Traitor Tracing without Trusted Authority
from Registered Functional Encryption

Pedro Branco?, Russell W. F. Lai%, Monosij Maitra®,

Giulio Malavoltal, Ahmadreza Rahimi?, vy K. Y. Woo?"

1 Bocconi University
2 Aalto University
31IT Kharagpur
4Independent

*Slides made partly by Ivy K. Y. Woo

Scenario: Group Messaging

e Luserswish to broadcast messages to each other privately, such that:
o Small ciphertext, e.g. sublinearinL [Efficiency]
o Noinformation about any message exchanged is revealed [CPA-Security]

o Trace auser that leaked its own secret key (e.g. device compromised) [Trace]
— Allows to exclude traitor from the group

Scenario: Group Messaging

e Luserswish to broadcast messages to each other privately, such that:
o Small ciphertext, e.g. sublinearinL [Efficiency]
o Noinformation about any message exchanged is revealed [CPA-Security]

o Trace auser that leaked its own secret key (e.g. device compromised) [Trace]
— Allows to exclude traitor from the group

e Desired primitive: Traitor Tracing [CFN94]

Traitor Tracing

e Setting:
o Authority: Generates public parameters (or master public key) + all users’ secret keys

o Encryptor: Encrypts w.r.t. master public key to all users

e Correctness: Any user with secret key can decrypt.

Traitor Tracing

e Setting:
o Authority: Generates public parameters (or master public key) + all users’ secret keys

o Encryptor: Encrypts w.r.t. master public key to all users

e Correctness: Any user with secret key can decrypt.

e Security:
o Encrypted message remains hidden without secret key

o Trace Algorithm: Given a device that can decrypt, determines (at least one) corrupt user

Traitor Tracing

e Setting:
o Authority: Generates public parameters (or master public key) + all users’ secret keys

o Encryptor: Encrypts w.r.t. master public key to all users

e Correctness: Any user with secret key can decrypt.

e Security:
o Encrypted message remains hidden without secret key

o Trace Algorithm: Given a device that can decrypt, determines (at least one) corrupt user

e Traitor Tracing [CFN94]: Long line of works on improving efficiency (e.g. [BSwo06, BWO06, ..., GLW23, AKYY23])

Traitor Tracing

e Setting:
o Authority: Generates public parameters (or master public key) + all users’ secret keys

o Encryptor: Encrypts w.r.t. master public key to all users

e Correctness: Any user with secret key can decrypt.

e Security:
o Encrypted message remains hidden without secret key

o Trace Algorithm: Given a device that can decrypt, determines (at least one) corrupt user
e Traitor Tracing [CFN94]: Long line of works on improving efficiency (e.g. [BSwo06, BWO06, ..., GLW23, AKYY23])

e Keyescrow problem: No security if authority is corrupt

Motivation

e Thiswork:
Efficient traitor-tracing without a trusted authority
e Goals:
o Remove trusted authority
o Non-trivial, concrete efficiency (Ciphertext grows sublinear in number of users)

o Security from simple and well-understood objects (e.g. not iO)

Our Contributions

e New model without Trusted Authority: Registered Traitor Tracing (RTT)

Our Contributions

e New model without Trusted Authority: Registered Traitor Tracing (RTT)

e Transformation: Registered Functional Encryption (RFE) — RTT

Our Contributions

e New model without Trusted Authority: Registered Traitor Tracing (RTT)
e Transformation: Registered Functional Encryption (RFE) — RTT

e Registered Quadratic Functional Encryption (RQFE)
o Weak RQFE with transparent Setup in GGM
o — RTT with unbounded collusion

Our Contributions

e New model without Trusted Authority: Registered Traitor Tracing (RTT)
e Transformation: Registered Functional Encryption (RFE) — RTT

e Registered Quadratic Functional Encryption (RQFE)
o Weak RQFE with transparent Setup in GGM
o — RTT with unbounded collusion

e Registered Linear Functional Encryption (RLFE)
o RLFE in standard model (assumption proven in GGM)
o — RTT for bounded collusion

Our Contributions

e New model without Trusted Authority: Registered Traitor Tracing (RTT)
e Transformation: Registered Functional Encryption (RFE) — RTT

e Registered Quadratic Functional Encryption (RQFE)
o Weak RQFE with transparent Setup in GGM
o — RTT with unbounded collusion

e Registered Linear Functional Encryption (RLFE)
o RLFE in standard model (assumption proven in GGM)
o — RTT for bounded collusion

e Prototype implementation for our RTT (RPLBE)

