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What is two party computation (2PC)?

 : Private input of party xi i ∈ {1,2}
 : The 2PC functionalityF

 : Protocol to compute Π F

21x1 x2

F(x1, x2)[1] F(x1, x2)[2]

Security: Party  should not 
learn more about  than it could 

compute from .

i ∈ {1,2}
x3−i

F(x1, x2)[i]

Example: Private Set Intersection ( )Fpsi

Fpsi(x1, x2)[1] Fpsi(x1, x2)[2]

(x1 ∩ x2, |x2 | ) |x1 |
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Protocols for arbitrary functionalities Protocols for particular Functionalities 
(eg. PSI, OPRF)

Security Proofs based on general 
assumptions like OT, OWFs etc.

Polynomial time protocols

Asymptotic Security

Security Proofs in the Random Oracle 
Model, based on particular computational 
assumptions (eg. Discrete log)

Fast protocols

Concrete Security

We fill this gap  
Now can pick parameters to guarantee a desired level of 
proven security for an implementation.
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-  Is indistinguishability based 
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Definitions explicitly incorporate ROM and 
surface subtleties in this regard

2. Concrete security results for PSI and OPRFs

CDH, V-CDH, CDH-MUC
non-tight

2H-DH 
OPRF

tight
DH-PSI

V-CDH-MUC, DDH tight

3. Salted DH-PSI
New PSI protocol, as efficient as DH-PSI, but 

CDH, CDH-MUC
more tight

Salted 
DH-PSIV-CDH, V-CDH-MUC, DDH

tight

Our definitions and results are for the semi-honest 
(honest-but-curious) setting

Our contributions in brief



Opens up new research directions:

Remarks

- Give concrete security results for existing 2PC protocols 

- Give new protocols with tight security

Concrete security started with Bellare and Rogaway in the 1990s.

It is the norm in proofs for symmetric cryptography, applied public-key 
cryptography and authenticated key exchange.

Large body of work on proof/reduction tightness in these areas.

We are bringing this to 2PC and PSI.

Allows sound choices of parameters (groups) in practice for a 
desired number of bits of security.

Work on concrete security of garbling schemes [BHKR13, ZRE14, GKWWY19, GLNP23,…].
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Asymptotic 
Security

Concrete 
Security

Given: A protocol or scheme Π

If  runs in 
polynomial time 

and has advantage that is 
not negligible 
then  runs in 

polynomial time 
and has advantage that is 

not negligible 

A

A′ 

That targets achieving a security notion T
Based on the assumption that problem  is hardP

ReductionA A′ 

Adversary attacking 
 -security of T Π

Adversary 
 attacking P

If A runs in time 
t 
and has advantage that is 

 
then A’ runs in time about 
t 
and has advantage 

 such that 

ϵ = AdvT
Π(A)

ϵ′ ϵ ≤ B(ϵ′ )

The Bound, eg. B(ϵ′ ) = 2ϵ′ 



Asymptotic 
Security

How many bits s of security does  have 
on a  bit curve with ?

Π
256 P = DL

s could be close to 0.

?

Concrete 
Security

Given: A protocol or scheme Π
That targets achieving a security notion T

Based on the assumption that problem  is hardP
ReductionA A′ 

Adversary attacking 
 -security of T Π

Adversary 
 attacking P

If A runs in time 
t 
and has advantage that is 

 
then A’ runs in time about 
t 
and has advantage 

 such that 

ϵ = AdvT
Π(A)

ϵ′ ϵ ≤ B(ϵ′ )

The Bound, eg. B(ϵ′ ) = 2ϵ′ 

s = 127  bits

!

If  runs in 
polynomial time 

and has advantage that is 
not negligible 
then  runs in 

polynomial time 
and has advantage that is 

not negligible 

A

A′ 
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Single-quantifier definitions

        ∀A AdvT
Π(A) ≤ ϵ    ∃S∀A AdvT

Π,S(A) ≤ ϵ

Double-quantifier definitions

Can we have something like this 
for 2PC? 

