
Simple Definitions, and Tight Proofs for PSI and OPRFs

The Concrete Security of Two-Party Computation

Mihir Bellare, University of California San Diego
Rishabh Ranjan, University of California San Diego
Doreen Riepel, CISPA Helmholtz Center for Information Security
Ali Aldakheel, King Abdulaziz City for Science and Technology

What is two party computation (2PC)?

 : Private input of party xi i ∈ {1,2}
 : The 2PC functionalityF

 : Protocol to compute Π F

21x1 x2

F(x1, x2)[1] F(x1, x2)[2]

Security: Party should not
learn more about than it could

compute from .

i ∈ {1,2}
x3−i

F(x1, x2)[i]

Example: Private Set Intersection ()Fpsi

Fpsi(x1, x2)[1] Fpsi(x1, x2)[2]

(x1 ∩ x2, |x2 |) |x1 |

Theory Practice

2PC research

Protocols for arbitrary functionalities

Security Proofs based on general
assumptions like OT, OWFs etc.

Polynomial time protocols

Asymptotic Security

Theory Practice

2PC research

Protocols for arbitrary functionalities Protocols for particular Functionalities
(eg. PSI, OPRF)

Security Proofs based on general
assumptions like OT, OWFs etc.

Polynomial time protocols

Asymptotic Security

Security Proofs in the Random Oracle
Model, based on particular computational
assumptions (eg. Discrete log)

Fast protocols

Theory Practice

2PC research

Protocols for arbitrary functionalities Protocols for particular Functionalities
(eg. PSI, OPRF)

Security Proofs based on general
assumptions like OT, OWFs etc.

Polynomial time protocols

Asymptotic Security

Security Proofs in the Random Oracle
Model, based on particular computational
assumptions (eg. Discrete log)

Fast protocols

Concrete Security

Theory Practice

2PC research

Protocols for arbitrary functionalities Protocols for particular Functionalities
(eg. PSI, OPRF)

Security Proofs based on general
assumptions like OT, OWFs etc.

Polynomial time protocols

Asymptotic Security

Security Proofs in the Random Oracle
Model, based on particular computational
assumptions (eg. Discrete log)

Fast protocols

Concrete Security

Can’t pick parameters to guarantee a desired level of proven security.
Unclear how many bits of security an implementation provides.

Theory Practice

2PC research

Protocols for arbitrary functionalities Protocols for particular Functionalities
(eg. PSI, OPRF)

Security Proofs based on general
assumptions like OT, OWFs etc.

Polynomial time protocols

Asymptotic Security

Security Proofs in the Random Oracle
Model, based on particular computational
assumptions (eg. Discrete log)

Fast protocols

Concrete Security

We fill this gap
Now can pick parameters to guarantee a desired level of
proven security for an implementation.

Initiate the study of concrete security
for Two Party Computation

1. Definitions
Input Indistinguishability (InI): A 2PC security definition that

- Is indistinguishability based
- Yet equivalent to simulation for PSI and friends
- Concrete security and cryptanalysis friendly

Our contributions in brief

Initiate the study of concrete security
for Two Party Computation

1. Definitions
Input Indistinguishability (InI): A 2PC security definition that

- Is indistinguishability based
- Yet equivalent to simulation for PSI and friends
- Concrete security and cryptanalysis friendly

Definitions explicitly incorporate ROM and
surface subtleties in this regard

Our contributions in brief

Initiate the study of concrete security
for Two Party Computation

1. Definitions
Input Indistinguishability (InI): A 2PC security definition that

- Is indistinguishability based
- Yet equivalent to simulation for PSI and friends
- Concrete security and cryptanalysis friendly

Definitions explicitly incorporate ROM and
surface subtleties in this regard

2. Concrete security results for PSI and OPRFs

CDH, V-CDH, CDH-MUC
non-tight

2H-DH
OPRF

tight
DH-PSI

V-CDH-MUC, DDH tight

Our contributions in brief

Initiate the study of concrete security
for Two Party Computation

1. Definitions
Input Indistinguishability (InI): A 2PC security definition that

- Is indistinguishability based
- Yet equivalent to simulation for PSI and friends
- Concrete security and cryptanalysis friendly

