
Traitor Tracing without Trusted Authority
from Registered Functional Encryption

Pedro Branco1, Russell W. F. Lai2, Monosij Maitra3,

Giulio Malavolta1, Ahmadreza Rahimi4, Ivy K. Y. Woo2*

1 Bocconi University
2 Aalto University

3 IIT Kharagpur
4 Independent

*Slides made partly by Ivy K. Y. Woo

● L users wish to broadcast messages to each other privately, such that:

○ Small ciphertext, e.g. sublinear in L [Efficiency]

○ No information about any message exchanged is revealed [CPA-Security]

○ Trace a user that leaked its own secret key (e.g. device compromised) [Trace]
→ Allows to exclude traitor from the group

● Desired primitive: Traitor Tracing [CFN94]

Scenario: Group Messaging

1

● L users wish to broadcast messages to each other privately, such that:

○ Small ciphertext, e.g. sublinear in L [Efficiency]

○ No information about any message exchanged is revealed [CPA-Security]

○ Trace a user that leaked its own secret key (e.g. device compromised) [Trace]
→ Allows to exclude traitor from the group

● Desired primitive: Traitor Tracing [CFN94]

Scenario: Group Messaging

1

Traitor Tracing
● Setting:

○ Authority: Generates public parameters (or master public key) + all users’ secret keys

○ Encryptor: Encrypts w.r.t. master public key to all users

● Correctness: Any user with secret key can decrypt.

● Security:

○ Encrypted message remains hidden without secret key

○ Trace Algorithm: Given a device that can decrypt, determines (at least one) corrupt user

● Traitor Tracing [CFN94]: Long line of works on improving efficiency (e.g. [BSW06, BW06, . . . , GLW23, AKYY23])

● Key escrow problem: No security if authority is corrupt 2

Traitor Tracing
● Setting:

○ Authority: Generates public parameters (or master public key) + all users’ secret keys

○ Encryptor: Encrypts w.r.t. master public key to all users

● Correctness: Any user with secret key can decrypt.

● Security:

○ Encrypted message remains hidden without secret key

○ Trace Algorithm: Given a device that can decrypt, determines (at least one) corrupt user

● Traitor Tracing [CFN94]: Long line of works on improving efficiency (e.g. [BSW06, BW06, . . . , GLW23, AKYY23])

● Key escrow problem: No security if authority is corrupt 2

Traitor Tracing
● Setting:

○ Authority: Generates public parameters (or master public key) + all users’ secret keys

○ Encryptor: Encrypts w.r.t. master public key to all users

● Correctness: Any user with secret key can decrypt.

● Security:

○ Encrypted message remains hidden without secret key

○ Trace Algorithm: Given a device that can decrypt, determines (at least one) corrupt user

● Traitor Tracing [CFN94]: Long line of works on improving efficiency (e.g. [BSW06, BW06, . . . , GLW23, AKYY23])

● Key escrow problem: No security if authority is corrupt 2

Traitor Tracing
● Setting:

○ Authority: Generates public parameters (or master public key) + all users’ secret keys

○ Encryptor: Encrypts w.r.t. master public key to all users

● Correctness: Any user with secret key can decrypt.

● Security:

○ Encrypted message remains hidden without secret key

○ Trace Algorithm: Given a device that can decrypt, determines (at least one) corrupt user

● Traitor Tracing [CFN94]: Long line of works on improving efficiency (e.g. [BSW06, BW06, . . . , GLW23, AKYY23])

● Key escrow problem: No security if authority is corrupt 2

Motivation

● This work:

Efficient traitor-tracing without a trusted authority

● Goals:

○ Remove trusted authority

○ Non-trivial, concrete efficiency (Ciphertext grows sublinear in number of users)

○ Security from simple and well-understood objects (e.g. not iO)

3

● New model without Trusted Authority: Registered Traitor Tracing (RTT)

● Transformation: Registered Functional Encryption (RFE) → RTT

● Registered Quadratic Functional Encryption (RQFE)

