

Rare structures in tensor graphs

Bermuda triangles for cryptosystems based on the Tensor Isomorphism problem

Lars Ran and Simona Samardjiska December 10, Asiacrypt 2024 Two tensor-based schemes In NIST's additional call for signatures:

1

Two tensor-based schemes In NIST's additional call for signatures:

CD MEDS CD

ALTEQ

1

Two tensor-based schemes In NIST's additional call for signatures:

CD MEDS CD ALTEQ

They rely on the hardness of the tensor isomorphism problem

1

Tensors

In this work, tensors are 3-dimensional $n \times m \times k$ arrays over a finite field \mathbb{F}_q

In this work, tensors are 3-dimensional $n \times m \times k$ arrays over a finite field \mathbb{F}_q We take the trilinear forms perspective

$$\mathcal{C}: \mathbb{F}_q^n \times \mathbb{F}_q^m \times \mathbb{F}_q^k \to \mathbb{F}_q$$

In this work, tensors are 3-dimensional $n \times m \times k$ arrays over a finite field \mathbb{F}_q We take the trilinear forms perspective

$$\mathcal{C}: \mathbb{F}_q^n \times \mathbb{F}_q^m \times \mathbb{F}_q^k \to \mathbb{F}_q$$

Fix bases $\mathbf{e}_1, \mathbf{e}_2, \ldots$ of $\mathbb{F}_q^n, \mathbb{F}_q^m$, and \mathbb{F}_q^k A tensor is determined by its values on the basis vectors

$$\mathcal{C}_{ijl} := \mathcal{C}(\mathbf{e}_i, \mathbf{e}_j, \mathbf{e}_l) \quad \forall i, j, l.$$

An example

A tensor $\mathcal{C}: \mathbb{F}_{101}^4 \times \mathbb{F}_{101}^4 \times \mathbb{F}_{101}^4 \to \mathbb{F}_{101}$:

42	85	6	7	98	3				
53	47	92	63		Τ	88			
37	34	53	T	77	Ť	91	T	62	
66	49	85		39	6	66		85	24
	71	67	7	71	4	19		52	90
		42	8	37	6	53		33	76
			2	11	ç	94		68	55

We can transform tensors by applying linear transformations to its arguments

We can transform tensors by applying linear transformations to its arguments $(\mathbf{A}, \mathbf{B}, \mathbf{T}) \in \operatorname{GL}_n(q) \times \operatorname{GL}_m(q) \times \operatorname{GL}_k(q)$ maps a tensor \mathcal{C} to a tensor \mathcal{D} given by

 $\mathcal{D}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathcal{C}(\mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{y}, \mathbf{T}\mathbf{z})$

We can transform tensors by applying linear transformations to its arguments $(\mathbf{A}, \mathbf{B}, \mathbf{T}) \in \operatorname{GL}_n(q) \times \operatorname{GL}_m(q) \times \operatorname{GL}_k(q)$ maps a tensor \mathcal{C} to a tensor \mathcal{D} given by $\mathcal{D}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathcal{C}(\mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{y}, \mathbf{T}\mathbf{z})$

This is a group action of $GL_n(q) \times GL_m(q) \times GL_k(q)$ on the space of tensors

We can transform tensors by applying linear transformations to its arguments $(\mathbf{A}, \mathbf{B}, \mathbf{T}) \in \operatorname{GL}_n(q) \times \operatorname{GL}_m(q) \times \operatorname{GL}_k(q)$ maps a tensor \mathcal{C} to a tensor \mathcal{D} given by $\mathcal{D}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathcal{C}(\mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{y}, \mathbf{T}\mathbf{z})$

This is a group action of $GL_n(q) \times GL_m(q) \times GL_k(q)$ on the space of tensors Two tensors are isomorphic if they are in the same orbit

3-TI (*n*, *m*, *k*, *q***)**

Let \mathcal{C}, \mathcal{D} be two $n \times m \times k$ tensors over \mathbb{F}_q . The 3-TI problem asks to find, if any exists, a triplet of matrices $\mathbf{A}, \mathbf{B}, \mathbf{T} \in GL_n(q) \times GL_m(q) \times GL_k(q)$ such that:

$$\mathcal{C}(\mathsf{Ax},\mathsf{By},\mathsf{Tz})=\mathcal{D}(\mathsf{x},\mathsf{y},\mathsf{z}) \qquad orall \, \mathsf{x}\in\mathbb{F}_q^n,\mathsf{y}\in\mathbb{F}_q^m,\mathsf{z}\in\mathbb{F}_q^k$$