Definitions explicitly incorporate ROM and
surface subtleties in this regard

2. Concrete security results for PSI and OPRFs

CDH, V-CDH, CDH-MUC
non-tight

2H-DH
OPRF

tight
DH-PSI

V-CDH-MUC, DDH tight

3. Salted DH-PSI
New PSI protocol, as efficient as DH-PSI, but

CDH, CDH-MUC
more tight

Salted
DH-PSIV-CDH, V-CDH-MUC, DDH

tight

Our contributions in brief

Initiate the study of concrete security
for Two Party Computation

1. Definitions
Input Indistinguishability (InI): A 2PC security definition that

- Is indistinguishability based
- Yet equivalent to simulation for PSI and friends
- Concrete security and cryptanalysis friendly

Definitions explicitly incorporate ROM and
surface subtleties in this regard

2. Concrete security results for PSI and OPRFs

CDH, V-CDH, CDH-MUC
non-tight

2H-DH
OPRF

tight
DH-PSI

V-CDH-MUC, DDH tight

3. Salted DH-PSI
New PSI protocol, as efficient as DH-PSI, but

CDH, CDH-MUC
more tight

Salted
DH-PSIV-CDH, V-CDH-MUC, DDH

tight

Our definitions and results are for the semi-honest
(honest-but-curious) setting

Our contributions in brief

Opens up new research directions:

Remarks

- Give concrete security results for existing 2PC protocols

- Give new protocols with tight security

Concrete security started with Bellare and Rogaway in the 1990s.

It is the norm in proofs for symmetric cryptography, applied public-key
cryptography and authenticated key exchange.

Large body of work on proof/reduction tightness in these areas.

We are bringing this to 2PC and PSI.

Allows sound choices of parameters (groups) in practice for a
desired number of bits of security.

Work on concrete security of garbling schemes [BHKR13, ZRE14, GKWWY19, GLNP23,…].

Plan

Background: Asymptotic and Concrete security

Definitions and Relations

Results for DH PSI

Salted DH-PSI

Asymptotic
Security

Concrete
Security

Given: A protocol or scheme Π
That targets achieving a security notion T

Based on the assumption that problem is hardP

Asymptotic
Security

Concrete
Security

Given: A protocol or scheme Π
That targets achieving a security notion T

Based on the assumption that problem is hardP
ReductionA A′

Adversary attacking
 -security of T Π

Adversary
 attacking P

Asymptotic
Security

Concrete
Security

Given: A protocol or scheme Π
That targets achieving a security notion T

Based on the assumption that problem is hardP
ReductionA A′

Adversary attacking
 -security of T Π

Adversary
 attacking P

If runs in
polynomial time

and has advantage that is
not negligible
then runs in

polynomial time
and has advantage that is

not negligible

A

A′

Asymptotic
Security

Concrete
Security

Given: A protocol or scheme Π

If runs in
polynomial time

and has advantage that is
not negligible
then runs in

polynomial time
and has advantage that is

not negligible

A

A′

That targets achieving a security notion T
Based on the assumption that problem is hardP

ReductionA A′

Adversary attacking
 -security of T Π

Adversary
 attacking P

If A runs in time
t
and has advantage that is

then A’ runs in time about
t
and has advantage

 such that

ϵ = AdvT
Π(A)

ϵ′ ϵ ≤ B(ϵ′)

The Bound, eg. B(ϵ′) = 2ϵ′

Asymptotic
Security

How many bits s of security does have
on a bit curve with ?

Π
256 P = DL

s could be close to 0.

?

Concrete
Security

Given: A protocol or scheme Π
That targets achieving a security notion T

Based on the assumption that problem is hardP
ReductionA A′

Adversary attacking
 -security of T Π

Adversary
 attacking P

If A runs in time
t
and has advantage that is

then A’ runs in time about
t
and has advantage

 such that

ϵ = AdvT
Π(A)

ϵ′ ϵ ≤ B(ϵ′)

The Bound, eg. B(ϵ′) = 2ϵ′

s = 127 bits

!

If runs in
polynomial time

and has advantage that is
not negligible
then runs in

polynomial time
and has advantage that is

not negligible

A

A′

Plan

Background: Asymptotic and Concrete security

Definitions and Relations

Results for DH PSI

Salted DH-PSI

Single-quantifier definitions

Concrete-security friendly.
This is the type assumed in the prior

discussion of concrete security.

IND-CPA, IND-CCA, UF-CMA, AKE, …
All indistinguishability-based definitions

All simulation-based definitions.

 ∀A AdvT
Π(A) ≤ ϵ ∃S∀A AdvT

Π,S(A) ≤ ϵ

Double-quantifier definitions

Single-quantifier definitions

Concrete-security friendly.
This is the type assumed in the prior

discussion of concrete security.

