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Motivation

Two tensor-based schemes In NIST’s additional call for signatures:

ALTEQ

They rely on the hardness of the tensor isomorphism problem
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Tensors



Tensors

In this work, tensors are 3-dimensional n ×m × k arrays over a finite field Fq

We take the trilinear forms perspective

C : Fn
q × Fm

q × Fk
q → Fq

Fix bases e1, e2, . . . of Fn
q,Fm

q , and Fk
q

A tensor is determined by its values on the basis vectors

Cijl := C(ei , ej , el) ∀i , j , l .
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An example

A tensor C : F4
101 × F4

101 × F4
101 → F101:

42 85 67 98

53 74 12 65

37 89 91 78

66 58 24 43

47 92 63 88

34 76 55 61

49 82 25 96

71 69 44 39

53 77 91 62

85 29 48 74

67 93 56 38

42 81 64 57

39 66 85 24

71 49 52 90

87 63 33 76

41 94 68 55
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Tensor transformations

We can transform tensors by applying linear transformations to its arguments

(A,B,T) ∈ GLn(q)× GLm(q)× GLk(q) maps a tensor C to a tensor D given by

D(x, y, z) = C(Ax,By,Tz)

This is a group action of GLn(q)× GLm(q)× GLk(q) on the space of tensors

Two tensors are isomorphic if they are in the same orbit
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Tensor-Isomorphism problem

3-TI (n,m, k , q)

Let C,D be two n ×m × k tensors over Fq. The 3-TI problem asks to find, if any

exists, a triplet of matrices A,B,T ∈ GLn(q)× GLm(q)× GLk(q) such that:

C(Ax,By,Tz) = D(x, y, z) ∀ x ∈ Fn
q, y ∈ Fm

q , z ∈ Fk
q
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Variants

We can consider just a subset of structured tensors, for example, alternating tensors

Alternating trilinear forms are n × n × n tensors ϕ such that

ϕ(x, x,−) = ϕ(x,−, x) = ϕ(−, x, x) = 0

ϕ(x, y,−) = −ϕ(y, x,−) and ϕ(x,−, z) = −ϕ(z,−, x)

This imposes additional constraints on transformations A,B,T

6



Variants

We can consider just a subset of structured tensors, for example, alternating tensors

Alternating trilinear forms are n × n × n tensors ϕ such that

ϕ(x, x,−) = ϕ(x,−, x) = ϕ(−, x, x) = 0

ϕ(x, y,−) = −ϕ(y, x,−) and ϕ(x,−, z) = −ϕ(z,−, x)

This imposes additional constraints on transformations A,B,T

6



Variants

We can consider just a subset of structured tensors, for example, alternating tensors

Alternating trilinear forms are n × n × n tensors ϕ such that

ϕ(x, x,−) = ϕ(x,−, x) = ϕ(−, x, x) = 0

ϕ(x, y,−) = −ϕ(y, x,−) and ϕ(x,−, z) = −ϕ(z,−, x)

This imposes additional constraints on transformations A,B,T

6



The TI variants

Tensor constraint

∀ i , j , k

Matrix constraint

(induced)

Equivalent

problem
Used in

Unstructured - - MCE MEDS

Alternating
Cijk = −Cjik
Cijk = −Ckji

A = B = T ATFE ALTEQ
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The TI variants (extended)

Tensor constraint

∀ i , j , k

Matrix constraint

(induced)

Equivalent

problem

Unstructured - - MCE

Alternating
Cijk = −Cjik
Cijk = −Ckji

A = B = T ATFE

Symmetric
Cijk = Cjik
Cijk = Ckji

A = B = T Cubic-IP

Partial Symmetric Cijk = Cjik A = B QMLE
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Algorithms for solving TI



Overview

Prior work:

• Algebraic modeling

• Collision-based

• Graph-based

This work:

• Subgraph collision

9



Overview

Prior work:

• Algebraic modeling

• Collision-based

• Graph-based

This work:

• Subgraph collision

9



Collisions

Elements x, x′ ∈ Fn
q are a collision for A when

Ax = x′

This provides us linear relations for A

Also yields quadratic equations

C(x′,By,Tz) = D(x, y, z)
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Two Collisions

From two collisions (x1, x′1) and (x2, x′2) for A we obtain

C(x′1,By, z) = D(x1, y,T
−1z)

C(x′2,By, z) = D(x2, y,T
−1z)

This yields 2mk linear equations in m2 + k2 variables
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The tensor-graph

To each n ×m × k tensor C over Fq, we can associate a graph

VC =P(Fn
q) ∪ P(Fm

q ) ∪ P(Fk
q)

EC ={(x, y) ∈ P(Fn
q)× P(Fm

q ) | C(x, y,−) = 0}
∪{(x, z) ∈ P(Fn

q)× P(Fk
q) | C(x,−, z) = 0}

∪{(y, z) ∈ P(Fm
q )× P(Fk

q) | C(−, y, z) = 0}

Note:

• This is a tripartite graph

• It has qn−1 + qm−1 + qk−1 vertices!