We can consider just a subset of structured tensors, for example, alternating tensors

We can consider just a subset of structured tensors, for example, alternating tensors

Alternating trilinear forms are $n \times n \times n$ tensors ϕ such that

$$\phi(\mathbf{x}, \mathbf{x}, -) = \phi(\mathbf{x}, -, \mathbf{x}) = \phi(-, \mathbf{x}, \mathbf{x}) = \mathbf{0}$$

$$\phi(\mathbf{x}, \mathbf{y}, -) = -\phi(\mathbf{y}, \mathbf{x}, -) \quad \text{and} \quad \phi(\mathbf{x}, -, \mathbf{z}) = -\phi(\mathbf{z}, -, \mathbf{x})$$

We can consider just a subset of structured tensors, for example, alternating tensors

Alternating trilinear forms are $n \times n \times n$ tensors ϕ such that

$$\phi(\mathbf{x}, \mathbf{x}, -) = \phi(\mathbf{x}, -, \mathbf{x}) = \phi(-, \mathbf{x}, \mathbf{x}) = \mathbf{0}$$

$$\phi(\mathbf{x}, \mathbf{y}, -) = -\phi(\mathbf{y}, \mathbf{x}, -) \quad \text{and} \quad \phi(\mathbf{x}, -, \mathbf{z}) = -\phi(\mathbf{z}, -, \mathbf{x})$$

This imposes additional constraints on transformations A, B, T

	Tensor constraint $\forall i, j, k$	Matrix constraint (induced)	Equivalent problem	Used in
Unstructured	-	-	MCE	MEDS
Alternating	$egin{aligned} \mathcal{C}_{ijk} &= -\mathcal{C}_{jik} \ \mathcal{C}_{ijk} &= -\mathcal{C}_{kji} \end{aligned}$	$\mathbf{A} = \mathbf{B} = \mathbf{T}$	ATFE	ALTEQ

	Tensor constraint $\forall i, j, k$	Matrix constraint (induced)	Equivalent problem
Unstructured	-	-	MCE
Alternating	${\cal C}_{ijk}=-{\cal C}_{jik}\ {\cal C}_{ijk}=-{\cal C}_{kji}$	$\mathbf{A} = \mathbf{B} = \mathbf{T}$	ATFE
Symmetric	$egin{aligned} \mathcal{C}_{ijk} &= \mathcal{C}_{jik} \ \mathcal{C}_{ijk} &= \mathcal{C}_{kji} \end{aligned}$	$\mathbf{A} = \mathbf{B} = \mathbf{T}$	Cubic-IP
Partial Symmetric	$\mathcal{C}_{ijk}=\mathcal{C}_{jik}$	$\mathbf{A} = \mathbf{B}$	QMLE

Algorithms for solving TI

Prior work:

- Algebraic modeling
- Collision-based
- Graph-based

Prior work:

- Algebraic modeling
- Collision-based
- Graph-based

This work:

• Subgraph collision

Elements $\mathbf{x}, \mathbf{x}' \in \mathbb{F}_q^n$ are a collision for **A** when

$$Ax = x'$$

This provides us linear relations for $\boldsymbol{\mathsf{A}}$

Elements $\mathbf{x}, \mathbf{x}' \in \mathbb{F}_q^n$ are a collision for **A** when

$$Ax = x'$$

This provides us linear relations for $\boldsymbol{\mathsf{A}}$

Also yields quadratic equations

$$\mathcal{C}(\textbf{x}',\textbf{B}\textbf{y},\textbf{T}\textbf{z})=\mathcal{D}(\textbf{x},\textbf{y},\textbf{z})$$

From two collisions $(\mathbf{x}_1, \mathbf{x}_1')$ and $(\mathbf{x}_2, \mathbf{x}_2')$ for **A** we obtain

$$\begin{split} \mathcal{C}(\mathbf{x}_1',\mathbf{B}\mathbf{y},\mathbf{z}) &= \mathcal{D}(\mathbf{x}_1,\mathbf{y},\mathbf{T}^{-1}\mathbf{z})\\ \mathcal{C}(\mathbf{x}_2',\mathbf{B}\mathbf{y},\mathbf{z}) &= \mathcal{D}(\mathbf{x}_2,\mathbf{y},\mathbf{T}^{-1}\mathbf{z}) \end{split}$$