IND-CPA, IND-CCA, UF-CMA, AKE, …
All indistinguishability-based definitions

All simulation-based definitions.

Concrete-security unfriendly.
Concrete security would need to bring in

simulator and its running time.

 ∀A AdvT
Π(A) ≤ ϵ ∃S∀A AdvT

Π,S(A) ≤ ϵ

Double-quantifier definitions

Intuitively capture strong security.
Traditional in 2PC.

General composition theorems.

Single-quantifier definitions

Concrete-security friendly.
This is the type assumed in the prior

discussion of concrete security.

IND-CPA, IND-CCA, UF-CMA, AKE, …
All indistinguishability-based definitions

All simulation-based definitions.

Concrete-security unfriendly.
Concrete security would need to bring in

simulator and its running time.

 ∀A AdvT
Π(A) ≤ ϵ ∃S∀A AdvT

Π,S(A) ≤ ϵ

Double-quantifier definitions

Can we have the best of both
worlds?

Intuitively capture strong security.
Traditional in 2PC.

General composition theorems.

Single-quantifier definitions

 ∀A AdvT
Π(A) ≤ ϵ ∃S∀A AdvT

Π,S(A) ≤ ϵ

Double-quantifier definitions

Can we have the best of both
worlds?

History says YES
for encryption

Single-quantifier definitions

 ∀A AdvT
Π(A) ≤ ϵ ∃S∀A AdvT

Π,S(A) ≤ ϵ

Double-quantifier definitions

Indistinguishability for public-key
and symmetric encryption

Semantic security for public-key and
symmetric encryption

EQUIVALENT!

[GM,Go,BDJR]

Can we have the best of both
worlds?

History says YES
for encryption

Single-quantifier definitions

 ∀A AdvT
Π(A) ≤ ϵ ∃S∀A AdvT

Π,S(A) ≤ ϵ

Double-quantifier definitions

Can we have something like this
for 2PC?

Indistinguishability for public-key and
symmetric encryption

Semantic security for public-key and
symmetric encryption

EQUIVALENT!

[GM,Go,BDJR]

Can we have something like this
for 2PC?

We say YES
for 2PC

 ∀A AdvT
Π(A) ≤ ϵ ∃S∀A AdvT

Π,S(A) ≤ ϵ

Double-quantifier definitions

InI SIM

EQUIVALENT!
For a class of functionalities

including PSI and friends

[BRRA]

Single-quantifier definitions

Recall: Indistinguishability for (randomized, symmetric) encryption [BDJR97]

b $ {0,1} Challenge bit

K $ Keys

Adversary A

Oracle

Enc

c ←$ ℰK(mb)

(m0, m1)

c

⋮

b′ wins if : A b = b′

Given: Symmetric encryption scheme with key-space ℰ Keys

Advind
ℰ (A) = 2 Pr[b′ = b] − 1

Encryption 2PC

Adversary
provides

Adversary
receives

Restriction to
avoid trivial

win

Inputs for the honest party (say party 2)

Also an input for the dishonest party

x2,0, x2,1

x1
Messages m0, m1

Ciphertext
 C ←$ ℰK(mb)

Conversation transcript, output and coins of dishonest party
from execution of on Π x1, x2,b

From encryption to 2PC

Lengths of
must be equal

m0, m1 and must be equal𝖥(x1, x2,0)[1] 𝖥(x1, x2,1)[1]

Return (τ, y1, y2)

Algorithm XT(x1, x2; ω1, ω2)

Given: Protocol for functionality Π F

We first define algorithm XT that takes
the parties inputs and coins,

and returns
the conversation transcript and party

outputs
from the execution of protocol Π

Inputs of
the parties

Coins of the
parties

21x1 x2

y1 y2

ω1 ω2

{τConversation
Transcript

Output of algorithm XT

Outputs of
the parties

(τ, y1, ω1)

(x1, x2,0, x2,1)

b $ {0,1} Challenge bit

Adversary A

Oracle

Run

ω1, ω2 ←$ coins
(τ, y1, y2) ← XT(x1, x2,b; ω1, ω2)

⋮

b′

Let party be the honest party.