○ Weak RQFE with transparent Setup in GGM

○ → RTT with unbounded collusion

● Registered Linear Functional Encryption (RLFE)

○ RLFE in standard model (assumption proven in GGM)

○ → RTT for bounded collusion

● Prototype implementation for our RTT (RPLBE)

● More applications of our RFEs

Our Contributions

4

● New model without Trusted Authority: Registered Traitor Tracing (RTT)

● Transformation: Registered Functional Encryption (RFE) → RTT

● Registered Quadratic Functional Encryption (RQFE)

○ Weak RQFE with transparent Setup in GGM

○ → RTT with unbounded collusion

● Registered Linear Functional Encryption (RLFE)

○ RLFE in standard model (assumption proven in GGM)

○ → RTT for bounded collusion

● Prototype implementation for our RTT (RPLBE)

● More applications of our RFEs

Our Contributions

4

● New model without Trusted Authority: Registered Traitor Tracing (RTT)

● Transformation: Registered Functional Encryption (RFE) → RTT

● Registered Quadratic Functional Encryption (RQFE)

○ Weak RQFE with transparent Setup in GGM

○ → RTT with unbounded collusion

● Registered Linear Functional Encryption (RLFE)

○ RLFE in standard model (assumption proven in GGM)

○ → RTT for bounded collusion

● Prototype implementation for our RTT (RPLBE)

● More applications of our RFEs

Our Contributions

4

● New model without Trusted Authority: Registered Traitor Tracing (RTT)

● Transformation: Registered Functional Encryption (RFE) → RTT

● Registered Quadratic Functional Encryption (RQFE)

○ Weak RQFE with transparent Setup in GGM

○ → RTT with unbounded collusion

● Registered Linear Functional Encryption (RLFE)

○ RLFE in standard model (assumption proven in GGM)

○ → RTT for bounded collusion

● Prototype implementation for our RTT (RPLBE)

● More applications of our RFEs

Our Contributions

4

● New model without Trusted Authority: Registered Traitor Tracing (RTT)

● Transformation: Registered Functional Encryption (RFE) → RTT

● Registered Quadratic Functional Encryption (RQFE)

○ Weak RQFE with transparent Setup in GGM

○ → RTT with unbounded collusion

● Registered Linear Functional Encryption (RLFE)

○ RLFE in standard model (assumption proven in GGM)

○ → RTT for bounded collusion

● Prototype implementation for our RTT (RPLBE)

● More applications of our RFEs

Our Contributions

4

● New model without Trusted Authority: Registered Traitor Tracing (RTT)

● Transformation: Registered Functional Encryption (RFE) → RTT

● Registered Quadratic Functional Encryption (RQFE)

○ Weak RQFE with transparent Setup in GGM

○ → RTT with unbounded collusion

● Registered Linear Functional Encryption (RLFE)

○ RLFE in standard model (assumption proven in GGM)

○ → RTT for bounded collusion

● Prototype implementation for our RTT (RPLBE)

● More applications of our RFEs

Our Contributions

4

● All prior schemes require trusted authority, except [Luo22]:

○ [Luo22]: No Setup + Relies on iO + Non-compact master public key + Non-deterministic decryption

● Our framework is inspired from:

○ Registration-based Encryption [GHMR18, GHM+19]

○ Removes trusted authority in IBE

● Concurrent works on RFE:

○ [DPY23] gets RLFE in GGM

○ [ZLZ+24] gets (very selective) RQFE and RLFE from variants of k-Lin, but without transparent setup

Related Works: Prior + Concurrent

5

● All prior schemes require trusted authority, except [Luo22]:

○ [Luo22]: No Setup + Relies on iO + Non-compact master public key + Non-deterministic decryption

● Our framework is inspired from:

○ Registration-based Encryption [GHMR18, GHM+19]

○ Removes trusted authority in IBE

● Concurrent works on RFE:

○ [DPY23] gets RLFE in GGM

○ [ZLZ+24] gets (very selective) RQFE and RLFE from variants of k-Lin, but without transparent setup