From two collisions $(\mathbf{x}_1, \mathbf{x}_1')$ and $(\mathbf{x}_2, \mathbf{x}_2')$ for **A** we obtain

$$egin{aligned} \mathcal{C}(\mathbf{x}_1',\mathbf{B}\mathbf{y},\mathbf{z}) &= \mathcal{D}(\mathbf{x}_1,\mathbf{y},\mathbf{T}^{-1}\mathbf{z}) \ \mathcal{C}(\mathbf{x}_2',\mathbf{B}\mathbf{y},\mathbf{z}) &= \mathcal{D}(\mathbf{x}_2,\mathbf{y},\mathbf{T}^{-1}\mathbf{z}) \end{aligned}$$

This yields 2mk linear equations in $m^2 + k^2$ variables

To each $n \times m \times k$ tensor $\mathcal C$ over $\mathbb F_q$, we can associate a graph

To each $n \times m \times k$ tensor $\mathcal C$ over $\mathbb F_q$, we can associate a graph

$$egin{aligned} \mathcal{V}_{\mathcal{C}} =& \mathbb{P}(\mathbb{F}_q^n) \cup \mathbb{P}(\mathbb{F}_q^m) \cup \mathbb{P}(\mathbb{F}_q^k) \ \mathcal{E}_{\mathcal{C}} =& \{(\mathbf{x},\mathbf{y}) \in \mathbb{P}(\mathbb{F}_q^n) imes \mathbb{P}(\mathbb{F}_q^m) \mid \mathcal{C}(\mathbf{x},\mathbf{y},-) = \mathbf{0}\} \ & \cup \{(\mathbf{x},\mathbf{z}) \in \mathbb{P}(\mathbb{F}_q^n) imes \mathbb{P}(\mathbb{F}_q^k) \mid \mathcal{C}(\mathbf{x},-,\mathbf{z}) = \mathbf{0}\} \ & \cup \{(\mathbf{y},\mathbf{z}) \in \mathbb{P}(\mathbb{F}_q^m) imes \mathbb{P}(\mathbb{F}_q^k) \mid \mathcal{C}(-,\mathbf{y},\mathbf{z}) = \mathbf{0}\} \end{aligned}$$

To each $n \times m \times k$ tensor $\mathcal C$ over $\mathbb F_q$, we can associate a graph

$$egin{aligned} \mathcal{V}_{\mathcal{C}} =& \mathbb{P}(\mathbb{F}_q^n) \cup \mathbb{P}(\mathbb{F}_q^m) \cup \mathbb{P}(\mathbb{F}_q^k) \ \mathcal{E}_{\mathcal{C}} =& \{(\mathbf{x},\mathbf{y}) \in \mathbb{P}(\mathbb{F}_q^n) imes \mathbb{P}(\mathbb{F}_q^m) \mid \mathcal{C}(\mathbf{x},\mathbf{y},-) = \mathbf{0}\} \ & \cup \{(\mathbf{x},\mathbf{z}) \in \mathbb{P}(\mathbb{F}_q^n) imes \mathbb{P}(\mathbb{F}_q^k) \mid \mathcal{C}(\mathbf{x},-,\mathbf{z}) = \mathbf{0}\} \ & \cup \{(\mathbf{y},\mathbf{z}) \in \mathbb{P}(\mathbb{F}_q^m) imes \mathbb{P}(\mathbb{F}_q^k) \mid \mathcal{C}(-,\mathbf{y},\mathbf{z}) = \mathbf{0}\} \end{aligned}$$

Note:

- This is a tripartite graph
- It has $q^{n-1} + q^{m-1} + q^{k-1}$ vertices!

Tensor graph: an example

$$\mathcal{C}: \mathbb{F}_5^3 imes \mathbb{F}_5^3 imes \mathbb{F}_5^3 o \mathbb{F}_5$$

Tensor-graph isomorphism

A tensor isomorphism $(\textbf{A},\textbf{B},\textbf{T}):\mathcal{C}\rightarrow\mathcal{D}$ induces a graph isomorphism

$$egin{aligned} \mathcal{V}_\mathcal{D} &
ightarrow \mathcal{V}_\mathcal{C} \ & \mathbf{v} &
ightarrow egin{cases} \mathbf{A} v & ext{if } v \in \mathbb{P}(\mathbb{F}_q^n) \ \mathbf{B} v & ext{if } v \in \mathbb{P}(\mathbb{F}_q^m) \ \mathbf{T} v & ext{if } v \in \mathbb{P}(\mathbb{F}_q^k) \end{aligned}$$