Adversary plays party

2
1

Advini
F,Π,2(A) = 2 ⋅ Pr[Win] − 1

Our Input Indistinguishability (InI) definition for 2PC

Given: Protocol for functionality Π F

One input
for party 1

Two inputs for
party 2

Conversation
Transcript

Output and coins
for party 1

: Win b = b′

Advantage of adversary : A

(τ, y1, ω1)

(x1, x2,0, x2,1)

b $ {0,1} Challenge bit

Adversary A

Oracle

Run

ω1, ω2 ←$ coins
(τ, y1, y2) ← XT(x1, x2,b; ω1, ω2)

⋮

b′

Let party be the honest party.

Adversary plays party

2
1

Advini
F,Π,2(A) = 2 ⋅ Pr[Win] − 1

Our Input Indistinguishability (InI) definition for 2PC

Given: Protocol for functionality Π F

One input
for party 1

Two inputs for
party 2

Conversation
Transcript

Output and coins
for party 1

: Win b = b′

Advantage of adversary : A

Problem!

We know that

So if

then can trivially win.

y1 = F(x1, x2,b)[1]
F(x1, x2,0)[1] ≠ F(x1, x2,1)[1]

A

Let party be the honest party.

Adversary plays party

2
1

Our Input Indistinguishability (InI) definition for 2PC

Given: Protocol for functionality Π F

Problem!

We know that

So if

then can trivially win.

y1 = F(x1, x2,b)[1]
F(x1, x2,0)[1] ≠ F(x1, x2,1)[1]

A

(τ, y1, ω1)

(x1, x2,0, x2,1)

b $ {0,1} Challenge bit

Adversary A

Oracle

Run

ω1, ω2 ←$ coins
(τ, y1, y2) ← XT(x1, x2,b; ω1, ω2)

⋮

b′

Advini
F,Π,2(A) = 2 ⋅ Pr[Win] − 1

One input
for party 1

Two inputs for
party 2

Conversation
Transcript

Output and coins
for party 1

: Win b = b′

Advantage of adversary : A

Require: F(x1, x2,0)[1] = F(x1, x2,1)[1]

Solution

The “Require” check ensures this
does not happen.

Advini
F,Π,2(A) = 2 ⋅ Pr[Gini

F,Π,2(A)] − 1

Pick random oracle H from a scheme-prescribed space OS.
Pick challenge bit b.

Avoid trivial attack by ensuring that result in
the same functionality outputs for the dishonest party.

x2,0, x2,1

Adversary calls Run oracle with a pair of inputs for the honest party

and a single input for the dishonest party. Multiple queries to Run allowed!

x2,0, x2,1

x1

Compute conversation transcript and protocol outputs
for protocol execution with inputs and .x1 x2,b

Input Indistinguishability (InI)

Return conversation transcript, and output and coins of
dishonest party, to adversary.

Advantage of adversary : A

Random Oracle

Takes adversary guess and returns true iff .b′ b′ = b

, AdvX
F,S,Π,2(A) = 2 ⋅ Pr[GX

F,Π,S,2(A)] − 1 for X ∈ {sim, sim-np}

• We specify these using games.

• The games are parameterized by a simulator .

• Similar to InI, the game randomly picks a challenge bit .

• Oracle takes inputs for the parties and returns the view of the dishonest party
(party 1), generated as follows

✴ Case : via execution of the protocol on inputs

✴ Case : by the simulator given the functionality output .

• Difference between SIM and SIM-np is in the output of the random oracle when :
✴ SIM: simulator programs the output of random oracle

✴ SIM-np: same, honest random oracle used for both values of

S
b

Run x1, x2

b = 1 Π x1, x2

b = 0 S F[H](x1, x2)[1]
b = 0

b

Our Simulation-based (SIM, SIM-np) definitions for 2PC

Advantage of adversary : A

Subtle point about RO in SIM

Some functionalities use the random oracle RO.
For example, the functionality F underlying the 2H-DH OPRF.

RO queries are thus made by the adversary, protocol and functionality.
In a programmable-ROM simulation-based definition, we would expect ALL these queries to be
answered by the simulator.

But we show this to be WRONG for functionality queries.
If functionality queries are answered by the simulator, obviously insecure protocols can be
proven secure.
In the paper, we give a counterexample to show this.

Our SIM definition handles this via a new definitional approach.
The game picks an honest random function H which is used to answer functionality queries.
The simulator can access H and must then itself answer adversary and protocol RO queries.

Remarks on our definitions

ROM explicitly incorporated in the games.

Schemes name space OS from which their RO H is drawn to allow scheme-dependent
ranges for H.

RO is not programmed in InI and SIM-np. It is programmed in SIM.