12



The tensor-graph

To each n ×m × k tensor C over Fq, we can associate a graph

VC =P(Fn
q) ∪ P(Fm

q ) ∪ P(Fk
q)

EC ={(x, y) ∈ P(Fn
q)× P(Fm

q ) | C(x, y,−) = 0}
∪{(x, z) ∈ P(Fn

q)× P(Fk
q) | C(x,−, z) = 0}

∪{(y, z) ∈ P(Fm
q )× P(Fk

q) | C(−, y, z) = 0}

Note:

• This is a tripartite graph

• It has qn−1 + qm−1 + qk−1 vertices!

12



The tensor-graph

To each n ×m × k tensor C over Fq, we can associate a graph

VC =P(Fn
q) ∪ P(Fm

q ) ∪ P(Fk
q)

EC ={(x, y) ∈ P(Fn
q)× P(Fm

q ) | C(x, y,−) = 0}
∪{(x, z) ∈ P(Fn

q)× P(Fk
q) | C(x,−, z) = 0}

∪{(y, z) ∈ P(Fm
q )× P(Fk

q) | C(−, y, z) = 0}

Note:

• This is a tripartite graph

• It has qn−1 + qm−1 + qk−1 vertices!

12



Tensor graph: an example

C : F3
5 × F3

5 × F3
5 → F5
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Tensor-graph isomorphism

A tensor isomorphism (A,B,T) : C → D induces a graph isomorphism

VD → VC

v 7→


Av if v ∈ P(Fn

q)

Bv if v ∈ P(Fm
q )

Tv if v ∈ P(Fk
q)

0 = D(x, y,−) = C(Ax,By,−)
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A new invariant: Triangles



Example
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Triangles algebraically

Definition

Let C be a n ×m × k tensor over Fq.

A triangle for C is a triplet (u, v,w) ∈ P(Fn
q)× P(Fm

q )× P(Fk
q) such that

C(u, v,−) = C(u,−,w) = C(−, v,w) = 0.
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Probability of triangle (e1, e1, e1)

For a tensor 6× 6× 6 tensor C, the coefficients in the gray positions should be zero for

(e1, e1, e1) to be a triangle.

17



Probability of any triangle

Intuitively:

• (n − 1) + (m − 1) + (k − 1) degrees of freedom

• n +m + k − 2 constraints (gray cells)

Rigorously:

1

q
−O(q−2) ≤ PC(C has a unique triangle) ≤ 1

q
+O(q−2)
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Using the new invariant



Overview of the algorithm

(1) Find a triangle for C if it exists (probability 1/q)

(2) If so, find the triangle for D
(3) Add the 3-point collision to the algebraic model

(4) Solve!
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An algebraic approach

We work in the polynomial ring Fq[x2, . . . , xn, y2, . . . , ym, z2, . . . , zk ] and denote

x = [1, x2, . . . , xn] y = [1, y2, . . . , ym] z = [1, z2, . . . , zk ]

Then look for solutions of the following system:
C(x, y, ei ) = 0 for 1 ≤ i ≤ k

C(x, ei , z) = 0 for 1 ≤ i ≤ m

C(ei , y, z) = 0 for 1 ≤ i ≤ n

Solve this using tri-graded XL
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Using triangles

The 3-point collision yields the following constraints on A,B,T:

A =

[
λ A12

0(n−1)×1 A22

]
B =

[
1 B12

0(n−1)×1 B22

]
T =

[
1 T12

0(n−1)×1 T22

]

Empirically, the resulting system was linearizable in degree 2
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Triangles for ATFE



What is a triangle

Our previous definition no longer works

Recall ϕ(x, x,−) = ϕ(x,−, x) = ϕ(−, x, x) = 0

Any triple (v, v, v) would be a triangle!

Definition

Let ϕ be an alternating trilinear form over Fq.

