FOLEAGE: \mathbb{F}_4 -OLE-Based MPC for Boolean Circuits

Maxime Bombar

maxime.bombar@math.u-bordeaux.fr Université de Bordeaux (France)*

*Work done while Postdoc in CWI (Amsterdam, The Netherlands).

Dung Bui Geoffroy Couteau Clément Ducros {bui, couteau, cducros}@irif.fr IRIF (Paris, France)

Alain Couvreur alain.couvreur@inria.fr Inria (France)

Sacha Servan-Schreiber

3s@mit.edu MIT (USA)

MPC in the Correlated Randomness Model

How to efficiently distribute $m \ (\approx 2^{30})$ random multiplication triples?

Traditional Approach: OT extensions

OT Extension (*e.g.* [IKNP03]):

Cheap symmetric cryptography to generate tons of OT.

Traditional Approach: OT extensions

Practical Secure Computation over Large Fields

- SPDZ protocol leverages (somewhat) homomorphic encryption to scale as $O(m \cdot N)$.
- Overdrive [KPR18]: Good concrete efficiency (pprox 10⁵ triples per second). \checkmark
- Only available over large fields. X

Damgård, Pastro, Smart, Zakarias - *MPC from somewhat homomorphic encryption* - CRYPTO 2012 Keller, Pastro, and Rotaru - *Overdrive: Making SPDZ great again* - EUROCRYPT 2018

A New Tool: Programmable Pseudorandom Correlation Generators

A New Tool: Programmable Pseudorandom Correlation Generators

A New Tool: Programmable Pseudorandom Correlation Generators

L. Roy - SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt model - CRYPTO 2022 Raghuraman, Rindal, Tanguy - Expand-convolute codes for PCGs from LPN - CRYPTO 2023

Landscape of Correlation Generators

Landscape of Correlation Generators

This Work: Best of Both Worlds

Low communication, low computational overhead.

Performance Comparison

	Communication	localhost	LAN	WAN				
Multi-party setting $(N = 10)$								
SoftSpoken $(k=2)$	$134 \mathrm{GB}$	342s	1192s	12207s				
SoftSpoken $(k = 4)$	$67 \ \mathrm{GB}$	405s	596s	6104s				
SoftSpoken $(k = 8)$	34 GB	1900s	1900s	3052s				
			*298s					
RRT	$6.3 \ \mathrm{GB}$	2619s	2619s	2619s				
			*50.3s	*515s				
F 4OLEAGE	$0.7~\mathrm{GB}$	1463s	1463s	1463s				
			*5.6s	*57.9s				
Two-party setting	(N=2)							
SoftSpoken $(k = 2)$	15 GB	38s	119s	1221s				
SoftSpoken $(k = 4)$	$7.5~\mathrm{GB}$	45s	60s	610s				
SoftSpoken $(k = 8)$	$3.7 \mathrm{GB}$	211s	211s	211s				
RRT	258 KB	292s	292s	292s				
F ₄OLEAGE	33.5 MB	81s	81s	81s				

red: Bottleneck = local computations

A Framework for Programmable PCGs for \mathbb{F}_q -OLEs

Goal. Generate **a lot** of OLE's over \mathbb{F}_q .

Wishful thinking. Take a ring
$$\mathcal{R}\simeq \mathbb{F}_q imes \dots imes \mathbb{F}_q$$

 \triangle Not all rings \mathcal{R} are secure.

Boyle, Couteau, Gilboa, Ishai, Kohl, and Sholl - *Efficient PCGs from Ring-LPN* - CRYPTO 2020 Boyle, Gilboa and Ishai - *Function secret sharing: Improvements and extensions* - CCS 2016

A Framework for Programmable PCGs for \mathbb{F}_q -OLEs

Boyle, Couteau, Gilboa, Ishai, Kohl, and Sholl - *Efficient PCGs from Ring-LPN* - CRYPTO 2020 Boyle, Gilboa and Ishai - *Function secret sharing: Improvements and extensions* - CCS 2016

Other Choice of Ring: Group Algebras

Finite abelian group G.

$$\mathbb{F}_q[G] = \left\{ \sum_{g \in G} a_g g \mid a_g \in \mathbb{F}_q \right\} \simeq \mathbb{F}_q^{|G|} \quad \text{also written as} \quad \left\{ \sum_{g \in G} a_g X^g \mid a_g \in \mathbb{F}_q \right\}$$

•
$$G = \{1\} \Rightarrow \mathbb{F}_q[G] = \mathbb{F}_q$$

•
$$G = \mathbb{Z}/n\mathbb{Z} \Rightarrow \mathbb{F}_q[G] = \mathbb{F}_q[X]/(X^n - 1)$$

•
$$G = \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_t\mathbb{Z} \Rightarrow \mathbb{F}_q[G] = \mathbb{F}_q[X_1, \ldots, X_t]/(X_1^{d_1} - 1, \ldots, X_t^{d_t} - 1)$$

•
$$G = (\mathbb{Z}/(q-1)\mathbb{Z})^t = \mathbb{F}_q[X_1, \dots, X_t]/(X_i^{q-1}-1) \simeq \mathbb{F}_q^{(q-1)^t} \Longrightarrow$$
 Key to work over small fields.