Multiple queries to Run oracle allowed to capture multiple executions of protocol on
different inputs.

We want to see how adversary advantage degrades concretely as a function of the
number of queries it makes to Run.qRun

Relations between
definitions

SIM-np SIM

InI

for invertible
functionalities

 : An Implication
For any protocol for any functionality :
If is -secure then it is also -secure.

A ⟶ B
Π F

Π A B

 : A separation
There exists a protocol for some functionality such that:

 is -secure but NOT -secure.

B ⟶ A
Π F

Π B A

SIM, SIM-np always imply InI

Main Result: InI implies SIM-np and SIM whenever the functionality F satisfies a condition,
called invertibility, that we define.

We show that PSI and related functionalities are invertible.
So for these we have the best-of-both-worlds.

A functionality is invertible with respect to party (here we let) if there exists an efficient
algorithm , called the inverter, such that for every input the check below is always true:

F h h = 2
IA x1, x2

Invertibility

F
x2x1

y1 y2

x1

IA x

Fy′ 1 y

y1 = y′ 1

Given the input and output for party
,

the inverter produces an input for party 2,

such that
.

1
x1, y1

IA
x

F(x1, x)[1] = y1

Invertibility with respect to party 2

The check:

FPSI
x2 ⊆ Ux1 ⊆ U

(x1 ∩ x2, |x2 |) y2

x1

IAPSI x

FPSI
y′ 1 y

Inverter creates the set as follows:

1. Create a set by randomly picking
 elements from .

2. Construct and return .

x

r
|x2 | − |x1 ∩ x2 | U∖x1

x ← r ∪ (x1 ∩ x2)

An inverter with respect to party also exists.1

Invertibility for PSI

Threshold Private Set Intersection ()Ftpsi
t

Ftpsi
t (x1, x2)[1] Ftpsi

t (x1, x2)[2]

(I, |x2 |)

|x1 |I ← {x1 ∩ x2 if x1 ∩ x2 | ≥ t
⊥ otherwise

Cardinality Private Set Intersection ()Fcpsi

Fcpsi(x1, x2)[1] Fcpsi(x1, x2)[2]

(|x1 ∩ x2 | , |x2 |) |x1 |

FriendsInvertibility for PSI and friends

Our paper similarly shows invertibility for numerous
PSI-related functionalities

Conclusion: For PSI and friends
the simple single-quantifier, concrete-security-friendly InI definition

is equivalent to
the double-quantifier, strong SIM definition

This allows us to safely target InI for concrete security

Plan

Background: Asymptotic and Concrete security

Definitions and Relations

Results for DH PSI

Salted DH-PSI

The DH PSI protocol

• Hazay and Lindell [HL08] gave a PSI protocol (HL-PSI) using Oblivious Pseudorandom
Functions (OPRFs).

• Jarecki et. al. [JKK14] give a very efficient and widely used OPRF called 2H-DH.

• We denote by DH-PSI the PSI protocol one gets when HL-PSI is instantiated with 2H-DH.
This is a very efficient and canonical protocol for PSI.

• We give the first concrete-security analysis of DH-PSI.

Note: Our paper arrives at this in a modular way. We:
• Show that HL-PSI is secure if the OPRF is secure, with a tight reduction
• Give concrete security proofs for 2H-DH
• Deduce concrete security results for DH-PSI
In this presentation however we discuss only the DH-PSI results.

• CDH : Regular Computational Diffie-Hellman
• DDH : Regular Decision Diffie-Hellman
• CDH-MUC : CDH in multi-user setting with corruptions
• V-CDH : Verifiable CDH
• V-CDH-MUC : Verifiable CDH-MUC

We prove InI security of the DH-PSI protocol under a few different DL-related
assumptions to showcase the variations in tightness.