A triangle for ϕ is a 3-dimensional subspace T ∈ Fn
q such that

ϕ(v,w,−) = 0 ∀ v,w ∈ T .
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Probability of triangle ⟨e1, e2, e3⟩

For an ATF ϕ, the coefficients in the dark gray positions should be zero for ⟨e1, e2, e3⟩
to be a triangle. The coefficients in the light gray positions are zero by alternatingness

For sufficiently high n (≥ 9) we again have

1

q
−O(q−2) ≤ Pϕ(ϕ has a unique triangle) ≤ 1

q
+O(q−2)
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Finding the triangle algebraically

Work in the ring Fq[x4, . . . , xn, y4, . . . , yn, z4, . . . , zn] and denote

x = [1, 0, 0, x4, . . . , xn] y = [0, 1, 0, y4, . . . , yn] z = [0, 0, 1, z4, . . . , zn]

Now, our system for finding a triangle looks as follows:
ϕ(x, y, ei ) = 0

ϕ(y, z, ei ) = 0 ∀1 ≤ i ≤ n

ϕ(z, x, ei ) = 0

We solve using tri-graded XL again

24



Finding the triangle algebraically

Work in the ring Fq[x4, . . . , xn, y4, . . . , yn, z4, . . . , zn] and denote

x = [1, 0, 0, x4, . . . , xn] y = [0, 1, 0, y4, . . . , yn] z = [0, 0, 1, z4, . . . , zn]

Now, our system for finding a triangle looks as follows:
ϕ(x, y, ei ) = 0

ϕ(y, z, ei ) = 0 ∀1 ≤ i ≤ n

ϕ(z, x, ei ) = 0

We solve using tri-graded XL again

24



Better than predicted

Actual Predicted

n Time Memory dsolv dreg dff

12 29 s 96 MB 4 11 8

13 490 s 850 MB 4 12 9

14 30 h 29 GB 5 13 10
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Using the triangle

This is no longer a 3-point collision!

For the alternating variant we get the following constraint on A instead:

A =

[
A11 A12

0(n−3)×3 A22

]

Solving this system took at most 3 hours for all security levels
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Complexity results



MEDS

The log2 complexity estimates for solving MCE (with probability 1/q) in field

operations. The parameters are taken from the MEDS specifications. We use the

solving degree as an estimator here.

n q Specs Best previous1 This work (prob 1/q)

Level I 14 4093 147 95 90

Level III 22 4093 217 145 143

Level V 30 2039 276 180 197

1”Algorithms for matrix code and alternating trilinear form equivalences via new isomorphism

invariants.” by A. K. Narayanan, Y. Qiao, and G. Tang
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ALTEQ

The log2 complexity for solving ATFE (with probability 1/q) in field operations. The

parameters are taken from the ALTEQ specifications. We use the solving degree as an

estimator here. In all cases q = 232 − 5.

n Specs Best previous2 This work (prob 1/q) practical

Level I 13 143 120 62 1501 s

Level III 20 219 165 108

Level V 25 276 203 141

2”Algebraic algorithm for the alternating trilinear form equivalence problem.” by L. Ran, S.

Samardjiska, and M. Trimoska
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Thanks for listening!
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Bonus slides



Hilbert Series

MCE:

H(r , s, t) =
(1− rs)k(1− rt)m(1− st)n(1− rst)−2

(1− r)n−1(1− s)m−1(1− t)k−1

ATFE:

S(r , s, t) = (1− r2s)(1− rs2)(1− s2t)(1− st2)(1− t2r)(1− tr2)(1− rst)2

H(r , s, t) =
(1− rs)n(1− rt)n(1− st)n

(1− r)n−2(1− s)n−2(1− t)n−2
· S−1

29



Tri-degree experiments MCE

Tri-degree

(n,m, k) (1, 1, 1) (2, 1, 1) (3, 1, 1) (2, 2, 1) (4, 1, 1) (3, 2, 1) (2, 2, 2)

(7,7,7) 2 61 336 772 1141 — —

(8,8,8) 2 78 504 1174 1960 6356 11601

(9,9,9) 2 97 720 1694 3156 10512

(8,7,7) 2 63 399 882 1540 4599/4620 7969/8064

(9,8,8) 2 80 584 1316 2544 7896 13907
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Tri-degree experiments ATFE

Tri-degree

n (2, 2, 0) (2, 1, 1) (4, 1, 0) (3, 2, 0) (3, 1, 1) (2, 2, 1) (5, 1, 0) (4, 2, 0) (3, 3, 0)

12 86 184 55 803 1726 4002 220/221 4281/4282 7241/7242

13 100 213 66 1032 2207 5140 286/287 6018/6019 10319/10320

14 115 244 78 1300 2768 6472 364 8231 14277

15 131 277 91 1610 3415 8013 455 10999

16 148 312 105 1965 4154 9778 560

17 166 349 120 2368 4991

18 185 388 136 2822 5932

19 205 429 153 3330

20 226 472 171 3895
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