ZKFault: Fault Attack Analysis on Zero-Knowledge
Based Post-Quantum Digital Signature Schemes

Puja Mondal, Supriya Adhikary, Suparna Kundu, and Angshuman Karmakar

Asiacrypt 2024, Kolkata, India

NIST's Additional Digital Signature

Selected as winner PKE and KEM Signatures
July 5, 2022

1 PKE 1 KEM))
—> - CRYSTALS-Kyber ~ CRYSTALS-Dilithium
FALCON
SPHINCS+

3 Signatures

NIST's Additional Digital Signature

Selected as winner PKE and KEM Signatures
July 5, 2022

1 PKE and KEM
— b CRYSTALS-Kyber ~ CRYSTALS-Dilithium
FALCON
SPHINCS+

First Round
July 17, 2023

—_— 40 Signatures

NIST's Additional Digital Signature

Selected as winner
1 PKE and KEM

July 5, 2022

3 Signatures

First Round
July 17, 2023

L

40 Signatures

CROSS FEAST

PERK QR-UOV

PKE and KEM

Signatures

CRYSTALS-Kyber CRYSTALS-Dilithium
FALCON

SPHINCS+

Second Round

24 October 2024
’

HAWK LESS MAYO Mirath MQOM

RYDE SNOVA

SDitH SQIsign

uov

NIST's Additional Digital Signature

Selected as winner PKE and KEM Signatures
ki | PKE and KEM
—> CRYSTALS-Kyber CRYSTALS-Dilithium
FALCON
SPHINCS+

First Round Second Round

July 17, 2023 24 October 2024

CROSS FEAST HAWK LESS MAYO Mirath MQOM

PERK QR-UOV RYDE SDitH SNOVA SQIsign

uov

Interactive-Zero-Knowledge (ZK) Framework

Prover Verifier

Interactive-Zero-Knowledge (ZK) Framework

Prover Verifier

Public-info O \i/:-\)
") ' Secret-info

e
1 L
_‘)'Z ’

Interactive-Zero-Knowledge (ZK) Framework

Prover Verifier

Public-info ‘ \i/:-\ _
" : Secret-info

AN S :

Public-info + Randomness

———————————————

4

Interactive-Zero-Knowledge (ZK) Framework

Prover Verifier

Public-info \i/:-\ _
" : Secret-info

NI F '

Public-info + Randomness

_______________ 2 i
. &f EL Challenge
| «—

Interactive-Zero-Knowledge (ZK) Framework

Prover Verifier

Public-info \i/:-\ _
" ' Secret-info

NG P '

5

Challenge

Public-info + Randomness

———————————————

————————————————————————————————

—
l Commitment «—
S

Interactive-Zero-Knowledge (ZK) Framework

Prover Verifier

Public-info \/:\ _
" ' Secret-info

NG P '

Public-info + Randomness

5

———————————————

D o

Challenge

Verification

—
" Commitment «— i ——————
—_—>

Response Generation

————————————————————————————————

—————————————————————————

[}
i i
H [}
M ' Response [j -'G:
cc ejec

/K with Fiat-Shamir Transformation

Signer Verifier

Key Generation

D o

Hash(¢?, =) — [B

/K with Fiat-Shamir Transformation

Signer Verifier

Key Generation

Public-keyi' g \ iSecret key
NI A g
Public-key + Randomness y
Ry — & =
______________ I Commitment —+
R
s, - 2

/K with Fiat-Shamir Transformation

Signer Verifier

Key Generation

Public-keyi' &@ret—key HaSh(;) -

u """" .I
Public-key 4+ Randomness &?’
“@—-¢ L
______________ " Commitment +

/K with Fiat-Shamir Transformation

Signer Verifier

Key Generation

Public-key \@ret_key Hash(&’: ;ii%) —

AN SR o
Public-key + Randomness &9’
E i y Verification
______________ " Commitment + :'—“““““"“““"“‘}
. ® (“®@sE
Hash(&? =) — jJ e L T |

LESS

Signer Verifier

\ : QlaQQ:"'aQS
« . G07 Gl - S(GOQI)? GQ; Tty GS

LESS

Signer Verifier

Q Q@ Qs

: Go, G1 = S(GoQ,), Ga, -+, Gy

Sample : Q1,Q5, - ,Q;

