FOLEAGE: F4−OLE-Based MPC for Boolean Circuits

Maxime Bombar

maxime.bombar@math.u-bordeaux.fr Université de Bordeaux (France)*

*Work done while Postdoc in CWI (Amsterdam, The Netherlands).

Dung Bui Geoffroy Couteau Clément Ducros {bui, couteau, cducros}@irif.fr IRIF (Paris, France)

Alain Couvreur alain.couvreur@inria.fr Inria (France)

Sacha Servan-Schreiber

3s@mit.edu MIT (USA)

Centrum Wiskunde & Informatica

MPC in the Correlated Randomness Model

How to efficiently distribute m ($\approx 2^{30}$) random multiplication triples?

Traditional Approach: OT extensions

OT Extension (e.g. [IKNP03]):

Cheap symmetric cryptography to generate tons of OT.

Traditional Approach: OT extensions

Practical Secure Computation over Large Fields

- SPDZ protocol leverages (somewhat) homomorphic encryption to scale as $O(m \cdot N)$.
- Overdrive [KPR18]: Good concrete efficiency ($\approx 10^5$ triples per second).
- Only available over large fields. \boldsymbol{X}

Damgård, Pastro, Smart, Zakarias - MPC from somewhat homomorphic encryption - CRYPTO 2012 Keller, Pastro, and Rotaru - Overdrive: Making SPDZ great again - EUROCRYPT 2018

A New Tool: Programmable Pseudorandom Correlation Generators

A New Tool: Programmable Pseudorandom Correlation Generators

A New Tool: Programmable Pseudorandom Correlation Generators

L. Roy - SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt model - CRYPTO 2022 Raghuraman, Rindal, Tanguy - Expand-convolute codes for PCGs from LPN - CRYPTO 2023

Landscape of Correlation Generators

Landscape of Correlation Generators

This Work: Best of Both Worlds

Performance Comparison

 \int **red**: Bottleneck = local computations

A Framework for Programmable PCGs for \mathbb{F}_q -OLEs

Goal. Generate **a lot** of OLE's over \mathbb{F}_q .

Wishful thinking. Take a ring
$$
\mathcal{R} \simeq \mathbb{F}_q \times \cdots \times \mathbb{F}_q
$$

*A*Not all rings R are secure.

Boyle, Couteau, Gilboa, Ishai, Kohl, and Sholl - Efficient PCGs from Ring-LPN - CRYPTO 2020 Boyle, Gilboa and Ishai - Function secret sharing: Improvements and extensions - CCS 2016

A Framework for Programmable PCGs for \mathbb{F}_q -OLEs

Boyle, Couteau, Gilboa, Ishai, Kohl, and Sholl - Efficient PCGs from Ring-LPN - CRYPTO 2020 Boyle, Gilboa and Ishai - Function secret sharing: Improvements and extensions - CCS 2016

Other Choice of Ring: Group Algebras

Finite abelian group G.

$$
\mathbb{F}_q[G] = \left\{ \sum_{g \in G} a_g g \mid a_g \in \mathbb{F}_q \right\} \simeq \mathbb{F}_q^{|G|} \quad \text{also written as} \quad \left\{ \sum_{g \in G} a_g X^g \mid a_g \in \mathbb{F}_q \right\}
$$

• $G = \{1\} \Rightarrow \mathbb{F}_q[G] = \mathbb{F}_q$.

•
$$
G = \mathbb{Z}/n\mathbb{Z} \Rightarrow \mathbb{F}_q[G] = \mathbb{F}_q[X]/(X^n - 1)
$$

- $G = \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_t\mathbb{Z} \Rightarrow \mathbb{F}_q[G] = \mathbb{F}_q[X_1,\ldots,X_t]/(X_1^{d_1}-1,\ldots,X_t^{d_t}-1)$
- $G = (\mathbb{Z}/(q-1)\mathbb{Z})^t = \mathbb{F}_q[X_1,\ldots,X_t]/(X_i^{q-1}-1) \simeq \mathbb{F}_q^{(q-1)^t} \Longrightarrow$ Key to work over small fields.

Pseudorandomness of the OLE: **Quasi-Abelian Syndrome Decoding** assumption.

