarial settings?Secure PDS

9

(e.g.,[FPUV22])

Adversarial
correctness

This work

Privacy

• Adversary can interfere with the correct
functionality of a class of AMQ-PDS w/
deletions, e.g.,Counting and Cuckoo Filters

• Adversary could try to learn about the
elements represented by the PDS

• How can we provably protect e.g. Counting
and Cuckoo Filters in adversarial settings?

Secure AMQ-PDS
W/ deletions

10

(e.g.,[FPUV22])

Counting filter

0

m counters

1 row
0

0 0 0 0 0 0 0 00

11

Counting filter

0

m counters

1 row
0

0 0 0 0 0 0 0 00

hash(x) = 2 | 5 | 9 | 1 | 3

k counters

12

Counting filter: insert(x)

0

m counters

1 row
0

+1 +1 0 +1 0 0 0 +1+1

hash(x) = 2 | 5 | 9 | 1 | 3

k counters

13

Counting filter: insert(..)

0

m counters

1 row
0

2 3 0 2 0 1 3 22

hash(x) = 2 | 5 | 9 | 1 | 3

hash(y) = 8 | 9 | 3 | 1 | 5

hash(z) = 7 | 8 | 3 | 2 | 8

14

Counting filter: delete(y)

0

m counters

1 row
0

2 3 0 2 0 1 3 22

hash(y) = 8 | 9 | 3 | 1 | 5

 -1

 -1

 -1

 -1

 -1

k counters

15

2 2 0 1 0 1 2 1

Counting filter: query(x)

0

m counters

1 row 1

hash(x) = 2 | 5 | 9 | 1 | 3

k counters

16

2 2 0 1 0 1 2 1

Counting filter: query(x)

0

m counters

1 row 1

hash(x) = 2 | 5 | 9 | 1 | 3

CF(x) = [all cnt(x) > 0]

17

2 2 0 1 0 1 2 1

Counting filter: query(x)

0

m counters

1 row 1

hash(x) = 2 | 5 | 9 | 1 | 3

CF(x) = T

18

2 2 0 1 0 1 2 1

0

m counters

1 row 1

False positives and negatives ?

Counting filter: query(x)

19

0

m counters

1 row

False positives: Pr[FP] = f(m, k, n)

False negatives: often assumed not to occur

Counting filter: query(x)

Honest
setting
only!

number of
elements in

filter

number of hash
functions

size of
filter

2 2 0 1 0 1 2 11

20

What can go wrong in adversarial
settings?

* * * * * * * **

hash(.)

CF[]:
insert
query
delete

hash

H

User
21

What can go wrong in adversarial
settings?

* * * * * * * **

hash(.)

CF[]:
insert
query
delete

hash

H

Public hash functions = precomputation attacks

User
22

What can go wrong? [CPS19]

* * * * * * * **

hash(.)

CF[]:
insert
query
delete

hash

goal: make
target element w
a false positive

H

User
23

What can go wrong?

* * * * * * * **

hash(w)

hash(w) = 1 | 3 | 9 | 2 | 8

User
24

What can go wrong?

* * * * * * * **

hash(w)
hash(x)
hash(y)
hash(z)

hash(w) = 1 | 3 | 9 | 2 | 8

hash(x) = 2 | 5 | 9 | 1 | 3
hash(y) = 8 | 9 | 3 | 1 | 5

User
25

What can go wrong?

> 0 > 0 * * * * > 0 > 0> 0

hash(w)
hash(x)
hash(y)
hash(z)

insert x
insert y

query(w) = T

hash(w) = 1 | 3 | 9 | 2 | 8

hash(x) = 2 | 5 | 9 | 1 | 3
hash(y) = 8 | 9 | 3 | 1 | 5

User
26

What could go wrong, beyond the paper focus?

Bloom filter

inflate the
cardinality
estimate
[PR22]

HyperLogLog cause
frequency of
an element to
be
unexpectedly
overestimated
[MFS23]

Count-min sketch

tamper with
the false
positive
probability

27

How do we define secure PDS?

AMQ-PDS[]

insert
query
delete

H

28

How do we define secure PDS?

AMQ-PDS[]

insert
query
delete

29

How do we define secure PDS?

Game-based notions
[NY15, CPS19]

Specific adversarial
goal

AMQ-PDS[]

insert
query
delete

30

How do we define secure PDS?

Simulation-based notions
[PR22, FPUV22]

Any adversarial goal

AMQ-PDS[]

insert
query
delete

Game-based notions
[NY15, CPS19]

Specific adversarial
goal

31

Simulation-based framework

Real world Ideal world

32

Real world

Simulation-based framework

AMQ-PDS[]

insert
query
delete

Simulator

insertSim
querySim
deleteSim

Ideal world

adversary interacts
with a concrete

AMQ-PDS

adversary interacts
with a simulator

33

Simulation-based framework

Real world Ideal world

adversary interacts
with a concrete

AMQ-PDS

we want
to

analyse
this

—>
we know
how to
analyse
this

<—

AMQ-PDS[]

insert
query
delete

Simulator

insertSim
querySim
deleteSim

simulator provides
an honest view
of the AMQ-PDS

34

Adversarial correctness

adversary interacts
with a concrete

AMQ-PDS

we want
to

analyse
this

—>
we know
how to
analyse
this

<—

Ideal worldReal world

simulator replaces inputs
with random elements,

only allows deletions on
currently inserted

elements*

AMQ-PDS[]

insert
query
delete

Simulator

insertSim
querySim
deleteSim

35

Adversarial correctness

Real world

AMQ-PDS[]

insert
query
delete

adversary interacts
with a concrete

AMQ-PDS

Ideal world

Simulator

insertSim
querySim
deleteSim

−

simulator provides
an honest view
of the AMQ-PDS

36

Adversarial correctness

≤ (qins + 2qqry + qdel) ⋅ Pr[FP |qins] + . . .