Related Works: Prior + Concurrent

5

● All prior schemes require trusted authority, except [Luo22]:

○ [Luo22]: No Setup + Relies on iO + Non-compact master public key + Non-deterministic decryption

● Our framework is inspired from:

○ Registration-based Encryption [GHMR18, GHM+19]

○ Removes trusted authority in IBE

● Concurrent works on RFE:

○ [DPY23] gets RLFE (with non-transparent setup) in GGM

○ [ZLZ+24] gets (very selective) RQFE and RLFE from variants of k-Lin, with non-transparent setup

Related Works: Prior + Concurrent

5

Functional Encryption

6

Functional Encryption

Traditionally

KGen f 𝛜 FmskSetup1λ

mpk

Encμ ct Dec f(μ)

skf

6

Functional Encryption

Traditionally

KGen f 𝛜 FmskSetup1λ

mpk

Encμ ct Dec f(μ)

skf

Security (Informally) : [mpk , { skf } , ct(μ0) , { skf }] ≈ [mpk , { skf } , ct(μ1) , { skf }] provided f (μ0) = f (μ1)
6

Functional Encryption

KGen f 𝛜 FmskSetup1λ

mpk

Encμ ct Dec f(μ)

skf

No security if msk gets leaked

Traditionally

Key escrow
problem

6

Registered Functional Encryption

KGen f 𝛜 FmskSetup1λ

mpk

Encμ ct Dec f(μ)

skf
No trusted
authority

Formalized in [FFM+23, DP23]

7

Setup computes a CRS

User samples its own key-pair (pk, sk) w.r.t. CRS

Users “registers” (pk, f) with a ”Key Curator” (KC)

Registered Functional Encryption

KGen f 𝛜 FmskSetup1λ

mpk

Encμ ct Dec f(μ)

skf
No trusted
authority

Formalized in [FFM+23, DP23]

7

Setup computes a CRS

User samples its own key-pair (pk, sk) w.r.t. CRS

Users “registers” (pk, f) with a ”Key Curator” (KC)

Registered Functional Encryption

KGen f 𝛜 FmskSetup1λ

mpk

Encμ ct Dec f(μ)

skf
No trusted
authority

Formalized in [FFM+23, DP23]

KC deterministically updates (or aggregates) all

users’ {(pk, f)} (possibly cumulatively) into a

short mpk and short hsk for each existing user.

7

Setup computes a CRS

User samples its own key-pair (pk, sk) w.r.t. CRS

Users “registers” (pk, f) with a ”Key Curator” (KC)

Registered Functional Encryption

KGen f 𝛜 FmskSetup1λ

mpk

Encμ ct Dec f(μ)

skf
No trusted
authority

Formalized in [FFM+23, DP23]

KC deterministically updates (or aggregates) all

users’ {(pk, f)} (possibly cumulatively) into a

short mpk and short hsk for each existing user.

Number of updates must also be small

across the lifetime of the system

7

Setup computes a CRS

User samples its own key-pair (pk, sk) w.r.t. CRS

Users “registers” (pk, f) with a ”Key Curator” (KC)

Registered Functional Encryption

KGen f 𝛜 FmskSetup1λ

mpk

Encμ ct Dec f(μ)

skf
No trusted
authority

Formalized in [FFM+23, DP23]

KC deterministically updates (or aggregates) all

users’ {(pk, f)} (possibly cumulatively) into a

short mpk and short hsk for each existing user.