Tensor-graph isomorphism

A tensor isomorphism $(\textbf{A},\textbf{B},\textbf{T}):\mathcal{C}\rightarrow\mathcal{D}$ induces a graph isomorphism

$$egin{aligned} \mathcal{V}_\mathcal{D} &
ightarrow \mathcal{V}_\mathcal{C} \ & \mathbf{v} &
ightarrow egin{cases} \mathbf{A} v & ext{if } v \in \mathbb{P}(\mathbb{F}_q^n) \ & \mathbf{B} v & ext{if } v \in \mathbb{P}(\mathbb{F}_q^m) \ & \mathbf{T} v & ext{if } v \in \mathbb{P}(\mathbb{F}_q^k) \end{aligned}$$

$$\mathbf{0} = \mathcal{D}(\mathbf{x}, \mathbf{y}, -) = \mathcal{C}(\mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{y}, -)$$

A new invariant: Triangles

Example

Definition

Let C be a $n \times m \times k$ tensor over \mathbb{F}_q . A *triangle* for C is a triplet $(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \mathbb{P}(\mathbb{F}_q^n) \times \mathbb{P}(\mathbb{F}_q^m) \times \mathbb{P}(\mathbb{F}_q^k)$ such that

$$\mathcal{C}(\mathbf{u},\mathbf{v},-)=\mathcal{C}(\mathbf{u},-,\mathbf{w})=\mathcal{C}(-,\mathbf{v},\mathbf{w})=\mathbf{0}.$$

For a tensor $6 \times 6 \times 6$ tensor C, the coefficients in the gray positions should be zero for $(\mathbf{e}_1, \mathbf{e}_1, \mathbf{e}_1)$ to be a triangle.

Intuitively:

- (n-1) + (m-1) + (k-1) degrees of freedom
- n + m + k 2 constraints (gray cells)

Intuitively:

•
$$(n-1)+(m-1)+(k-1)$$
 degrees of freedom

•
$$n + m + k - 2$$
 constraints (gray cells)

Rigorously:

$$rac{1}{q} - \mathcal{O}(q^{-2}) \leq \mathbb{P}_{\mathcal{C}}(\mathcal{C} ext{ has a unique triangle}) \leq rac{1}{q} + \mathcal{O}(q^{-2})$$

Using the new invariant

- (1) Find a triangle for ${\cal C}$ if it exists (probability 1/q)
- $(2)\,$ If so, find the triangle for ${\cal D}$
- $(3)\,$ Add the 3-point collision to the algebraic model
- (4) Solve!

An algebraic approach

We work in the polynomial ring $\mathbb{F}_q[x_2,\ldots,x_n,y_2,\ldots,y_m,z_2,\ldots,z_k]$ and denote

$$\mathbf{x} = [1, x_2, \dots, x_n]$$
 $\mathbf{y} = [1, y_2, \dots, y_m]$ $\mathbf{z} = [1, z_2, \dots, z_k]$

We work in the polynomial ring $\mathbb{F}_q[x_2, \ldots, x_n, y_2, \ldots, y_m, z_2, \ldots, z_k]$ and denote

$$\mathbf{x} = [1, x_2, \dots, x_n]$$
 $\mathbf{y} = [1, y_2, \dots, y_m]$ $\mathbf{z} = [1, z_2, \dots, z_k]$

Then look for solutions of the following system:

$$\begin{cases} \mathcal{C}(\mathbf{x}, \mathbf{y}, \mathbf{e}_i) = 0 & \text{ for } 1 \le i \le k \\ \mathcal{C}(\mathbf{x}, \mathbf{e}_i, \mathbf{z}) = 0 & \text{ for } 1 \le i \le m \\ \mathcal{C}(\mathbf{e}_i, \mathbf{y}, \mathbf{z}) = 0 & \text{ for } 1 \le i \le n \end{cases}$$

We work in the polynomial ring $\mathbb{F}_q[x_2, \ldots, x_n, y_2, \ldots, y_m, z_2, \ldots, z_k]$ and denote

$$\mathbf{x} = [1, x_2, \dots, x_n]$$
 $\mathbf{y} = [1, y_2, \dots, y_m]$ $\mathbf{z} = [1, z_2, \dots, z_k]$