Indistinguishability for public-key and 
symmetric encryption

Semantic security for public-key and 
symmetric encryption 

EQUIVALENT!

[GM,Go,BDJR]



Can we have something like this 
for 2PC? 

We say YES  
for 2PC

        ∀A AdvT
Π(A) ≤ ϵ    ∃S∀A AdvT

Π,S(A) ≤ ϵ

Double-quantifier definitions

InI SIM

EQUIVALENT! 
For a class of functionalities 

including PSI and friends

[BRRA]

Single-quantifier definitions



Recall: Indistinguishability for (randomized, symmetric) encryption [BDJR97]

b $ {0,1} Challenge bit

K $ Keys

Adversary A

Oracle  

 

Enc

c ←$ ℰK(mb)

(m0, m1)

c

⋮

b′  wins if :  A b = b′ 

Given: Symmetric encryption scheme  with key-space ℰ Keys

Advind
ℰ (A) = 2 Pr[b′ = b] − 1



Encryption 2PC

Adversary 
provides

Adversary 
receives

Restriction to 
avoid trivial 

win

Inputs  for the honest party (say party 2) 

Also an input  for the dishonest party

x2,0, x2,1

x1
Messages m0, m1

Ciphertext 
 C ←$ ℰK(mb)

Conversation transcript, output and coins of dishonest party 
from execution of  on Π x1, x2,b

From encryption to 2PC

Lengths of   
must be equal

m0, m1  and  must be equal𝖥(x1, x2,0)[1] 𝖥(x1, x2,1)[1]



Return (τ, y1, y2)

Algorithm XT(x1, x2; ω1, ω2)

Given: Protocol  for functionality Π F

We first define algorithm XT that takes 
the parties inputs and coins,  

and returns  
the conversation transcript and party 

outputs  
from the execution of protocol Π

Inputs of 
the parties

Coins of the 
parties

21x1 x2

y1 y2

ω1 ω2

{τConversation 
Transcript

Output of algorithm XT

Outputs of 
the parties



(τ, y1, ω1)

(x1, x2,0, x2,1)

b $ {0,1} Challenge bit

Adversary A

Oracle  

 

Run

ω1, ω2 ←$ coins
(τ, y1, y2) ← XT(x1, x2,b; ω1, ω2)

⋮

b′ 

Let party  be the honest party. 

Adversary plays party 

2
1

Advini
F,Π,2(A) = 2 ⋅ Pr[Win] − 1

Our Input Indistinguishability (InI) definition for 2PC

Given: Protocol  for functionality Π F

One input 
for party 1

Two inputs for 
party 2

Conversation 
Transcript

Output and coins 
for party 1

:  Win b = b′ 

Advantage of adversary :  A



(τ, y1, ω1)

(x1, x2,0, x2,1)

b $ {0,1} Challenge bit

Adversary A

Oracle  

 

Run

ω1, ω2 ←$ coins
(τ, y1, y2) ← XT(x1, x2,b; ω1, ω2)

⋮

b′ 

Let party  be the honest party. 

Adversary plays party 

2
1

Advini
F,Π,2(A) = 2 ⋅ Pr[Win] − 1

Our Input Indistinguishability (InI) definition for 2PC

Given: Protocol  for functionality Π F

One input 
for party 1

Two inputs for 
party 2

Conversation 
Transcript

Output and coins 
for party 1

:  Win b = b′ 

Advantage of adversary :  A

Problem! 

We know that  

So if  

then  can trivially win.

y1 = F(x1, x2,b)[1]
F(x1, x2,0)[1] ≠ F(x1, x2,1)[1]

A



Let party  be the honest party. 

Adversary plays party 

2
1

Our Input Indistinguishability (InI) definition for 2PC

Given: Protocol  for functionality Π F

Problem! 