Number of updates must also be small

across the lifetime of the system

Security (Informally) : Similar to FE , except now registered keys can be generated maliciously
7

(Slotted) Registered Functional Encryption

8

(Slotted) Registered Functional Encryption
● crs ← Setup(1λ, L): Generate common reference string

● (pkℓ, skℓ) ← KGen(crs, ℓ ∈ [L]): User ℓ self-generates its public-secret key-pair

● (mpk, (hskℓ)ℓ∈[L]
) ← Aggr(crs, (pkℓ , fℓ)ℓ∈[L]

): Given pkℓ and function fℓ for ℓ-th user,

○ Aggregate users into system + generate helper secret key

○ Public, deterministic; mpk and each hskℓ should be short, i.e., poly(𝜆 , log L)

● ct ← Enc(mpk, μ): Encrypt message μ w.r.t. mpk

● μ′ ← Dec(skℓ, hskℓ, ct): User ℓ decrypts using its own secret key + helper secret key

Weak RFE: All functions (fℓ)ℓ∈[L]
 are known/fixed at (and input to) Setup

8

(Slotted) Registered Functional Encryption
● crs ← Setup(1λ, L): Generate common reference string

● (pkℓ, skℓ) ← KGen(crs, ℓ ∈ [L]): User ℓ self-generates its public-secret key-pair

● (mpk, (hskℓ)ℓ∈[L]
) ← Aggr(crs, (pkℓ , fℓ)ℓ∈[L]

): Given pkℓ and function fℓ for ℓ-th user,

○ Aggregate users into system + generate helper secret key

○ Public, deterministic; mpk and each hskℓ should be short, i.e., poly(𝜆 , log L)

● ct ← Enc(mpk, μ): Encrypt message μ w.r.t. mpk

● μ′ ← Dec(skℓ, hskℓ, ct): User ℓ decrypts using its own secret key + helper secret key

Weak RFE: All functions (fℓ)ℓ∈[L]
 are known/fixed at (and input to) Setup

8

(Slotted) Registered Functional Encryption
● crs ← Setup(1λ, L): Generate common reference string

● (pkℓ, skℓ) ← KGen(crs, ℓ ∈ [L]): User ℓ self-generates its public-secret key-pair

● (mpk, (hskℓ)ℓ∈[L]
) ← Aggr(crs, (pkℓ , fℓ)ℓ∈[L]

): Given pkℓ and function fℓ for ℓ-th user,

○ Aggregate users into system + generate helper secret key

○ Public, deterministic; mpk and each hskℓ should be short, i.e., poly(𝜆 , log L)

● ct ← Enc(mpk, μ): Encrypt message μ w.r.t. mpk

● μ′ ← Dec(skℓ, hskℓ, ct): User ℓ decrypts using its own secret key + helper secret key

Weak RFE: All functions (fℓ)ℓ∈[L]
 are known/fixed at (and input to) Setup

8

(Slotted) Registered Functional Encryption
● crs ← Setup(1λ, L): Generate common reference string

● (pkℓ, skℓ) ← KGen(crs, ℓ ∈ [L]): User ℓ self-generates its public-secret key-pair

● (mpk, (hskℓ)ℓ∈[L]
) ← Aggr(crs, (pkℓ , fℓ)ℓ∈[L]

): Given pkℓ and function fℓ for ℓ-th user,

○ Aggregate users into system + generate helper secret key

○ Public, deterministic; mpk and each hskℓ should be short, i.e., poly(𝜆 , log L)

● ct ← Enc(mpk, μ): Encrypt message μ w.r.t. mpk

● μ′ ← Dec(skℓ, hskℓ, ct): User ℓ decrypts using its own secret key + helper secret key

Weak RFE: All functions (fℓ)ℓ∈[L]
 are known/fixed at (and input to) Setup

8

(Slotted) Registered Functional Encryption
● crs ← Setup(1λ, L): Generate common reference string

● (pkℓ, skℓ) ← KGen(crs, ℓ ∈ [L]): User ℓ self-generates its public-secret key-pair

● (mpk, (hskℓ)ℓ∈[L]
) ← Aggr(crs, (pkℓ , fℓ)ℓ∈[L]

): Given pkℓ and function fℓ for ℓ-th user,

○ Aggregate users into system + generate helper secret key

○ Public, deterministic; mpk and each hskℓ should be short, i.e., poly(𝜆 , log L)