Pseudorandomness of the OLE: Quasi-Abelian Syndrome Decoding assumption.

B., Couteau, Couvreur, Ducros - PCGs from the Hardness of Quasi-Abelian Decoding - CRYPTO 2023

		0	
	22/1020	Kom	D P
1.6		DUIII	

A Programmable PCG for OLE over \mathbb{F}_4

Set $G = (\mathbb{Z}/3\mathbb{Z})^t$ and $\mathcal{R} = \mathbb{F}_4[G] = \mathbb{F}_4[X_1, \dots, X_t]/(X_i^3 - 1)$ Seed Generation: Sample random sparse $\mathbf{e}_i, \mathbf{f}_j$ from $\mathcal{R} = \mathbb{F}_4[G]$. Compute SHARES($\mathbf{e}_i \mathbf{f}_j$) via Function Secret Sharing. Distributed Setup: Doerner & shelat protocol.

Optimization: Almost-Silent N-party Computation of Boolean Circuits

Let $(\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket a \cdot b \rrbracket)$ be an \mathbb{F}_4 -Beaver triple.

$$\begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_0 \end{bmatrix} + \theta \cdot \begin{bmatrix} \mathbf{a}_1 \end{bmatrix} \\ \begin{bmatrix} \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_0 \end{bmatrix} + \theta \cdot \begin{bmatrix} \mathbf{b}_1 \end{bmatrix} \\ \begin{bmatrix} \mathbf{a} \cdot \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_0 \end{bmatrix} + \theta \cdot \begin{bmatrix} \mathbf{c}_1 \end{bmatrix}$$

$$\begin{aligned} \mathbf{a} \cdot \mathbf{b} &= (\mathbf{a}_0 \mathbf{b}_0 + \mathbf{a}_1 \mathbf{b}_1) + \theta \cdot (\mathbf{a}_0 \mathbf{b}_1 + \mathbf{a}_1 \mathbf{b}_0 + \mathbf{a}_1 \mathbf{b}_1) \\ &= \mathbf{c}_0 + \theta \mathbf{c}_1 \end{aligned}$$

$$\left(\mathbf{a}_0\mathbf{b}_0=\mathbf{c}_0+\mathbf{a}_1\mathbf{b}_1
ight)$$

Optimization: Almost-Silent N-party Computation of Boolean Circuits

Let $(\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket a \cdot b \rrbracket)$ be an \mathbb{F}_4 -Beaver triple.

$$\begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_0 \end{bmatrix} + \theta \cdot \begin{bmatrix} \mathbf{a}_1 \end{bmatrix} \\ \begin{bmatrix} \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_0 \end{bmatrix} + \theta \cdot \begin{bmatrix} \mathbf{b}_1 \end{bmatrix} \\ \begin{bmatrix} \mathbf{a} \cdot \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_0 \end{bmatrix} + \theta \cdot \begin{bmatrix} \mathbf{c}_1 \end{bmatrix}$$

$$\begin{aligned} \mathbf{a} \cdot \mathbf{b} &= (\mathbf{a}_0 \mathbf{b}_0 + \mathbf{a}_1 \mathbf{b}_1) + \theta \cdot (\mathbf{a}_0 \mathbf{b}_1 + \mathbf{a}_1 \mathbf{b}_0 + \mathbf{a}_1 \mathbf{b}_1) \\ &= \mathbf{c}_0 + \theta \mathbf{c}_1 \end{aligned}$$

$$\left(\mathbf{a}_0\mathbf{b}_0=\mathbf{c}_0+\mathbf{a}_1\mathbf{b}_1
ight)$$

$$(\llbracket \mathbf{a}_0 \rrbracket, \llbracket \mathbf{a}_1 \rrbracket, \llbracket \mathbf{c}_0 \rrbracket + \mathbf{b}_1 \llbracket \mathbf{a}_1 \rrbracket)$$

is a valid \mathbb{F}_2 -Beaver triple!

Single bit of communication per party.