Then look for solutions of the following system:

$$\begin{cases} \mathcal{C}(\mathbf{x}, \mathbf{y}, \mathbf{e}_i) = 0 & \text{ for } 1 \le i \le k \\ \mathcal{C}(\mathbf{x}, \mathbf{e}_i, \mathbf{z}) = 0 & \text{ for } 1 \le i \le m \\ \mathcal{C}(\mathbf{e}_i, \mathbf{y}, \mathbf{z}) = 0 & \text{ for } 1 \le i \le n \end{cases}$$

Solve this using tri-graded XL

The 3-point collision yields the following constraints on $\mathbf{A}, \mathbf{B}, \mathbf{T}$:

$$\mathbf{A} = \begin{bmatrix} \lambda & \mathbf{A}_{12} \\ \mathbf{0}_{(n-1)\times 1} & \mathbf{A}_{22} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & \mathbf{B}_{12} \\ \mathbf{0}_{(n-1)\times 1} & \mathbf{B}_{22} \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} 1 & \mathbf{T}_{12} \\ \mathbf{0}_{(n-1)\times 1} & \mathbf{T}_{22} \end{bmatrix}$$

The 3-point collision yields the following constraints on A, B, T:

$$\mathbf{A} = \begin{bmatrix} \lambda & \mathbf{A}_{12} \\ \mathbf{0}_{(n-1)\times 1} & \mathbf{A}_{22} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & \mathbf{B}_{12} \\ \mathbf{0}_{(n-1)\times 1} & \mathbf{B}_{22} \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} 1 & \mathbf{T}_{12} \\ \mathbf{0}_{(n-1)\times 1} & \mathbf{T}_{22} \end{bmatrix}$$

Empirically, the resulting system was linearizable in degree 2

Triangles for ATFE

What is a triangle

Our previous definition no longer works

Recall
$$\phi(\mathbf{x}, \mathbf{x}, -) = \phi(\mathbf{x}, -, \mathbf{x}) = \phi(-, \mathbf{x}, \mathbf{x}) = \mathbf{0}$$

Any triple $(\mathbf{v}, \mathbf{v}, \mathbf{v})$ would be a triangle!

Our previous definition no longer works

Recall
$$\phi(\mathbf{x}, \mathbf{x}, -) = \phi(\mathbf{x}, -, \mathbf{x}) = \phi(-, \mathbf{x}, \mathbf{x}) = \mathbf{0}$$

Any triple $(\mathbf{v}, \mathbf{v}, \mathbf{v})$ would be a triangle!

Definition

Let ϕ be an alternating trilinear form over \mathbb{F}_q . A triangle for ϕ is a 3-dimensional subspace $T \in \mathbb{F}_q^n$ such that

$$\phi(\mathbf{v},\mathbf{w},-)=0 \quad \forall \ \mathbf{v},\mathbf{w} \in \mathcal{T}.$$

Probability of triangle $\langle e_1, e_2, e_3 \rangle$

For an ATF ϕ , the coefficients in the dark gray positions should be zero for $\langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ to be a triangle. The coefficients in the light gray positions are zero by alternatingness

Probability of triangle $\langle e_1, e_2, e_3 \rangle$

For an ATF ϕ , the coefficients in the dark gray positions should be zero for $\langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$ to be a triangle. The coefficients in the light gray positions are zero by alternatingness

For sufficiently high $n \ (\geq 9)$ we again have

$$rac{1}{q} - \mathcal{O}(q^{-2}) \leq \mathbb{P}_{\phi}(\phi ext{ has a unique triangle}) \leq rac{1}{q} + \mathcal{O}(q^{-2})$$

Finding the triangle algebraically

Work in the ring $\mathbb{F}_q[x_4, \ldots, x_n, y_4, \ldots, y_n, z_4, \ldots, z_n]$ and denote

$$\mathbf{x} = [1, 0, 0, x_4, \dots, x_n]$$
 $\mathbf{y} = [0, 1, 0, y_4, \dots, y_n]$ $\mathbf{z} = [0, 0, 1, z_4, \dots, z_n]$

Finding the triangle algebraically

Work in the ring $\mathbb{F}_q[x_4, \ldots, x_n, y_4, \ldots, y_n, z_4, \ldots, z_n]$ and denote

$$\mathbf{x} = [1, 0, 0, x_4, \dots, x_n]$$
 $\mathbf{y} = [0, 1, 0, y_4, \dots, y_n]$ $\mathbf{z} = [0, 0, 1, z_4, \dots, z_n]$