We know that  

So if  

then  can trivially win.

y1 = F(x1, x2,b)[1]
F(x1, x2,0)[1] ≠ F(x1, x2,1)[1]

A

(τ, y1, ω1)

(x1, x2,0, x2,1)

b $ {0,1} Challenge bit

Adversary A

Oracle  

 

Run

ω1, ω2 ←$ coins
(τ, y1, y2) ← XT(x1, x2,b; ω1, ω2)

⋮

b′ 

Advini
F,Π,2(A) = 2 ⋅ Pr[Win] − 1

One input 
for party 1

Two inputs for 
party 2

Conversation 
Transcript

Output and coins 
for party 1

:  Win b = b′ 

Advantage of adversary :  A

Require: F(x1, x2,0)[1] = F(x1, x2,1)[1]

Solution 

The “Require” check ensures this 
does not happen.



Advini
F,Π,2(A) = 2 ⋅ Pr[Gini

F,Π,2(A)] − 1

Pick random oracle H from a scheme-prescribed space OS. 
Pick challenge bit b. 

Avoid trivial attack by ensuring that   result in 
the same functionality outputs for the dishonest party.

x2,0, x2,1

Adversary calls Run oracle with a pair of inputs  for the honest party 

and a single input  for the dishonest party. Multiple queries to Run allowed!

x2,0, x2,1

x1

Compute conversation transcript and protocol outputs 
for protocol execution with inputs  and .x1 x2,b

Input Indistinguishability (InI)

Return conversation transcript, and output and coins of 
dishonest party, to adversary.

Advantage of adversary :  A

Random Oracle

Takes adversary guess  and returns true iff .b′ b′ = b



,  AdvX
F,S,Π,2(A) = 2 ⋅ Pr[GX

F,Π,S,2(A)] − 1 for X ∈ {sim, sim-np}

• We specify these using games. 

• The games are parameterized by a simulator . 

• Similar to InI, the game randomly picks a challenge bit . 

• Oracle  takes inputs  for the parties and returns the view of the dishonest party 
(party 1), generated as follows  

✴ Case : via execution of the protocol  on inputs  

✴ Case : by the simulator  given the functionality output . 

• Difference between SIM and SIM-np is in the output of the random oracle when :  
✴ SIM: simulator programs the output of random oracle 

✴ SIM-np: same, honest random oracle used for both values of 

S
b

Run x1, x2

b = 1 Π x1, x2

b = 0 S F[H](x1, x2)[1]
b = 0

b

Our Simulation-based (SIM, SIM-np) definitions for 2PC

Advantage of adversary :  A



Subtle point about RO in SIM

Some functionalities use the random oracle RO. 
For example, the functionality F underlying the 2H-DH OPRF. 

RO queries are thus made by the adversary, protocol and functionality. 
In a programmable-ROM simulation-based definition, we would expect ALL these queries to be 
answered by the simulator. 

But we show this to be WRONG for functionality queries. 
If functionality queries are answered by the simulator, obviously insecure protocols can be 
proven secure. 
In the paper, we give a counterexample to show this. 

Our SIM definition handles this via a new definitional approach. 
The game picks an honest random function H which is used to answer functionality queries. 
The simulator can access H and must then itself answer adversary and protocol RO queries.



Remarks on our definitions

ROM explicitly incorporated in the games. 

Schemes name space OS from which their RO H is drawn to allow scheme-dependent 
ranges for H. 

RO is not programmed in InI and SIM-np. It is programmed in SIM.

Multiple queries to Run oracle allowed to capture multiple executions of protocol on 
different inputs. 

We want to see how adversary advantage degrades concretely as a function of the 
number  of queries it makes to Run.qRun



Relations between  
definitions

SIM-np SIM

InI

for invertible 
functionalities

 : An Implication 
For any protocol  for any functionality : 
If  is -secure then it is also -secure.

A ⟶ B
Π F

Π A B

 : A separation 
There exists a protocol  for some functionality  such that: 

 is -secure but NOT -secure.