LESS

Signer Verifier

A QL Qe Qs

: Go, G1 = S(GoQ,), Ga, -+, Gy

Sample : Q1,Q5, - ,Q;

(:é? : HaSh(/19 12a aGé)

Commitment

Challenge

Hash(& ©) . &9 ceren- e {0 s)

LESS

Signer

\:Q11Q27"'3Q3

: Go, G1 = S(GoQ,), Ga, -+, Gy

Sample : Q1,Q5, - ,Q;

of . / / /
Q‘/’S . HaSh(13 2,"‘ ,Gt)

Commitment

Challenge

g E) — {ZE :c1,C2, -+ ,¢¢ €10,--- s}

Y

Verifier

LESS

Signer

\ : Q11Q21"'3Q8

. Go, G1 = S(G(_}Ql), G2, Ty Gs

Sample : Q1,Q5, - ,Q;

o . / / /
& .Hash(1, Gh,y - ,Gt)
Commitment

Challenge

") — {3 1 c1,C2, - ,C¢ €10, 8}

Verifier

Challenge

Hash(&7 =) . {E

)
G| = 5(Ge, R;)

Check :
&= Hash(G}, G,, - ,G})

Target of Our Fault Attack

C; #O

@l

C; =0

Q.. 1Q’ Secret related information

Q;, Ephemeral key information

Target of Our Fault Attack

C; #O

it
c;, =0

* For a fixed ¢,, we will not get both Q', or Q! .Q".

Q;;l Q' Secret related information

Q; Ephemeral key information

Target of Our Fault Attack

c; #0
@0l
c;, =0

* For a fixed ¢,, we will not get both Q', or Q! .Q".

Q;l Q' Secret related information

Q;, Ephemeral key information

* If we have both Q'; and Q' ,Q",, then the secret
Q.=Q'(Q' Q") will be recovered.

Target of Our Fault Attack

c; #0
@l
c;, =0

* For a fixed ¢, we will not get both Q'; or Q"' .Q".

Q;} Q' Secret related information

;; Ephemeral key information

Target
* If we have both Q', and Q' .Q',, then the secret

Q.=Q'(Q' Q") will be recovered.
Get a pair (Q',Q' ..Q")

Fault Assumption and Result

® Our fault assumption is we can change

the value of a location from 1 to 0

Fault Assumption and Result

® Our fault assumption is we can change

the value of a location from 1 to 0

® This can be achieved by any one of
O bit flip fault
O stuck at zero fault

O instruction skip fault

Fault Assumption and Result

e Our fault tion i h Scheme | Security Parameter set Required faults for
ur fault assumption 1s we can change COMpletesecret
the value of a location from 1 to 0 recovery
LESS 1 Less-1b 1
* This can be achieved by any one of Less-1i 1
O bit flip fault Less-1s 2
O stuck at zero fault 3 Less-3b 1
O instruction skip fault Less-3s 1
5 Less-5b 1
Less-5s 1
CROSS 1, 3,5 CROSS-R-SDP 1
CROSS-R-SDPG 1

Overview of LESS

C; #0

| - Q. Q;
N N

C; =0

Overview of LESS

* Each Q', is generated from a random seed seed,

Overview of LESS

* Each Q', is generated from a random seed seed,

* The challenge c=¢,,c,,..,¢, is of fixed weight w

Overview of LESS

* Each Q', is generated from a random seed seed,

* The challenge c=¢,,c,,..,¢, is of fixed weight w c; #0 Q_l p

C; 7
* The response must contain information of (t-w) many seeds of Q' ' R, /
\ /
C;, —

7

Overview of LESS

Each Q'; 1s generated from a random seed seed,

The challenge ¢=c¢,,¢,,..,c, 1s of fixed weight w

The response must contain information of (t-w) many seeds of Q',

For parameter, LESS-5b signature size 74960 Bytes

Overview of LESS

* Each Q', is generated from a random seed seed,
* The challenge c=¢,,c,,..,¢, is of fixed weight w

* The response must contain information of (t-w) many seeds of Q'