B., Couteau, Couvreur, Ducros - PCGs from the Hardness of Quasi-Abelian Decoding - CRYPTO 2023

Maxime Bomba	

A Programmable PCG for OLE over \mathbb{F}_4

Set $G = (\mathbb{Z}/3\mathbb{Z})^t$ and $\mathcal{R} = \mathbb{F}_4[G] = \mathbb{F}_4[X_1, \ldots, X_t]/(X_i^3 - 1)$ **Seed Generation:** Sample random **sparse** e_i , f_j from $\mathcal{R} = \mathbb{F}_4[G]$. Compute $\text{SHARES}(\mathbf{e}_i \mathbf{f}_j)$ via Function Secret Sharing. **Distributed Setup**: Doerner & shelat protocol.

Optimization: Almost-Silent N-party Computation of Boolean Circuits

Let $(\Vert a \Vert, \Vert b \Vert, \Vert a \cdot b \Vert)$ be an \mathbb{F}_4 -Beaver triple.

$$
\begin{array}{ll}\n\llbracket \mathbf{a} \rrbracket & = \llbracket \mathbf{a}_0 \rrbracket + \theta \cdot \llbracket \mathbf{a}_1 \rrbracket \\
\llbracket \mathbf{b} \rrbracket & = \llbracket \mathbf{b}_0 \rrbracket + \theta \cdot \llbracket \mathbf{b}_1 \rrbracket \\
\llbracket \mathbf{a} \cdot \mathbf{b} \rrbracket & = \llbracket \mathbf{c}_0 \rrbracket + \theta \cdot \llbracket \mathbf{c}_1 \rrbracket\n\end{array}
$$

$$
\begin{array}{ll} {\bf a} \cdot {\bf b} & = ({\bf a}_0 {\bf b}_0 + {\bf a}_1 {\bf b}_1) + \theta \cdot ({\bf a}_0 {\bf b}_1 + {\bf a}_1 {\bf b}_0 + {\bf a}_1 {\bf b}_1) \\ & = {\bf c}_0 + \theta {\bf c}_1 \end{array}
$$

$$
\boxed{\mathbf{a_0b_0=c_0+a_1b_1}}
$$

Optimization: Almost-Silent N-party Computation of Boolean Circuits

Let $([\![\mathbf{a}]\!],[\![\mathbf{b}]\!],[\![\mathbf{a}\cdot\mathbf{b}]\!])$ be an \mathbb{F}_4 -Beaver triple.

$$
\begin{array}{ll}\n\begin{bmatrix}\n\mathbf{a}\n\end{bmatrix} & = \begin{bmatrix}\n\mathbf{a}_0\n\end{bmatrix} + \theta \cdot \begin{bmatrix}\n\mathbf{a}_1\n\end{bmatrix} \\
\begin{bmatrix}\n\mathbf{b}\n\end{bmatrix} & = \begin{bmatrix}\n\mathbf{b}_0\n\end{bmatrix} + \theta \cdot \begin{bmatrix}\n\mathbf{b}_1\n\end{bmatrix} \\
\begin{bmatrix}\n\mathbf{a} \cdot \mathbf{b}\n\end{bmatrix} & = \begin{bmatrix}\n\mathbf{c}_0\n\end{bmatrix} + \theta \cdot \begin{bmatrix}\n\mathbf{c}_1\n\end{bmatrix}\n\end{array}
$$

$$
\begin{array}{ll} \mathbf{a} \cdot \mathbf{b} & = (\mathbf{a}_0 \mathbf{b}_0 + \mathbf{a}_1 \mathbf{b}_1) + \theta \cdot (\mathbf{a}_0 \mathbf{b}_1 + \mathbf{a}_1 \mathbf{b}_0 + \mathbf{a}_1 \mathbf{b}_1) \\ & = \mathbf{c}_0 + \theta \mathbf{c}_1 \end{array}
$$

$$
\left(\mathbf{a_0b_0}=\mathbf{c_0}+\mathbf{a_1b_1}\right)
$$

Single bit of communication per party.

$$
\left(\begin{bmatrix} \mathbf{a}_0 \end{bmatrix}, \begin{bmatrix} \mathbf{a}_1 \end{bmatrix}, \begin{bmatrix} \mathbf{c}_0 \end{bmatrix} + \mathbf{b}_1 \begin{bmatrix} \mathbf{a}_1 \end{bmatrix}\right)
$$

is a **valid** \mathbb{F}_2 -Beaver triple!

