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MPC in the Correlated Randomness Model

Shares(ai , bi , ai · bi)

(ai , bi)i⩽m ← (Fq × Fq)m

Fast online protocol using one Fq-triple per multiplication

Preprocessing

Online Phase

How to efficiently distribute m (≈ 230) random multiplication triples?
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Traditional Approach: OT extensions

small number of
oblivious transfers

OT Extension (e.g. [IKNP03]):

Cheap symmetric cryptography to
generate tons of OT.
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Traditional Approach: OT extensions

small number of
oblivious transfers

Communication scales as Ω(m · N2) for m triples. ✗
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Practical Secure Computation over Large Fields

• SPDZ protocol leverages (somewhat) homomorphic encryption to scale as O(m · N).

• Overdrive [KPR18]: Good concrete efficiency (≈ 105 triples per second).

• Only available over large fields. ✗

Damgård, Pastro, Smart, Zakarias - MPC from somewhat homomorphic encryption - CRYPTO 2012
Keller, Pastro, and Rotaru - Overdrive: Making SPDZ great again - EUROCRYPT 2018
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A New Tool: Programmable Pseudorandom Correlation Generators

Minimal interaction

short seedA short seedB

Local Computations Local Computations

Long correlated sequence

Introduced by Boyle,
Couteau, Gilboa, Ishai,
Kohl, Sholl (2019, 2020)

Communication:
O(log m · N2).

≈ 105 triples per second.
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A New Tool: Programmable Pseudorandom Correlation Generators

Minimal interaction

short seedA short seedB

Local Computations Local Computations

Long correlated sequence

Introduced by Boyle,
Couteau, Gilboa, Ishai,
Kohl, Sholl (2019, 2020)

•Communication:
O(log m · N2).
•≈ 105 triples per second.

N-party only possible over
large fields.
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A New Tool: Programmable Pseudorandom Correlation Generators

Minimal interaction

short seedA short seedB

Local Computations Local Computations

Long correlated sequence

Introduced by Boyle,
Couteau, Gilboa, Ishai,
Kohl, Sholl (2019, 2020)

•Communication: O(log m).
•≈ 106 triples per second
(SoftSpoken [Roy22],
[RRT23])

Silent OT extensions.

L. Roy - SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt model - CRYPTO 2022
Raghuraman, Rindal, Tanguy - Expand-convolute codes for PCGs from LPN - CRYPTO 2023
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Landscape of Correlation Generators

•[KPR18]: O(m · N).
•[BCGIKS20]: O(log m · N2)
•≈ 105 triples per second.
•Large q. ✗

•[BCGIKS19, Roy22, RRT23]: O(log m) communication.
•≈ 106 triples per second.
•Only for two parties. ✗

q = 2

q = 3 q ≫ m
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Landscape of Correlation Generators

•[KPR18]: O(m · N).
•[BCGIKS20]: O(log m · N2)
•≈ 105 triples per second.
•Large q. ✗

•[BCGIKS19, Roy22, RRT23]: O(log m) communication.
•≈ 106 triples per second.
•Only for two parties. ✗

q = 2

q = 3 q ≫ m

•[BCCD23]: O(log m · N2)
•≈ 105 triples per second (estimated).
•q > 3.

Can we do better
than Ω(N2m)?

Practical efficiency?

Maxime Bombar FOLEAGE December 12, 2024 6 / 18



This Work: Best of Both Worlds

• Novel protocol for computing Boolean circuits based on F4 precomputations,
both for two-party and N-party settings.

• Low communication, low computational overhead.

• Silent preprocessing:
O(log m) communication

• ≈ 12.3 · 106 triples per
second.

• Small seeds.

• Almost silent preprocessing:
O(log m · N2) + m · N communication.

• Very low computational overhead.
• Parallelization up to 2 · (N − 1) processors.
• Faster than Overdrive for N ⪅ 400.
• Optimizations of independent interest.

F4oleage

2-party
N-party
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Performance Comparison

red: Bottleneck = local
computations
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A Framework for Programmable PCGs for Fq-OLEs

ONE OLE over R

Many OLE′s over Fq

U ·V = X + Y

ui · vi = xi + yi

Local
Computations

Wishful thinking. Take a ring R ≃ Fq × · · · × Fq △! Not all rings R are secure.

Goal. Generate a lot of OLE′s over Fq.