● ct ← Enc(mpk, μ): Encrypt message μ w.r.t. mpk

● μ′ ← Dec(skℓ, hskℓ, ct): User ℓ decrypts using its own secret key + helper secret key

Weak RFE: All functions (fℓ)ℓ∈[L]
 are known/fixed at (and input to) Setup

8

(Slotted) Registered Functional Encryption
● crs ← Setup(1λ, L): Generate common reference string

● (pkℓ, skℓ) ← KGen(crs, ℓ ∈ [L]): User ℓ self-generates its public-secret key-pair

● (mpk, (hskℓ)ℓ∈[L]
) ← Aggr(crs, (pkℓ , fℓ)ℓ∈[L]

): Given pkℓ and function fℓ for ℓ-th user,

○ Aggregate users into system + generate helper secret key

○ Public, deterministic; mpk and each hskℓ should be short, i.e., poly(𝜆 , log L)

● ct ← Enc(mpk, μ): Encrypt message μ w.r.t. mpk

● μ′ ← Dec(skℓ, hskℓ, ct): User ℓ decrypts using its own secret key + helper secret key

Weak RFE: All functions (fℓ)ℓ∈[L]
 are known/fixed at (and input to) Setup

8

(Slotted) Registered Functional Encryption
● crs ← Setup(1λ, L): Generate common reference string

● (pkℓ, skℓ) ← KGen(crs, ℓ ∈ [L]): User ℓ self-generates its public-secret key-pair

● (mpk, (hskℓ)ℓ∈[L]
) ← Aggr(crs, (pkℓ , fℓ)ℓ∈[L]

): Given pkℓ and function fℓ for ℓ-th user,

○ Aggregate users into system + generate helper secret key

○ Public, deterministic; mpk and each hskℓ should be short, i.e., poly(𝜆 , log L)

● ct ← Enc(mpk, μ): Encrypt message μ w.r.t. mpk

● μ′ ← Dec(skℓ, hskℓ, ct): User ℓ decrypts using its own secret key + helper secret key

Weak RFE: All functions (fℓ)ℓ∈[L]
 are known/fixed at (and input to) Setup

|ct| = poly(𝜆 , log L)

8

Our RQFE: Construction Idea

● Compile: traditional QFE to RQFE, via “master secret key homomorphism”

● Linearly-homomorphic Encode function acting on QFE’s msk

● Linearly-homomorphic KGen for function f

∗ = Group operation

9

Our RQFE: Construction Idea

● Compile: traditional QFE to RQFE, via “master secret key homomorphism”

● Linearly-homomorphic Encode function acting on QFE’s msk

● Linearly-homomorphic KGen for function f

∗ = Group operation

9

Independent QFE instances
can be publicly combined

into a global QFE instance.

Our RQFE: Construction Idea

● Compile: traditional QFE to RQFE, via “master secret key homomorphism”

● Linearly-homomorphic Encode function acting on QFE’s msk

● Linearly-homomorphic KGen for function f

∗ = Group operation

9

Independent QFE instances
can be publicly combined

into a global QFE instance.

Secret keys from independent instances
can be publicly combined into a secret

key for the global instance.

Our RQFE: Construction Idea

● Given “master secret key homomorphic” QFE, define RQFE “global” master public key:

● Publicly computable using mpkℓ from each user

● Interpretation: L users additive-secret-sharing msk of global mpk

● Each user also publishes helper information to help others decrypt their own share

9

Our RQFE: Construction Idea

● Given “master secret key homomorphic” QFE, define RQFE “global” master public key:

● Publicly computable using mpkℓ from each user

● Interpretation: L users additive-secret-sharing msk of global mpk

● Each user also publishes helper information to help others decrypt their own share

9

Our RQFE: Construction Idea

● Given “master secret key homomorphic” QFE, define RQFE “global” master public key:

● Publicly computable using mpkℓ from each user

● Interpretation: L users additive-secret-sharing msk of global mpk

● Each user also publishes helper information to help others decrypt their own share

9

Our RQFE: Construction Idea

● Given “master secret key homomorphic” QFE, define RQFE “global” master public key:

● Publicly computable using mpkℓ from each user

● Interpretation: L users additive-secret-sharing msk of global mpk

● Each user also publishes helper information to help others decrypt their own share

9

Our RQFE: Construction Idea
● Each user j provides helper secret keys for each user i ≠ j (rely on “weak” setting):

● Apply homomorphic property to user keys:

● Each user i misses msk for exactly the i-th function fi , which is known to itself
9

Each independent QFE instance
provide secret keys for functions

under all other instances.