Wrapping Up

Fast online protocol using one $\mathbb{F}_2\text{-triple}$ per AND gate

Online Phase

FOLEAGE

Improvement for 2-Party Computation

PCG Seed Generation: 2-party DPF ([BGI15, BGI16, Ds17])

- GGM trees representing shares of a unit vector. Consistency is ensured by using (public) Correction Words.
- **Doerner and shelat protocol**: Distributed generation when the parties hold a **binary additive sharing** of the special path.
- Extension to *t*-sparse vectors: *t*-fold repetition and sum the point functions.

Optimization of the PCG Distributed Seed Generation

We need to create DPF for product of sparse elements $\mathbf{e}_i \cdot \mathbf{e}_j \in \mathbb{F}_4[X_1, \dots, X_t]/(X_1^3 - 1, \dots, X_t^3 - 1)$.

A monomial in $e_i \cdot e_j$ is of the form $\mathbf{X}^{p_i} \cdot \mathbf{X}^{p_j} = \mathbf{X}^{p_i + p_j \mod 3}$ where $p_i, p_j \in (\mathbb{Z}/3\mathbb{Z})^n$ held by different parties: \implies the parties natively hold **ternary shares** of the noisy positions!

Previous constructions would run an additional protocol to turn it into binary additive sharing.

Sharing Vectors over \mathbb{F}_3 : Ternary DPF

- We adapt the DPF construction with using **ternary** trees.
- Adaptation of Doerner-shelat, making use of $\binom{3}{1} OT$ and 3 CW per level.

- Native ternary sharing of the error positions \implies saves half the total number of OT and rounds.
- Expansion of the seed becomes 20% faster because of flatter tree.
- Number of rounds reduced from $\log_2(\frac{|G|}{t})$ to $\log_3(\frac{|G|}{t})$.

• Uses
$$\binom{3}{1} - OT$$
 instead of $\binom{2}{1} - OT$.

• PCG seed size $1.5 \times$ larger.

PCG Evaluation Optimization

FFT in $\mathbb{F}_4[G]$ is extremely fast. The bottleneck in seed expansion is the evaluation of $(c \cdot t)^2$ DPFs.

We can benefit from standard optimizations of DPF:

- **Regular noise**: Error vectors split into t unit vectors of length $\frac{|G|}{t}$ \implies reduces evaluation domain.
- **Early termination** technique [BGI16] for small output domain (\mathbb{F}_4 vs λ -bit field): $\implies 64 \times$ speedup!

FOLEAGE in short:

- Very efficient for large Boolean circuits, and up to $N \approx 400$ parties.
- Several layers of optimizations: algorithmic, protocol and implementation.
- Script for selecting QASD parameters.

Questions: Improving the ternary DPF? Truly efficient silent precomputation for Boolean circuits?

https://github.com/sachaservan/FOLEAGE-PCG

https://ia.cr/2024/429

Thank You!

The Security Assumption: Quasi-Abelian Syndrome Decoding

The QASD assumption: Given a target weight t, and a compression factor c, it should hold that

$$((\mathbf{a}_1,\ldots,\mathbf{a}_{c-1}),\sum_{i=1}^{c-1}\mathbf{a}_i\mathbf{e}_i+\mathbf{e}_0)pprox((\mathbf{a}_1,\ldots,\mathbf{a}_{c-1}),\mathbf{u}^{\mathsf{unif}})$$

where $\mathbf{a}_i, \mathbf{u} \leftarrow \mathbb{F}_q[G]$ and \mathbf{e}_j are *c* random *t*-sparse elements of $\mathbb{F}_q[G]$.

- Good minimum distance* \Rightarrow resistance to all attacks from the linear test framework.
- Search-to-Decision reduction [BCCD23] and the search variant has been studied in algebraic coding theory for 50 years.

B., Couteau, Couvreur, Ducros - PCG from the Hardness of Quasi-Abelian Decoding - CRYPTO 2023

Concrete Analysis: Folding Attacks

Code-based analogue corresponds to Folding attacks, with respect to a subgroup H of G.

$$\pi_{H} \colon \begin{cases} \mathbb{F}_{q}[G] & \longrightarrow & \mathbb{F}_{q}[G/H] \\ \sum_{g \in G} a_{g}g & \longmapsto & \sum_{\bar{g} \in G/H} \left(\sum_{h \in H} a_{g+h} \right) \bar{g}. \end{cases}$$

/	a ₀	a ₁	a ₂	a3	a4	a ₅	a ₆	a ₇	a 8
	$a_0 + a_3 + a_6$			$a_1 + a_4 + a_7$			$a_2 + a_5 + a_8$		

- Fold along random subgroups until we get an easy instance (exponentially small probability).
- **This paper:** Precise **analysis** of these attacks and provides a script to determine secure parameters.