* For parameter, LESS-5b signature size 74960 Bytes

* LESS uses Goldreich-Goldwasser-Micali (GGM) tree construction

Overview of LESS

* Each Q', is generated from a random seed seed,
* The challenge c=¢,,c,,..,¢, is of fixed weight w

* The response must contain information of (t-w) many seeds of Q'

* For parameter, LESS-5b signature size 74960 Bytes

* LESS uses Goldreich-Goldwasser-Micali (GGM) tree construction

* Compressed signatures size: ~32500 Bytes (~57% reduced)

Summary of Signature Compression

Step 1
Generate a GGM tree (seedtree)

and generate all the ephimeral

keys Ql'a Qz'a 9Qt'

£asn

Q Q - Q

Summary of Signature Compression

Step 1 Step 2

Generate a GGM tree (seedtree) Generate a reference tree

and generate all the ephimeral based on the challenge

keys Ql'a Qz'a 9Qt'

- mm mm mm mm mm e Em mm Em = =

Q Q - Q

Summary of Signature Compression

Step 1 Step 2 Step 3
Generate a GGM tree (seedtree) Generate a reference tree Decide the nodes of the seedtree
based on the challenge to be published based on reference

and generate all the ephimeral
keys Q1'9 Qz'p oo ’Qt' tI'ee

- mm mm mm mm mm e Em mm Em = =

Q Q - Q

Summary of Signature Compression

Step 1 Step 2 Step 3
Generate a GGM tree (seedtree) Generate a reference tree Decide the nodes of the seedtree
and generate all the ephimeral based on the challenge to be published based on reference
keys Q,', Q,', ... ,Q/ tree

Q Qy - Q;

OUR ATTACK LOCATION

Seed Tree Generation

seed 0]

PR

-

seed|2]

seed|[1]

-~
NN

seed [6]
)

]
Oy
5 W
SIS
Q)Q) Q)e
2 e

4
)]
\’I}
q'\
Y
(%]
2

~—

5

seed|
£
1
]
-’

\Q
et N\b@
O

3] /
f’-\l
O \a’ﬁ}
& @
Q
@Q)

10

Seed Tree Generation

seed

Seed/)\ied
seed[3 / Ved seed[5 / \seed

ARAARAN

l l
N S RO RO GO cb\ %
S eSS EE
& @‘Z’ & Q Q Q Q o
& & @Q) Q)Q) (.OQ) @QJ @Q)

Q Qy @y Q Qb Qb Q4 Q

10

Compression Technique

70 oo

r
.RZ\Q

C; =0

!

Suppose ¢=(0,0,0,0,1,0,0,2)

11

Compression Technique

Qc ;)
i
seed /(] : R’L

-

de '\wdeJ ¢ — :
seed|3] / seed|4] aeed[ﬁ/ seed|6)|
\ \ Suppose ¢=(0,0,0,0,1,0,0,2)

C/\b ‘/& ‘/x ‘/\ @ topublishQ', @ : tohide Q'
:S?

‘-’-3 "*r "'I.ir “.'!
“?' & “?E? j’ ﬂ.-?’a & & e

Compression Technique

Qc ;)
i
seed /(] : R’L

-

de '\wdeJ ¢ — :
seed|3] / seed|4] aeed[ﬁ/ seed|6)|
\ \ Suppose ¢=(0,0,0,0,1,0,0,2)

C/\b & ‘/x ‘/\ @ topublishQ', @ : tohide Q'
:S?

e S ﬁfﬁﬁ
“? & = j’ ﬂ.-?’a & & &
Q, Q) Q5 Q' Qs QY

Compression Technique

Qc ;)
i
seed /(] : R’L

-

de '\wfdM ¢ — :
seed|3] / seed|4] aeed[ﬁ/ seed|6)|
\ \ Suppose ¢=(0,0,0,0,1,0,0,2)

/\ $o d ./\ o i, ® oo,

‘C:n
aﬁ?m@&g

e -
L

&

o A
& zﬁsf':
*?:- & &

“:?
& cﬁb

Q, Q, Q; Q, Q'Qy Q¢ Q'; Q,Q%

Compression Technique

seed[{l]

de \fﬂlz]
seed|3] / \::eed[d] aeed[ﬁ/ \b&&d[ﬁ]

J\ o de ;f\.