function of
the number of
different

oracle calls

maximal
false positive
probability
given q_ins
elementsReal world

AMQ-PDS[]

insert
query
delete

adversary interacts
with a concrete

AMQ-PDS

Ideal world

Simulator

insertSim
querySim
deleteSim

−

simulator provides
an honest view
of the AMQ-PDS

term(FP,q)

37

Adversarial correctness

≤ term(FP,q) + 2Pr[IF |qins] + ε

maximal
insertion
failure

probability
given q_ins
elements

PRF
advantage

Real world

AMQ-PDS[]

insert
query
delete

adversary interacts
with a concrete

AMQ-PDS

Ideal world

Simulator

insertSim
querySim
deleteSim

−

simulator provides
an honest view
of the AMQ-PDS

38

Adversarial correctness

any
adversarial

goal

adversary interacts
with a concrete

AMQ-PDS

Real world

≤

Ideal world

any
adversarial

goal

simulator provides
an honest view
of the AMQ-PDS

39

+ term(FP,q) + 2Pr[IF |qins] + ε

Adversarial correctness

adversary interacts
with a concrete

AMQ-PDS

Real world

≤

Ideal world
finding a false
positive given

q_ins
insertions,

q_del deletions,
q_qry queries

finding a false
positive given

q_ins
insertions,

q_del deletions,
q_qry queries

simulator provides
an honest view
of the AMQ-PDS

40

+ term(FP,q) + 2Pr[IF |qins] + ε

Adversarial correctness

adversary interacts
with a concrete

AMQ-PDS

Pr[FP |qins]

Real world

≤

finding a false
positive given

q_ins
insertions,

q_del deletions,
q_qry queries

41

+ term(FP,q) + 2Pr[IF |qins] + ε

Adversarial correctness

adversary interacts
with a concrete

AMQ-PDS

Pr[FP |qins]

Real world

≤

* * * * * * * **

PRF(.)

Counting filter

finding a false
positive given

q_ins
insertions,

q_del deletions,
q_qry queries

42

+ term(FP,q) + 2Pr[IF |qins] + ε

Securing Counting filters in practice

honest setting

Maximum counter value is 15

User makes insertions,
deletions and queries

220

43

Securing Counting filters in practice

ε = 2−128

adversarial setting
w/ deletions

honest setting

Maximum counter value is 15

User makes insertions,
deletions and queries

220

44

Securing Counting filters in practice

ε = 2−128

adversarial setting
w/ deletions

adversarial setting
w/o deletions

Maximum counter value is 15

User makes insertions,
deletions and queries

220

honest setting

45

Final remarks

46

• Our work formalises the honest ‘view’ for AMQ-PDS with
deletions, which is distinct from the one for the
insertion-only case ([FPUV22]).

Final remarks

46

• Our work formalises the honest ‘view’ for AMQ-PDS with
deletions, which is distinct from the one for the
insertion-only case ([FPUV22]).

• Deletions notably enhance adversarial power.

Final remarks

46

• Our work formalises the honest ‘view’ for AMQ-PDS with
deletions, which is distinct from the one for the
insertion-only case ([FPUV22]).

• Deletions notably enhance adversarial power.

• However, with proper parameter selection, claimed
correctness under adversaries remains achievable even in
the presence of deletions.

Final remarks

46

Future works

47

• Privacy of AMQ-PDS w/ deletions (see [FPUV22] for w/o
deletions)

Future works

47

• Privacy of AMQ-PDS w/ deletions (see [FPUV22] for w/o
deletions)

• Consider other PDS in adversarial settings (see [MFS23],
[CPS19] for frequancy estimation PDS and their
adversarial correctness)

Future works

47

User Server

* * * * * * * **

Future work

insert
query
delete

48

What if the server is malicious
and the user is honest?

Future work

User Server

* * * * * * * **insert
query
delete

49

Thank you!
Follow up/parallel work:

• Privacy implications of AMQ-based PQ TLS
authentication (CoNEXT24)
• https://dl.acm.org/doi/10.1145/3680121.3697813

• Probabilistic Data Structures in the Wild: A
Security Analysis of Redis

• https://eprint.iacr.org/2024/1312

• Scalable Probabilistic Data Structures in
Adverserial Enviroments (Raguso, Masters project)

50

https://dl.acm.org/doi/10.1145/3680121.3697813
https://eprint.iacr.org/2024/1312

Thank you!

Full paper: https://eprint.iacr.org/2024/1911

51

https://eprint.iacr.org/2024/1911

• MFS23
• https://eprint.iacr.org/2023/1366

• FPUV22
• https://eprint.iacr.org/2022/1186

• PR22
• https://eprint.iacr.org/2021/1139

• CPS19
• https://eprint.iacr.org/2019/1221

• NY15
• https://eprint.iacr.org/2015/543

• FN
• https://blog.fleek.network/post/bloom-and-
cuckoo-filters-for-cache-summarization/

References

52

https://eprint.iacr.org/2023/1366
https://eprint.iacr.org/2022/1186
https://eprint.iacr.org/2021/1139
https://eprint.iacr.org/2019/1221
https://eprint.iacr.org/2015/543
https://blog.fleek.network/post/bloom-and-cuckoo-filters-for-cache-summarization/
https://blog.fleek.network/post/bloom-and-cuckoo-filters-for-cache-summarization/