Our Assumptions in group underlying the protocol: 𝔾

Our results showing concrete InI security of the DH-PSI protocol

Given: Adversary attacking InI security of
DH-PSI with resources:

A

• queries to its oracle

• queries to its random oracle

qRun RUN
qRO

and achieving advantage ϵ = Advini
𝖥,Π,2(A)

Our results showing concrete InI security of the DH-PSI protocol

Given: Adversary attacking InI security of
DH-PSI with resources:

A We build: Adversary attacking problem P
that has about same running time as A and
achieves advantage

A′

ϵ′ = AdvP
𝔾(A′)• queries to its oracle

• queries to its random oracle

qRun RUN
qRO

and achieving advantage ϵ = Advini
𝖥,Π,2(A)

Our results showing concrete InI security of the DH-PSI protocol

Given: Adversary attacking InI security of
DH-PSI with resources:

A We build: Adversary attacking problem P
that has about same running time as A and
achieves advantage

A′

ϵ′ = AdvP
𝔾(A′)• queries to its oracle

• queries to its random oracle

qRun RUN
qRO

and achieving advantage ϵ = Advini
𝖥,Π,2(A) Such that: ϵ ≤ B(ϵ′ , {qRun, qRO})

Our results showing concrete InI security of the DH-PSI protocol

Problem P Bound

CDH

V-CDH

CDH-MUC

V-CDH-MUC

DDH

B(ϵ′ , {qrun, qRO})

4 ⋅ (q2
RO ⋅ qRun ⋅ ϵ′ + α)

4 ⋅ (qRO ⋅ qRun ⋅ ϵ′ + α)

4 ⋅ (qRO ⋅ ϵ′ + α)

4 ⋅ (ϵ′ + α)

4 ⋅ (ϵ′ + α)

α =
(qRO ⋅ qRun) + qRO + 1

p

 : order of the group underlying the problemsp 𝔾

Given: Adversary attacking InI security of
DH-PSI with resources:

A We build: Adversary attacking problem P
that has about same running time as A and
achieves advantage

A′

ϵ′ = AdvP
𝔾(A′)• queries to its oracle

• queries to its random oracle

qRun RUN
qRO

and achieving advantage ϵ = Advini
𝖥,Π,2(A) Such that: ϵ ≤ B(ϵ′ , {qrun, qRO})

Tight reductions!

Plan

Background: Asymptotic and Concrete security

Definitions and Relations

Results for DH PSI

Salted DH-PSI

Salted DH-PSI protocol

• We present a new PSI protocol that we call Salted DH-PSI. It is as asymptotically as
efficient as DH-PSI but achieves tighter security. So in practice it can be implemented in
smaller groups, improving concrete efficiency.

• The idea behind Salted DH-PSI is similar to the one used in PSS [BR96] which is a RSA
based signature scheme that is as efficient as FDH-RSA [BR93,BR96] but uses salting to
get a tight reduction to the one-wayness of RSA.

• With the addition of a salt, there's also a parameter, the salt-length, , which appears in
our security results.

sl

Bounds for Salted DH-PSI versus DH-PSI

 : order of the
group underlying
the problems

p
𝔾

DH-PSI

α =
(qRO ⋅ qRun) + qRO + 1

p

Salted DH-PSI

β =
qRun ⋅ (qRun + qRO)

2sl
+

(qRO + 1)
p

 : length of salt used in Salted DH-PSIsl

Problem P Bound for DH-PSI

CDH

V-CDH

CDH-MUC

V-CDH-MUC

DDH

4 ⋅ (q2
RO ⋅ qRun ⋅ ϵ′ + α)

4 ⋅ (qRO ⋅ qRun ⋅ ϵ′ + α)

4 ⋅ (qRO ⋅ ϵ′ + α)

4 ⋅ (ϵ′ + α)

4 ⋅ (ϵ′ + α)

B Bound Salted DH-PSIB

2 ⋅ (qRO ⋅ ϵ′ + β)

2 ⋅ (ϵ′ + β)

2 ⋅ (qRO ⋅ ϵ′ + β)

2 ⋅ (ϵ′ + β)

2 ⋅ (ϵ′ + β)

Plan

Background: Asymptotic and Concrete security

Definitions and Relations

Results for DH PSI

Salted DH-PSI

Summary and Conclusions
Initiate the study of concrete security for Two Party Computation

1. Definitions
Input Indistinguishability (InI): A 2PC security definition that

- Is indistinguishability based
- Yet equivalent to simulation for PSI and friends
- Concrete security and cryptanalysis friendly

Definitions explicitly incorporate ROM and
surface subtleties in this regard

2. Concrete security results for PSI and OPRFs

CDH, V-CDH, CDH-MUC
non-tight

2H-DH
OPRF

tight

DH-PSI
V-CDH-MUC, DDH tight

3. Salted DH-PSI
New PSI protocol, as efficient as DH-PSI, but

CDH, CDH-MUC
more tight

Salted
DH-PSIV-CDH, V-CDH-MUC, DDH

tight

Our definitions and results are for the semi-honest
(honest-but-curious) setting