B ⟶ A
Π F

Π B A

SIM, SIM-np always imply InI

Main Result:  InI implies SIM-np and SIM whenever the functionality F satisfies a condition, 
called invertibility, that we define. 

We show that PSI and related functionalities are invertible.  
So for these we have the best-of-both-worlds. 



A functionality  is invertible with respect to party  (here we let ) if there exists an efficient 
algorithm , called the inverter, such that for every input  the check below is always true:

F h h = 2
IA x1, x2

Invertibility

F
x2x1

y1 y2

x1

IA x

Fy′ 1 y

y1 = y′ 1

Given the input and output for party   
,  

the inverter  produces an input for party 2,  
 

such that 
.

1
x1, y1

IA
x

F(x1, x)[1] = y1

Invertibility with respect to party 2

The check:



FPSI
x2 ⊆ Ux1 ⊆ U

(x1 ∩ x2, |x2 | ) y2

x1

IAPSI x

FPSI
y′ 1 y

Inverter creates the set  as follows: 

1. Create a set  by randomly picking 
 elements from . 

2. Construct and return .  

x

r
|x2 | − |x1 ∩ x2 | U∖x1

x ← r ∪ (x1 ∩ x2)

An inverter with respect to party  also exists.1

Invertibility for PSI



Threshold Private Set Intersection ( )Ftpsi
t

Ftpsi
t (x1, x2)[1] Ftpsi

t (x1, x2)[2]

(I, |x2 | )

|x1 |I ← {x1 ∩ x2  if x1 ∩ x2 | ≥ t
⊥  otherwise 

Cardinality Private Set Intersection ( )Fcpsi

Fcpsi(x1, x2)[1] Fcpsi(x1, x2)[2]

( |x1 ∩ x2 | , |x2 | ) |x1 |

FriendsInvertibility for PSI and friends

Our paper similarly shows invertibility for numerous 
PSI-related functionalities



Conclusion: For PSI and friends 
the simple single-quantifier, concrete-security-friendly InI definition 

is equivalent to 
the double-quantifier, strong SIM definition

This allows us to safely target InI for concrete security
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The DH PSI protocol

• Hazay and Lindell [HL08] gave a PSI protocol (HL-PSI) using Oblivious Pseudorandom 
Functions (OPRFs). 

• Jarecki et. al. [JKK14] give a very efficient and widely used OPRF called 2H-DH. 

• We denote by DH-PSI the PSI protocol one gets when HL-PSI is instantiated with 2H-DH. 
This is a very efficient and canonical protocol for PSI. 

• We give the first concrete-security analysis of DH-PSI.

Note: Our paper arrives at this in a modular way. We: 
• Show that HL-PSI is secure if the OPRF is secure, with a tight reduction 
• Give concrete security proofs for 2H-DH 
• Deduce concrete security results for DH-PSI 
In this presentation however we discuss only the DH-PSI results.



• CDH :               Regular Computational Diffie-Hellman 
• DDH :               Regular Decision Diffie-Hellman 
• CDH-MUC :     CDH in multi-user setting with corruptions 
• V-CDH :           Verifiable CDH 
• V-CDH-MUC : Verifiable CDH-MUC

We prove InI security of the DH-PSI protocol under a few different DL-related 
assumptions to showcase the variations in tightness.

Our Assumptions  in group  underlying the protocol: 𝔾



Our results showing concrete InI security of the DH-PSI protocol

Given: Adversary  attacking InI security of 
DH-PSI with resources:

A

•  queries to its  oracle 

•  queries to its random oracle

qRun RUN
qRO

and achieving advantage ϵ = Advini
𝖥,Π,2(A)
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Our results showing concrete InI security of the DH-PSI protocol

Given: Adversary  attacking InI security of 
DH-PSI with resources:

A We build: Adversary  attacking problem P 
that has about same running time as A and 
achieves advantage 