Wrapping Up

Improvement for 2-Party Computation

PCG Seed Generation: 2-party DPF ([BGI15, BGI16, Ds17])

- GGM trees representing shares of a unit vector. Consistency is ensured by using (public) Correction Words.
- **Doerner and shelat protocol**: Distributed generation when the parties hold a **binary additive sharing** of the special path.
- Extension to t -sparse vectors: t -fold repetition and sum the point functions.

Optimization of the PCG Distributed Seed Generation

We need to create DPF for product of sparse elements ${\bf e}_i\cdot{\bf e}_j\in \mathbb{F}_4[X_1,\ldots,X_t]/(X_1^3-1,\ldots,X_t^3-1)$.

A monomial in $e_i\cdot e_j$ is of the form $\mathbf{X}^{p_i}\cdot \mathbf{X}^{p_j}=\mathbf{X}^{p_i+p_j\mod 3}$ where $p_i,p_j\in\left(\mathbb{Z}/3\mathbb{Z}\right)^n$ held by different parties: \implies the parties natively hold **ternary shares** of the noisy positions!

Previous constructions would run an additional protocol to turn it into binary additive sharing.

Sharing Vectors over \mathbb{F}_3 : Ternary DPF

- We adapt the DPF construction with using **ternary** trees.
- Adaptation of Doerner-shelat, making use of $\binom{3}{1}$ OT and 3 CW per level.

- Native ternary sharing of the error positions \implies **saves half** the total number of OT and rounds.
- Expansion of the seed becomes 20% faster because of flatter tree.
- Number of rounds reduced from $log_2(\frac{|G|}{t})$ $\frac{|G|}{t}$) to $\log_3(\frac{|G|}{t})$ $\frac{S|}{t}$).

• Uses
$$
\binom{3}{1}
$$
 - OT instead of $\binom{2}{1}$ - OT.

• PCG seed size 1*.*5× larger.

PCG Evaluation Optimization

FFT in $\mathbb{F}_4[G]$ is extremely fast. The bottleneck in seed expansion is the evaluation of $(c\cdot t)^2$ DPFs.

We can benefit from standard optimizations of DPF:

- **Regular noise**: Error vectors split into t unit vectors of length $\frac{|G|}{t}$ =⇒ **reduces evaluation domain**.
- **Early termination** technique [BGI16] for **small** output domain (\mathbb{F}_4 vs λ −bit field): \implies 64 \times speedup!

FOLEAGE in short:

- Very efficient for large Boolean circuits, and up to $N \approx 400$ parties.
- Several layers of optimizations: algorithmic, protocol and implementation.
- Script for selecting QASD parameters.

Questions: Improving the ternary DPF? Truly efficient silent precomputation for Boolean circuits?

<https://github.com/sachaservan/FOLEAGE-PCG> <https://ia.cr/2024/429>

Thank You!

The Security Assumption: Quasi-Abelian Syndrome Decoding

The QASD assumption: Given a target weight t, and a compression factor c, it should hold that

$$
((\mathbf{a}_1,\ldots,\mathbf{a}_{c-1}), \sum_{i=1}^{c-1} \mathbf{a}_i \mathbf{e}_i + \mathbf{e}_0) \approx ((\mathbf{a}_1,\ldots,\mathbf{a}_{c-1}),\mathbf{u}^{\mathsf{unif}})
$$

where $\mathbf{a}_i, \mathbf{u} \leftarrow \mathbb{F}_q[G]$ and \mathbf{e}_j are c random t -sparse elements of $\mathbb{F}_q[G]$.

- Good minimum distance* \Rightarrow resistance to all attacks from the linear test framework.
- Search-to-Decision reduction [**B**CCD23] and the search variant has been studied in algebraic coding theory for 50 years.

B., Couteau, Couvreur, Ducros - PCG from the Hardness of Quasi-Abelian Decoding - CRYPTO 2023

Concrete Analysis: Folding Attacks

Code-based analogue corresponds to **Folding attacks**, with respect to a subgroup H of G .

$$
\pi_H\colon\left\{\begin{array}{ccc}\mathbb F_q[G]&\longrightarrow&\mathbb F_q[G/H]\\ \sum\limits_{g\in G}a_gg&\longmapsto&\sum\limits_{\bar g\in G/H}\left(\sum\limits_{h\in H}a_{g+h}\right)\bar g.\end{array}\right.
$$

- Fold along random subgroups until we get an easy instance (exponentially small probability).
- **This paper:** Precise **analysis** of these attacks and provides a script to determine secure parameters.