Our Contributions

e New model without Trusted Authority: Registered Traitor Tracing (RTT)
e Transformation: Registered Functional Encryption (RFE) — RTT

e Registered Quadratic Functional Encryption (RQFE)
o Weak RQFE with transparent Setup in GGM
o — RTT with unbounded collusion

e Registered Linear Functional Encryption (RLFE)
o RLFE in standard model (assumption proven in GGM)
o — RTT for bounded collusion

e Prototype implementation for our RTT (RPLBE)

e More applications of our RFEs

Related Works: Prior *+ Concurrent

e All prior schemes require trusted authority, except [Luo22]:

o [Luo22]: No Setup + Relies on iO + Non-compact master public key + Non-deterministic decryption

Related Works: Prior *+ Concurrent

e All prior schemes require trusted authority, except [Luo22]:

o [Luo22]: No Setup + Relies on iO + Non-compact master public key + Non-deterministic decryption
e Ourframework isinspired from:

o Registration-based Encryption [GHMR18, GHM+19]

o Removes trusted authority in IBE

Related Works: Prior *+ Concurrent

e All prior schemes require trusted authority, except [Luo22]:

o [Luo22]: No Setup + Relies on iO + Non-compact master public key + Non-deterministic decryption

e Ourframework isinspired from:
o Registration-based Encryption [GHMR18, GHM+19]
o Removes trusted authority in IBE
e Concurrent works on RFE:
o [DPY23]gets RLFE (with non-transparent setup) in GGM

o [ZLZ+24] gets (very selective) RQFE and RLFE from variants of k-Lin, with non-transparent setup

Functional Encryption

Functional Encryption

Traditionally

Av)

Functional Encryption

Traditionally

Av)

Security (Informally) : [mpk {sk }, ct(p,) {sk] [mpk {sk b, ctlu), {sk }] provided f(u)=f(u)

Functional Encryption

Traditionally W

1)\

Key escrow
problem

msk

skf

No security if msk gets leaked

Registered Functional Encryption

Formalized in [FFM*23, DP23]

axm

No trusted
authority

Av)

Registered Functional Encryption

Formalized in [FFM*23, DP23]

Setup computes a CRS i i

User samples its own key-pair (pk, sk) w.r.t. CRS
Users “registers” (pk, f) with a "Key Curator” (KC)

No trusted
authority

Av)

Registered Functional Encryption

Formalized in [FFM*23, DP23]

——Eﬂ‘ g —Iiﬂ— feF
Setup computes a CRS KC deterministically updates (or aggregates) all

No trusted
authority f
Users “registers” (pk, f) with a "Key Curator” (KC) short mpk and short hsk for each existing user.

User samples its own key-pair (pk, sk) w.r.t. CRS users’ {(pk, f)} (possibly cumulatively) into a

ct Av)

Registered Functional Encryption

X

Formalized in [FFM*23, DP23]

1A feF

Setup computes a CRS KC deterministically updates (or aggregates) all
User samples its own key-pair (pk, sk) w.r.t. CRS DU sk
’ o authority f

Users “registers” (pk, f) with a "Key Curator” (KC)

users’ {(pk, f)} (possibly cumulatively) into a

short mpk and short hsk for each existing user.

Number of updates must also be small
across the lifetime of the system

ct Av)

Registered Functional Encryption

Formalized in [FFM*23, DP23]

——Eﬂ‘ g —IHﬂ— feF
Setup computes a CRS KC deterministically updates (or aggregates) all

No trusted
authority f
Users “registers” (pk, f) with a "Key Curator” (KC) short mpk and short hsk for each existing user.