Boyle, Couteau, Gilboa, Ishai, Kohl, and Sholl - Efficient PCGs from Ring-LPN - CRYPTO 2020
Boyle, Gilboa and Ishai - Function secret sharing: Improvements and extensions - CCS 2016
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A Framework for Programmable PCGs for Fq-OLEs

ONE OLE over R

Many OLE′s over Fq

U ·V = X + Y

ui · vi = xi + yi

Local
Computations

Example: R = Fq[X ]/(F (X )) with F split.

Goal. Generate a lot of OLE′s over Fq. U def= a · eu + f u ≈ $

V def= a · ev + f v ≈ $

U ·V = a2euev + f uf v
+a(euf v + ev f u)

e and f are sparse

Cross-products are sparse-ish →
Sharing via sums of Distributed
Point Functions (DPF) [BGI16]

Boyle, Couteau, Gilboa, Ishai, Kohl, and Sholl - Efficient PCGs from Ring-LPN - CRYPTO 2020
Boyle, Gilboa and Ishai - Function secret sharing: Improvements and extensions - CCS 2016
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Other Choice of Ring: Group Algebras

Fq[G ] =

∑
g∈G

agg | ag ∈ Fq

 ≃ F|G|
q also written as

∑
g∈G

agX g | ag ∈ Fq


Finite abelian group G .

• G = {1} ⇒ Fq[G ] = Fq.
• G = Z/nZ⇒ Fq[G ] = Fq[X ]/(X n − 1)
• G = Z/d1Z× · · · × Z/dtZ⇒ Fq[G ] = Fq[X1, . . . , Xt ]/(X d1

1 − 1, . . . , X dt
t − 1)

• G = (Z/(q − 1)Z)t = Fq[X1, . . . , Xt ]/(X q−1
i − 1) ≃ F(q−1)t

q =⇒ Key to work over small fields.

Pseudorandomness of the OLE: Quasi-Abelian Syndrome Decoding assumption.

B., Couteau, Couvreur, Ducros - PCGs from the Hardness of Quasi-Abelian Decoding - CRYPTO 2023
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A Programmable PCG for OLE over F4

SeedA = (a, eu, f u, Shares(ei f j)) SeedB = (a, ev , f v , Shares(ei f j))

Locally compute U = aeu + f u and Share(UV)
⇒ OLE’s over F4 via evaluation over (F×

4 )t .
Locally compute V = aev + f v and Share(UV)
⇒ OLE’s over F4 via evaluation over (F×

4 )t .
This paper: Blazingly fast implementation with FFT in F4[G ]!

Set G = (Z/3Z)t and R = F4[G ] = F4[X1, . . . , Xt ]/(X 3
i − 1)

Seed Generation: Sample random sparse ei , f j from R = F4[G ].
Compute Shares(ei f j) via Function Secret Sharing.

Distributed Setup: Doerner & shelat protocol.
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Optimization: Almost-Silent N-party Computation of Boolean Circuits

JaK = Ja0K + θ · Ja1K
JbK = Jb0K + θ · Jb1K
Ja · bK = Jc0K + θ · Jc1K

Let (JaK, JbK, Ja · bK) be an F4-Beaver triple. a · b = (a0b0 + a1b1) + θ · (a0b1 + a1b0 + a1b1)
= c0 + θc1

a0b0 = c0 + a1b1
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Optimization: Almost-Silent N-party Computation of Boolean Circuits

JaK = Ja0K + θ · Ja1K
JbK = Jb0K + θ · Jb1K
Ja · bK = Jc0K + θ · Jc1K

Let (JaK, JbK, Ja · bK) be an F4-Beaver triple.

Jb1K

Jb1K

Single bit of communication per party.

a · b = (a0b0 + a1b1) + θ · (a0b1 + a1b0 + a1b1)
= c0 + θc1

a0b0 = c0 + a1b1

(Ja0K, Ja1K, Jc0K + b1Ja1K)
is a valid F2-Beaver triple!
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Wrapping Up

PCG for 2m OLE′s over F4

Silent expansion to get m Beaver triples over F4

Single bit for each F4-triple

Local computation of m F2-triples

Fast online protocol using one F2-triple per AND gate

Preprocessing

Online Phase

O(log(m)) for each
pair of parties.