Our RQFE: Construction Idea
● Each user j provides helper secret keys for each user i ≠ j (rely on “weak” setting):

● Apply homomorphic property to user keys:

● Each user i misses msk for exactly the i-th function fi , which is known to itself
9

Each independent QFE instance
provide secret keys for functions

under all other instances.

Such secret keys can be publicly
combined under all other instances.

Our RQFE: Construction Idea
● Each user j provides helper secret keys for each user i ≠ j (rely on “weak” setting):

● Apply homomorphic property to user keys:

● Each user i misses msk for exactly the i-th function fi , which is known to itself

9

Each independent QFE instance
provide secret keys for functions

under all other instances.

Such secret keys can be publicly
combined under all other instances.

Our RQFE: Construction Idea
● Instantiate prior template with “master secret key homomorphic” QFE

● Adopt (adaptively secure) QFE of Baltico et al. [BCFG17] (originally proven secure in GGM)

● (Weak) RQFE security proven in simplified setting:

Adversary provides randomness of maliciously generated keys

● We provide multiple transformations for security against maliciously registered keys

○ NIZK: prove well-formedness of keys

○ Leverage random oracle on our RQFE: Setup remains transparent

○ Modify RQFE scheme (without random oracle, loses transparent Setup)
9

Our RQFE: Construction Idea
● Instantiate prior template with “master secret key homomorphic” QFE

● Adopt (adaptively secure) QFE of Baltico et al. [BCFG17] (originally proven secure in GGM)

● (Weak) RQFE security proven in simplified setting:

Adversary provides randomness of maliciously generated keys

● We provide multiple transformations for security against maliciously registered keys

○ NIZK: prove well-formedness of keys

○ Leverage random oracle on our RQFE: Setup remains transparent

○ Modify RQFE scheme (without random oracle, loses transparent Setup)
9

Our RQFE: Construction Idea
● Instantiate prior template with “master secret key homomorphic” QFE

● Adopt (adaptively secure) QFE of Baltico et al. [BCFG17] (originally proven secure in GGM)

● (Weak) RQFE security proven in simplified setting:

Adversary provides randomness of maliciously generated keys

● We provide multiple transformations for security against maliciously registered keys

○ NIZK: prove well-formedness of keys

○ Leverage random oracle on our RQFE: Setup remains transparent

○ Modify RQFE scheme (without random oracle, loses transparent Setup)
9

Transformation: RFE → RTT
● Analogous to QFE to TT transformation in a prior work.

● Build Private Linear Broadcast Encryption: PLBE = Broadcast Encryption + Trace-Encrypt

● [BSW06] PLBE → Traitor Tracing

[Gay16] PLBE = QFE with function

● We formalize the full chain of transformations in the registered setting

Main observation: Weak RQFE suffices

10

Transformation: RFE → RTT
● Analogous to QFE to TT transformation in a prior work.

● Build Private Linear Broadcast Encryption: PLBE = Broadcast Encryption + Trace-Encrypt

● [BSW06] PLBE → Traitor Tracing

[Gay16] PLBE = QFE with function

● We formalize the full chain of transformations in the registered setting

Main observation: Weak RQFE suffices

10

Transformation: RFE → RTT
● Analogous to QFE to TT transformation in a prior work.