User samples its own key-pair (pk, sk) w.r.t. CRS users’ {(pk, f)} (possibly cumulatively) into a

Number of updates must also be small
across the lifetime of the system

ct Av)

Security (Informally) : Similar to FE , except now registered keys can be generated maliciously

(Slotted) Registered Functional Encryption

(Slotted) Registered Functional Encryption

e crs« Setup(1) L): Generate common reference string

(Slotted) Registered Functional Encryption

e crs« Setup(1) L): Generate common reference string

° (pkg, sk[) «— KGen(crs,{ € [L]): User L self-generates its public-secret key-pair

(Slotted) Registered Functional Encryption

e crs« Setup(1\ L): Generate common reference string
° (pkz, sk[) «— KGen(crs,{ € [L]): User L self-generates its public-secret key-pair

e (mpk, (hskz)[e[u) «— Aggr(crs, (pk,Z ’fe)ze[u): Given pk,and function f, for {-th user,
o Aggregate users into system + generate helper secret key

o Public, deterministic; mpk and each hskE should be short, i.e., poly(4, log L)

(Slotted) Registered Functional Encryption
e crs« Setup(1\ L): Generate common reference string
e (pk,sk)« KGen(crs,{ € [L]): User { self-generates its public-secret key-pair

e (mpk, (hskz)[e[u) «— Aggr(crs, (pk,Z ’fe)ze[u): Given pk,and function f, for {-th user,
o Aggregate users into system + generate helper secret key

o Public, deterministic; mpk and each hsk,Z should be short, i.e., poly(4, log L)

e ct<« Enc(mpk, p): Encrypt message u w.r.t. mpk

(Slotted) Registered Functional Encryption

e crs« Setup(1\ L): Generate common reference string

(pkf, sk[) «— KGen(crs,{ € [L]): User L self-generates its public-secret key-pair

(mpk, (hsk[)[e[u) «— Aggr(crs, (pk,Z ’fe)ze[u): Given pk,and function f, for {-th user,
o Aggregate users into system + generate helper secret key

o Public, deterministic; mpk and each hsk,Z should be short, i.e., poly(4, log L)

e ct<« Enc(mpk, p): Encrypt message u w.r.t. mpk

M — Dec(sk[, hsk,, ct): User L decrypts using its own secret key + helper secret key

(Slotted) Registered Functional Encryption

e crs« Setup(1\ L): Generate common reference string

(pkf, sk[) «— KGen(crs,{ € [L]): User L self-generates its public-secret key-pair

e (mpk, (hsk[)[e[u) «— Aggr(crs, (pk,Z ’fe)ze[u): Given pk,and function f, for {-th user,
o Aggregate users into system + generate helper secret key

o Public, deterministic; mpk and each hsk,Z should be short, i.e., poly(4, log L)

e ct<« Enc(mpk, p): Encrypt message u w.r.t. mpk

o U« Dec(sk[, hsk,, ct): User L decrypts using its own secret key + helper secret key

Weak RFE: All functions (f[) are known/fixed at (and input to) Setup

te[L]

(Slotted) Registered Functional Encryption

e crs« Setup(1\ L): Generate common reference string

(pkf, sk[) «— KGen(crs,{ € [L]): User L self-generates its public-secret key-pair

e (mpk, (hsk[)[e[u) «— Aggr(crs, (pk,Z ’fe)ze[u): Given pk,and function f, for {-th user,
o Aggregate users into system + generate helper secret key

o Public, deterministic; mpk and each hsk,Z should be short, i.e., poly(4, log L)

e ct<« Enc(mpk, p): Encrypt message u w.r.t. mpk -ﬁ Ict|

=poly(4, logL)

o U« Dec(sk[, hsk,, ct): User L decrypts using its own secret key + helper secret key

Weak RFE: All functions (f[) are known/fixed at (and input to) Setup

te[L]

Our RQFE: Construction Idea

e Compile: traditional QFE to RQFE, via “master secret key homomorphism”

Our RQFE: Construction Idea

Compile: traditional QFE to RQFE, via “master secret key homomorphism”

Linearly-homomorphic Encode function acting on QFE’s msk Independent QFE instances
can be publicly combined
Encode(mskg) * Encode(msk;) = Encode(mskg + msk) into a global QFE instance.
m?’io m?)il

* = Group operation

Our RQFE: Construction Idea

e Compile: traditional QFE to RQFE, via “master secret key homomorphism”

e Linearly-homomorphic Encode function acting on QFE’s msk Independent QFE instances

can be publicly combined

Encode(mskg) * Encode(msk;) = Encode(mskg + msk) into a global QFE instance.
m?’io mBT(1

e Linearly-homomorphic KGen for function f

KGen(mskg, f) * KGen(msky, f) = KGen(mskg + msky, f)

>y >y

O D
f f Secret keys from independent instances
can be publicly combined into a secret
key for the global instance.