A′ 

ϵ′ = AdvP
𝔾(A′ )•  queries to its  oracle 

•  queries to its random oracle

qRun RUN
qRO

and achieving advantage ϵ = Advini
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Our results showing concrete InI security of the DH-PSI protocol

Problem P                     Bound 

CDH

V-CDH

CDH-MUC

V-CDH-MUC

DDH

B(ϵ′ , {qrun, qRO})

4 ⋅ (q2
RO ⋅ qRun ⋅ ϵ′ + α)

4 ⋅ (qRO ⋅ qRun ⋅ ϵ′ + α)

4 ⋅ (qRO ⋅ ϵ′ + α)

4 ⋅ (ϵ′ + α)

4 ⋅ (ϵ′ + α)

α =
(qRO ⋅ qRun) + qRO + 1

p

 : order of the group  underlying the problemsp 𝔾

Given: Adversary  attacking InI security of 
DH-PSI with resources:

A We build: Adversary  attacking problem P 
that has about same running time as A and 
achieves advantage 

A′ 

ϵ′ = AdvP
𝔾(A′ )•  queries to its  oracle 

•  queries to its random oracle

qRun RUN
qRO

and achieving advantage ϵ = Advini
𝖥,Π,2(A) Such that:     ϵ ≤ B(ϵ′ , {qrun, qRO})

Tight reductions!
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Salted DH-PSI protocol

• We present a new PSI protocol that we call Salted DH-PSI.  It is as asymptotically as 
efficient as DH-PSI but achieves tighter security. So in practice it can be implemented in 
smaller groups, improving concrete efficiency. 

• The idea behind Salted DH-PSI is similar to the one used in PSS [BR96] which is a RSA 
based signature scheme that is as efficient as FDH-RSA [BR93,BR96]  but uses salting to 
get a tight reduction to the one-wayness of RSA. 

• With the addition of a salt, there's also a parameter, the salt-length, , which appears in 
our security results. 

sl



Bounds for Salted DH-PSI versus DH-PSI

 : order of the 
group  underlying 
the problems

p
𝔾

DH-PSI

α =
(qRO ⋅ qRun) + qRO + 1

p

Salted DH-PSI

β =
qRun ⋅ (qRun + qRO)

2sl
+

(qRO + 1)
p

 : length of salt used in Salted DH-PSIsl

Problem P                     Bound       for DH-PSI

CDH

V-CDH

CDH-MUC

V-CDH-MUC

DDH

4 ⋅ (q2
RO ⋅ qRun ⋅ ϵ′ + α)

4 ⋅ (qRO ⋅ qRun ⋅ ϵ′ + α)

4 ⋅ (qRO ⋅ ϵ′ + α)

4 ⋅ (ϵ′ + α)

4 ⋅ (ϵ′ + α)

B Bound        Salted DH-PSIB

2 ⋅ (qRO ⋅ ϵ′ + β)

2 ⋅ (ϵ′ + β)

2 ⋅ (qRO ⋅ ϵ′ + β)

2 ⋅ (ϵ′ + β)

2 ⋅ (ϵ′ + β)
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Summary and Conclusions
Initiate the study of concrete security for Two Party Computation

1. Definitions 
Input Indistinguishability (InI): A 2PC security definition that 

-  Is indistinguishability based 
- Yet equivalent to simulation for PSI and friends 
- Concrete security and cryptanalysis friendly

Definitions explicitly incorporate ROM and 
surface subtleties in this regard

2. Concrete security results for PSI and OPRFs

CDH, V-CDH, CDH-MUC
non-tight

2H-DH 
OPRF

tight

DH-PSI
V-CDH-MUC, DDH tight

3. Salted DH-PSI
New PSI protocol, as efficient as DH-PSI, but 

CDH, CDH-MUC
more tight

Salted 
DH-PSIV-CDH, V-CDH-MUC, DDH

tight

Our definitions and results are for the semi-honest 
(honest-but-curious) setting