Each party broad-
casts a single bit
per triple.
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Improvement for 2-Party Computation

U = U0 + θ ·U1
X = X0 + θ ·X1

ZA
def= U0U1 + X0 ∈ F2

V = V0 + θ ·V1
X = Y0 + θ ·Y1

ZB
def= V0V1 + Y0 ∈ F2

(U
,X

) (V
,Y)

U ·V = (U0V0 + U1V1) + θ · (U0V1 + U1V0 + U1V1)
= (X0 + Y0) + θ · (X1 + Y1) ∈ F4

F4 = F2
⊕

θF2
with θ2 = θ + 1

ZA + ZB = (U0 + V1) · (U1 + V0) ∈ F2

A single F4-OLE yields one F2-Beaver triple.
2-party F2 Beaver triple is silent!

Doesn’t extend to more than 2-parties
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PCG Seed Generation: 2-party DPF ([BGI15, BGI16, Ds17])

J0K J0K J0K J0K J0K J0K J0K

• GGM trees representing shares of a unit vector. Consistency is ensured by using (public)
Correction Words.

• Doerner and shelat protocol: Distributed generation when the parties hold a binary additive
sharing of the special path.

• Extension to t-sparse vectors: t-fold repetition and sum the point functions.

+ 1 CW
per level
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Optimization of the PCG Distributed Seed Generation

We need to create DPF for product of sparse elements ei · ej ∈ F4[X1, . . . , Xt ]/(X 3
1 − 1, . . . , X 3

t − 1).

A monomial in ei · ej is of the form Xpi · Xpj = Xpi +pj mod 3 where pi , pj ∈ (Z/3Z)n held by different
parties: =⇒ the parties natively hold ternary shares of the noisy positions!

Previous constructions would run an additional protocol to turn it into binary additive sharing.
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Sharing Vectors over F3: Ternary DPF

• We adapt the DPF construction with using ternary trees.
• Adaptation of Doerner-shelat, making use of

(3
1
)
−OT and 3 CW per level.

• Native ternary sharing of the error positions =⇒ saves half the total number of OT and rounds.
• Expansion of the seed becomes 20% faster because of flatter tree.
• Number of rounds reduced from log2( |G|

t ) to log3( |G|
t ).

• Uses
(3

1
)
−OT instead of

(2
1
)
−OT.

• PCG seed size 1.5× larger.
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PCG Evaluation Optimization

FFT in F4[G ] is extremely fast. The bottleneck in seed expansion is the evaluation of (c · t)2 DPFs.

We can benefit from standard optimizations of DPF:
• Regular noise: Error vectors split into t unit vectors of length |G|

t
=⇒ reduces evaluation domain.

• Early termination technique [BGI16] for small output domain (F4 vs λ−bit field):
=⇒ 64× speedup!
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https://ia.cr/2024/429https://github.com/sachaservan/FOLEAGE-PCG

Thank You!

FOLEAGE in short:
• Very efficient for large Boolean circuits, and up to N ≈ 400 parties.
• Several layers of optimizations: algorithmic, protocol and implementation.
• Script for selecting QASD parameters.

Questions: Improving the ternary DPF? Truly efficient silent precomputation for Boolean circuits?

https://ia.cr/2024/429
https://github.com/sachaservan/FOLEAGE-PCG


The Security Assumption: Quasi-Abelian Syndrome Decoding

The QASD assumption: Given a target weight t, and a compression factor c, it should hold that

((a1, . . . , ac−1),
c−1∑
i=1

aiei + e0) ≈ ((a1, . . . , ac−1), uunif)

where ai , u ← Fq[G ] and ej are c random t-sparse elements of Fq[G ].

• Good minimum distance* ⇒ resistance to all attacks from the linear test framework.
• Search-to-Decision reduction [BCCD23] and the search variant has been studied in algebraic

coding theory for 50 years.

B., Couteau, Couvreur, Ducros - PCG from the Hardness of Quasi-Abelian Decoding - CRYPTO 2023
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Concrete Analysis: Folding Attacks

Code-based analogue corresponds to
Folding attacks, with respect to

a subgroup H of G .
πH :


Fq[G ] −→ Fq[G/H]∑

g∈G
agg 7−→

∑
ḡ∈G/H

(∑
h∈H

ag+h

)
ḡ .

a0 a1 a2 a3 a4 a5 a6 a7 a8

a0 + a3 + a6 a1 + a4 + a7 a2 + a5 + a8

• Fold along random subgroups until we
get an easy instance (exponentially
small probability).

• This paper: Precise analysis of these
attacks and provides a script to
determine secure parameters.

Maxime Bombar FOLEAGE December 12, 2024 19 / 18


	Motivations
	Techniques
	Conclusion
	Backup Slides