* = Group operation

Our RQFE: Construction Idea

e Given “master secret key homomorphic” QFE, define RQFE “global” master public key:

r;TpI(= mpky * ... * mpk; = Encode(msk; + ...+ msky)

Our RQFE: Construction Idea

e Given “master secret key homomorphic” QFE, define RQFE “global” master public key:
r;rpI(= mpky * ... * mpk; = Encode(msk; + ...+ msky)

e Publicly computable using mpk, from each user

Our RQFE: Construction Idea

e Given “master secret key homomorphic” QFE, define RQFE “global” master public key:
mpk = mpky ... * mpk; = Encode(msk; + ...+ msky)
e Publicly computable using mpk, from each user

e Interpretation: L users additive-secret-sharing msk of global mpk

Our RQFE: Construction Idea

Given “master secret key homomorphic” QFE, define RQFE “global” master public key:

r;TaI(= mpky * ... * mpk; = Encode(msk; + ...+ msky)

Publicly computable using mpk, from each user

Interpretation: L users additive-secret-sharing msk of global mpk

e Eachuser also publishes helper information to help others decrypt their own share

Our RQFE: Construction Idea

e Eachuserj provides helper secret keys for each user i # j (rely on “weak” setting):

under all other instances.

{Sky) = KGen(mSkj, Fz) } o Each independent QFE instance
: i#] provide secret keys for functions

Our RQFE: Construction Idea

e Eachuserj provides helper secret keys for each user i # j (rely on “weak” setting):

{Sky) = KGen(mSkj, Fz) } o Each independent QFE instance
: i#] provide secret keys for functions

under all other instances.

e Apply homomorphic property to user keys:

% N skg) o5 & sk;IL) KGen(ij&l msk;, f1)

2 LD | | Ken(S ek) | [unesetierscnveptier
: : T 7 : e

sk(ff) sk‘(fs) A KGe”(Zj;AL msk;, 1)

Our RQFE: Construction Idea

e Eachuserj provides helper secret keys for each user i # j (rely on “weak” setting):

{Sky) = KGen(mskj’ Fz) } o Each independent QFE instance
: i#] provide secret keys for functions

under all other instances.

e Apply homomorphic property to user keys:

T % KGen(32, ., mskj, /1)

a@ L] L[Keenam) || ey
: : 2y 2 . _

Sk(ff) sk‘(ff) L KGen(_;.; mskj, fL)

e Eachuserimisses msk for exactly the i-th function f,, which is known to itself

ST‘ﬁ = KGen(_,; msk;j, fi) * KGen(msk;, f;) = KGen(r/T_\;I?, fi)

Our RQFE: Construction Idea

e Instantiate prior template with “master secret key homomorphic” QFE

e Adopt (adaptively secure) QFE of Baltico et al. [BCFG17] (originally proven secure in GGM)

Our RQFE: Construction Idea

e Instantiate prior template with “master secret key homomorphic” QFE
e Adopt (adaptively secure) QFE of Baltico et al. [BCFG17] (originally proven secure in GGM)

e (Weak) RQFE security proven in simplified setting:

Adversary provides randomness of maliciously generated keys

Our RQFE: Construction Idea

e Instantiate prior template with “master secret key homomorphic” QFE
e Adopt (adaptively secure) QFE of Baltico et al. [BCFG17] (originally proven secure in GGM)

e (Weak) RQFE security proven in simplified setting:
Adversary provides randomness of maliciously generated keys
e We provide multiple transformations for security against maliciously registered keys

o NIZK: prove well-formedness of keys
o Leverage random oracle on our RQFE: Setup remains transparent

o Modify RQFE scheme (without random oracle, loses transparent Setup)

Transformation: RFE — RTT

e Analogousto QFE to TT transformation in a prior work.

e Build Private Linear Broadcast Encryption: PLBE = Broadcast Encryption + Trace-Encrypt

10

Transformation: RFE — RTT

e Analogousto QFE to TT transformation in a prior work.
e Build Private Linear Broadcast Encryption: PLBE = Broadcast Encryption + Trace-Encrypt

e [BSWO06]PLBE — Traitor Tracing
[Gay16] PLBE = QFE with function

fie <4

0 otherwise

Fg(i, m) = {

10

Transformation: RFE — RTT

e Analogousto QFE to TT transformation in a prior work.