Now, our system for finding a triangle looks as follows:

$$\left\{ egin{aligned} \phi(\mathbf{x},\mathbf{y},\mathbf{e}_i) &= 0 \ \phi(\mathbf{y},\mathbf{z},\mathbf{e}_i) &= 0 \ \phi(\mathbf{z},\mathbf{x},\mathbf{e}_i) &= 0 \end{aligned}
ight. orall 1 \leq i \leq n \end{array}
ight.$$

We solve using tri-graded XL again

		Actual		Predi	cted
п	Time	Memory	d _{solv}	\mathbf{d}_{reg}	$\mathbf{d}_{f\!f}$
12	29 s	96 MB	4	11	8
13	490 s	850 MB	4	12	9
14	30 h	29 GB	5	13	10

This is no longer a 3-point collision!

This is no longer a 3-point collision!

For the alternating variant we get the following constraint on A instead:

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{0}_{(n-3) imes 3} & \mathbf{A}_{22} \end{bmatrix}$$

Solving this system took at most 3 hours for all security levels

Complexity results

The \log_2 complexity estimates for solving MCE (with probability 1/q) in field operations. The parameters are taken from the MEDS specifications. We use the solving degree as an estimator here.

	п	q	Specs	Best previous ¹	This work (prob $1/q$)
Level I	14	4093	147	95	90
Level III	22	4093	217	145	143 📩
Level V	30	2039	276	180	197 💽

¹"Algorithms for matrix code and alternating trilinear form equivalences via new isomorphism invariants." by A. K. Narayanan, Y. Qiao, and G. Tang

The log₂ complexity for solving ATFE (with probability 1/q) in field operations. The parameters are taken from the ALTEQ specifications. We use the solving degree as an estimator here. In all cases $q = 2^{32} - 5$.

	п	Specs	Best previous ²	This work (prob $1/q$)	practical
Level I	13	143	120	62	1501 s
Level III	20	219	165	108	
Level V	25	276	203	141	

 $^{2\prime\prime}$ Algebraic algorithm for the alternating trilinear form equivalence problem." by L. Ran, S. Samardjiska, and M. Trimoska

Thanks for listening!

Bonus slides

MCE:

$$\mathcal{H}(r,s,t) = rac{(1-rs)^k(1-rt)^m(1-st)^n(1-rst)^{-2}}{(1-r)^{n-1}(1-s)^{m-1}(1-t)^{k-1}}$$

ATFE:

$$\begin{split} \mathcal{S}(r,s,t) &= (1-r^2s)(1-rs^2)(1-s^2t)(1-st^2)(1-t^2r)(1-tr^2)(1-rst)^2\\ \mathcal{H}(r,s,t) &= \frac{(1-rs)^n(1-rt)^n(1-st)^n}{(1-r)^{n-2}(1-s)^{n-2}(1-t)^{n-2}} \cdot \mathcal{S}^{-1} \end{split}$$

	Tri-degree								
(n, m, k)	(1, 1, 1)	(2, 1, 1)	(3, 1, 1)	(2, 2, 1)	(4, 1, 1)	(3, 2, 1)	(2, 2, 2)		
(7,7,7)	2	61	336	772	1141	_			
(8,8,8)	2	78	504	1174	1960	6356	11601		
(9,9,9)	2	97	720	1694	3156	10512	e H		
(8,7,7)	2	63	399	882	1540	4599/4620	7969/8064		
(9,8,8)	2	80	584	1316	2544	7896	13907		

	Tri-degree									
п	(2, 2, 0)	(2, 1, 1)	(4, 1, 0)	(3, 2, 0)	(3, 1, 1)	(2, 2, 1)	(5, 1, 0)	(4, 2, 0)	(3, 3, 0)	
12	86	184	55	803	1726	4002	220/221	4281/4282	7241/7242	
13	100	213	66	1032	2207	5140	286/287	6018/6019	10319/10320	
14	115	244	78	1300	2768	6472	364	8231	14277	
15	131	277	91	1610	3415	8013	455	10999		
16	148	312	105	1965	4154	9778	560			
17	166	349	120	2368	4991					
18	185	388	136	2822	5932					
19	205	429	153	3330						
20	226	472	171	3895						