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« Frequency estimation
How many times does x appear 1n the data?
Count-min sketch, HeavyKeeper

« Membership queries
Is x 1n the set?
Bloom filter, Cuckoo filter, Counting
filter

« Cardinality estimation
How many distinct elements are in the set?
HyperLogLog, KMV estimator
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« Adversary can 1interfere with the correct
functionality of the PDS

« Adversary could try to learn about the
elements represented by the PDS (e.g.,[FPUV22])

« How can we provably protect PDS 1in
adversarial settings?



Adversarial
correctness

Privacy

Secure AMQ-PDS
W/ deletions

This work

« Adversary can interfere with the correct
functionality of a class of AMQ-PDS w/
deletions, e.g.,Counting and Cuckoo Filters

« Adversary could try to learn about the
elements represented by the PDS (e.g.,[FPUV22])

e How can we provably protect e.g. Counting
and Cuckoo Filters in adversarial settings?
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Counting filter: insert(..)

m counters

1 row

hash(x) =2 | 5] 9| 1| 3
hash(y) =8 | 9| 3| 1] 5

hash(z) =7 | 8 | 3| 2| 8
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Counting filter: delete(y)
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Counting filter: query(x)
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Counting filter: query(x)

m counters
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Counting filter: query(x)

m counters

1 row

hash(x) =2 | 5] 9| 1| 3

CF(x) =T
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Counting filter: query(x)

m counters

1 row

False positives and negatives 7
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Counting filter: query(x)

m counters

1 row
size of number of
filter elements 1n
.. l ¥ filter
False positives: Pr[FP] = f(m, k, n)
!
Honest number of hash
setting functions

only!

False negatives: often assumed not to occur
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settings?

hash(.)

Public hash functions

22
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What can go wrong?

hash(w)

hash(w) =1 | 3 | 9| 2| 8
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hash(w) =1 | 3 | 9| 2 | 8
hash(x) =2 | 5| 9| 1] 3
hash(y) =8 | 9 | 3 | 1| 5
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What can go wrong?

(w)
(x)
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(z)

insert X
insert

query(w)
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What could go wrong, beyond the paper focus?

Bloom filter Count-min sketch

cause
frequency of

tamper with
an element to

the false

inflate the

cardinality e

unexpectedly
overestimated

[MFS23]

positive
probability

estimate
[PR22]
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How do we define secure PDS?

AMQ-PDS |

Simulation-based notions
[PR22, FPUV22]

Game-based notions

[NY15, CPS19] insert

Specific adversarial query Any adversarial goal
goal delete
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Simulation-based framework

Real worl

32



Simulation-based framework

AMQ-pDS |

1nsert

query
delete

adversary interacts

with a concrete
AMQ-PDS

Simulator

1nsertSim
querySim
deleteSim

adversary interacts
with a simulator
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insertSim <= hmﬁtﬂ
: analyse
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Adversarial correctness

AMQ-pDS |

1nsert

query
delete

adversary interacts

with a concrete
AMQ-PDS

Simulator

1nsertSim
querySim
deleteSim

simulator replaces 1inputs
with random elements,
only allows deletions on
currently 1inserted
elements

<_

we know
how to
analyse

this
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Adversarial correctness
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Adversarial correctness

Simulator

aMQ-PDSL | 1

1nsertSim
querySim
deleteSim

insert

query
delete

simulator provides

an honest view
of the AMQ-PDS

adversary interacts

with a concrete
AMQ-PDS

maximal
. false positive
function of probability
the number of given g_ins
different elements

oracle calls

| |

< (Qins T+ 2quy T Qdel) ) PF[F P ‘ qms] + ...

\—\/——J

term(FP,q)
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Adversarial correctness

Simulator

aMQ-PDSL | 1

1nsertSim
querySim
deleteSim

insert

query
delete

simulator provides

an honest view
of the AMQ-PDS

adversary interacts

with a concrete
AMQ-PDS

PRF
advantage

|

< term(FP,q) + 2Pr[IF|g,,] + €

|

maximal
insertion
failure
probability
given q_1ns
elements
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Adversarial correctness

any
adversarial
goal

adversary interacts

with a concrete
AMQ-PDS

any
adversarial
goal

simulator provides

an honest view
of the AMQ-PDS

+ term(FP,q) + 2Pr[IF|q;, ]+ €
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Adversarial correctness

finding a false
positive given
g_1ns
insertions,
g_del deletions,

g_qgry queries

adversary interacts
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AMQ-PDS

PF[FP ‘ ql'ns]

+ term(FP,q) + 2Pr[IF|q;, ]+ €
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Adversarial correctness

finding a false
positive given
g_1ns
insertions,
g_del deletions,

g_qgry queries

adversary interacts

with a concrete
AMQ-PDS

PF[FP ‘ ql'ns]

+ term(FP,q) + 2Pr[IF|q;, ]+ €

Counting filter

PRF(. )
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log Pr[FP]

Securing

Counting filters 1n practice
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log Pr[FP]
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Final remarks

« Qur work formalises the honest ‘view’ for AMQ-PDS with
deletions, which 1s distinct from the one for the
insertion-only case ([FPUV22]).

« Deletions notably enhance adversarial power.

 However, with proper parameter selection, claimed
correctness under adversaries remalns achlievable even 1n
the presence of deletions.
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Future works

« Privacy of AMQ-PDS w/ deletions (see [FPUV22] for w/o
deletions)

« Consider other PDS in adversarial settings (see [MFS23],
[CPS19] for frequancy estimation PDS and their
adversarial correctness)
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query
delete

Future work
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1nsert
query
delete

Future work

What 1f the server is malicious
and the user i1s honest?
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Thank you!

Follow up/parallel work:

« Privacy implications of AMQ-based PQ TLS
authentication (CoNEXT24)
« https://dl.acm.org/doi/10.1145/3680121.3697813

 Probabilistic Data Structures in the Wild: A
Security Analysis of Redis
- https://eprint.iacr.org/2024/1312

« Scalable Probabilistic Data Structures 1n
Adverserial Enviroments (Raguso, Masters project)
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Thank you!

Full paper: https://eprint.iacr.org/2024/1911
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