e Build Private Linear Broadcast Encryption: PLBE = Broadcast Encryption + Trace-Encrypt

e [BSWO06]PLBE — Traitor Tracing
[Gay16] PLBE = QFE with function

ifi:<¥¢

0 otherwise

e Weformalize the full chain of transformations in the registered setting

Main observation: Weak RQFE suffices

10

Implementation: Registered PLBE

e SizesforL=1024:
crs: 135KB, mpk: 6.6KB, ciphertext: 6.7KB
pk: 102.5KB, sk: 97B, hsk: 194B

10% 4

e Runtimeson PC:
(AMD Ryzen 5 5600X, 3.7GHz CPU, 32GB of RAM)

Time (ms) 104

L Setup KGen Aggr Enc Dec
16 3.86 9.04 1.06 7.26 4.04
64 13.31 | 35.14 14.56 13.53 4.04
256 | 48.94 | 138.17 226.93 26.11 4.04
1024 | 189.57 | 553.87 3576.37 51.2428 4.04

Time (ms, log scale)

10!

100

Table 4: Runtimes of our RPLBE algorithms for different L.

64

256

1024

11

Other Application: Registered Threshold Encryption

e Registered Threshold Encryption (RTE):
o Users sample their own (pk, sk) pairs & {pk}is aggregated into a short mpk.
o Ciphertext grows with (dynamically chosen) threshold t.

o System preserves threshold decryption (RTE generalizes distributed BE)

12

Other Application: Registered Threshold Encryption

e Registered Threshold Encryption (RTE):
o Users sample their own (pk, sk) pairs & {pk}is aggregated into a short mpk.
o Ciphertext grows with (dynamically chosen) threshold t.

o System preserves threshold decryption (RTE generalizes distributed BE)

e RLFE — RTE:idea - Shamir’s secret-sharing + linear function evaluation (in group exponent)

e t-out-of-L threshold:

o Useriruns RFE.KGen for alinear function (1, 1,...,1%)
o Encrypt message u: random degree t-1 polynomial P with P(0) = p
o RFE decryption: ensures user i learns P(i) (and nothing more)

o Recover P(0) with t evaluation points {P(7) : 7 € [t]}

Other Application: Registered Threshold Encryption

e Registered Threshold Encryption (RTE):
o Users sample their own (pk, sk) pairs & {pk}is aggregated into a short mpk.

o Ciphertext grows with (dynamically chosen) threshold t.

o System preserves threshold decryption (RTE generalizes distributed BE)

e RLFE — RTE:idea - Shamir’s secret-sharing + linear function evaluation (in group exponent)

e t-out-of-L threshold:

o Useriruns RFE.KGen for a linear function (1,1,...,7?%) RLFE — RTE

o Encrypt message u: random degree t-1 polynomial P with P(0) = p

o RFEdecryption: ensures user i learns P(i) (and nothing more) RQFE — RTE
(transparent setup)

o Recover P(0) with t evaluation points {P(7) : 7 € [t]}

Summary

e New Model: Registered Traitor Tracing (RTT)
e Concretely efficient (weak) RQFE + Transformation to RTT with transparent setup
e Prototype implementation

e (More) Applications from our work:
o RLFE — RTT with bounded collusion
o RLFE — Single-key RFE for circuits
o RTE from RLFE and RQFE (with transparent setup)

13

Summary

e New Model: Registered Traitor Tracing (RTT)
e Concretely efficient (weak) RQFE + Transformation to RTT with transparent setup
e Prototype implementation

e (More) Applications from our work:
o RLFE — RTT with bounded collusion
o RLFE — Single-key RFE for circuits
o RTE from RLFE and RQFE (with transparent setup)

EPRINT: ia.cr/2024/179

13

Summary

e New Model: Registered Traitor Tracing (RTT)
e Concretely efficient (weak) RQFE + Transformation to RTT with transparent setup
e Prototype implementation

e (More) Applications from our work:
o RLFE — RTT with bounded collusion
o RLFE — Single-key RFE for circuits
o RTE from RLFE and RQFE (with transparent setup)

EPRINT: ia.cr/2024/179

13