● Build Private Linear Broadcast Encryption: PLBE = Broadcast Encryption + Trace-Encrypt

● [BSW06] PLBE → Traitor Tracing

[Gay16] PLBE = QFE with function

● We formalize the full chain of transformations in the registered setting

Main observation: Weak RQFE suffices

10

Implementation: Registered PLBE

● Sizes for L = 1024:

crs: 135KB, mpk: 6.6KB, ciphertext: 6.7KB

pk: 102.5KB, sk: 97B, hsk: 194B

● Runtimes on PC:
(AMD Ryzen 5 5600X, 3.7GHz CPU, 32GB of RAM)

11

● Registered Threshold Encryption (RTE):

○ Users sample their own (pk , sk) pairs & {pk} is aggregated into a short mpk.

○ Ciphertext grows with (dynamically chosen) threshold t.

○ System preserves threshold decryption (RTE generalizes distributed BE)

● RLFE → RTE: idea – Shamir’s secret-sharing + linear function evaluation (in group exponent)

● t-out-of-L threshold:

○ User i runs RFE.KGen for a linear function (1, i, . . . , it−1)

○ Encrypt message μ: random degree t-1 polynomial P with P(0) = μ

○ RFE decryption : ensures user i learns P(i) (and nothing more)

○ Recover P(0) with t evaluation points {P(i) : i 𝛜 [t]}

Other Application: Registered Threshold Encryption

12

● Registered Threshold Encryption (RTE):

○ Users sample their own (pk , sk) pairs & {pk} is aggregated into a short mpk.

○ Ciphertext grows with (dynamically chosen) threshold t.

○ System preserves threshold decryption (RTE generalizes distributed BE)

● RLFE → RTE: idea – Shamir’s secret-sharing + linear function evaluation (in group exponent)

● t-out-of-L threshold:

○ User i runs RFE.KGen for a linear function (1, i, . . . , it−1)

○ Encrypt message μ: random degree t-1 polynomial P with P(0) = μ

○ RFE decryption : ensures user i learns P(i) (and nothing more)

○ Recover P(0) with t evaluation points {P(i) : i 𝛜 [t]}

Other Application: Registered Threshold Encryption

12

● Registered Threshold Encryption (RTE):

○ Users sample their own (pk , sk) pairs & {pk} is aggregated into a short mpk.

○ Ciphertext grows with (dynamically chosen) threshold t.

○ System preserves threshold decryption (RTE generalizes distributed BE)

● RLFE → RTE: idea – Shamir’s secret-sharing + linear function evaluation (in group exponent)

● t-out-of-L threshold:

○ User i runs RFE.KGen for a linear function (1, i, . . . , it−1)

○ Encrypt message μ: random degree t-1 polynomial P with P(0) = μ

○ RFE decryption : ensures user i learns P(i) (and nothing more)

○ Recover P(0) with t evaluation points {P(i) : i 𝛜 [t]}

Other Application: Registered Threshold Encryption

RLFE → RTE

RQFE → RTE
(transparent setup)

12

Summary

● New Model: Registered Traitor Tracing (RTT)

● Concretely efficient (weak) RQFE + Transformation to RTT with transparent setup

● Prototype implementation

● (More) Applications from our work:

○ RLFE → RTT with bounded collusion

○ RLFE → Single-key RFE for circuits

○ RTE from RLFE and RQFE (with transparent setup)

13

Summary

● New Model: Registered Traitor Tracing (RTT)

● Concretely efficient (weak) RQFE + Transformation to RTT with transparent setup

● Prototype implementation

● (More) Applications from our work:

○ RLFE → RTT with bounded collusion

○ RLFE → Single-key RFE for circuits

○ RTE from RLFE and RQFE (with transparent setup)

EPRINT: ia.cr/2024/179
13

Summary

● New Model: Registered Traitor Tracing (RTT)

● Concretely efficient (weak) RQFE + Transformation to RTT with transparent setup

● Prototype implementation

● (More) Applications from our work:

○ RLFE → RTT with bounded collusion

○ RLFE → Single-key RFE for circuits

○ RTE from RLFE and RQFE (with transparent setup)

Thanks!
13

EPRINT: ia.cr/2024/179