‘é}-. o N P

5NN
B3 B

i
& o “?EJ ‘!’c? j’ e“‘a ﬂp‘”ﬁb @ '-’-:n

@®: topublishQ', @ : tohide Q'

12

Compression Technique

C RS SESS
FEFRE YR

@®: topublishQ', @ : tohide Q"

13

Compression Technique

@ : to hide Q',
i-th node: @ if both children arc ®

13

Compression Technique

@ : to hide Q',

i-th node: @ if both children arc @

13

Compression Technique

@ : to hide Q',

i-th node: @ if both children arc @

13

Compression Technique

SEECONSC N A
SRR FR

@ : to publish Q', @ : to hide Q'

14

Compression Technique

& & SO > PSP
SN SRR S S

@ : to publish Q', @ : to hide Q'

Check: i-th node: ® and its parent: @ 2
If yes: publish seed|[1]

14

Compression Technique

& & SO > PSP
Fos R R R R R

@ : to publish Q', @ : to hide Q"',

Check: i-th node: ® and its parent: @ ?
If yes: publish seed|[1]

14

Compression Technique

seed[{l]

seed[1] \;ﬂlzl
aeecl[En] aeed[al] beed[ﬁ/ \.'beed[ﬁ]
e VAR AP

i
ﬁ“ﬁ\

&

,..-‘

Y SRS
esf?s,‘%’ggqq
& & & 8 S

& E o e

@ : to publish Q', @ : to hide Q"',

Check: i-th node: ® and its parent: @ ?
If yes: publish seed|[1]

14

Compression Technique

@ : to publish Q', @ :tohide Q', publish seed[1],seed[12],sced[13]

Check: i-th node: ® and its parent: @ ?
If yes: publish seed|[1]

14

Compression Technique

Q'l Q'z Q'3 Q'4 Q'ﬁ Q'7

@ : to publish Q', @ :tohide Q', publish seed[1],seed[12],sced[13]

Check: i-th node: ® and its parent: @ ?
If yes: publish seed|[1]

14

Compression Technique

Q'l Q'z Q'3 Q'4 Q'6 Q'7

@ : to publish Q', @ :tohide Q', publish seed[1],seed[12],sced[13]

Check: i-th node: ® and its parent: @ ?
If yes: publish seed|[1]

14

Our Attack Location

Check: i-th node: ® and its parent: @ ?
If yes: publish seed|1]

15

Our Attack Location

Check: i-th node: ® and its parent: @ ?
If yes: publish seed|1]

15

Our Attack Location

&SSP
Sy Yy

A
L

> A & 8
SO AN
£ 2R N g R

publish seed[1],seed[5],seed[13]

Check: i-th node: ® and its parent: @ ?

If yes: publish seed|1]

15

Our Attack Location

Fxtra information
seed|0] IQ’:-
o)

seed[4] seed[5]

A
L

> & S > P
£ R R

. Q' Q, Q5Q, Q5 Q' Q'
publish seed[1],seed[5],seed[13]

Check: i-th node: ® and its parent: @ ?
If yes: publish seed|1]

15

Our Attack Location

Fxtra information
seed|0] IQ’:-
o b}

seed(4] seed|5)

T - 3 A AN & B z@éﬁ’\t@@ﬁ\@@@h
R T SRS AN SN AN 4 I I R A AN g g & & &S
O A O N A LA A A A A A A
|
. Q' Q, Q5Q, Q5 Q' Q'
publish seed[1],seed[5],seed[13] e .
Q]Qs QZQS

Check: i-th node: ® and its parent: @ ?
If yes: publish seed|1]

15

Our Attack Location

Fxtra information
seed|0] IQ’:-
f o

seed[4] seed[5]

> A A & & 3 A AN & B S’E\h@t@@ﬁﬁ@@@h
R T SRS AN SN AN 4 I I R A AN g g & & &S
O A O N A LA A A A A A A
|
. Q' Q, Q5Q, Q5 Q' Q'
publish seed[1],seed[5],seed[13] e .
Q]Qs QZQS

Check: i-th node: ® and its parent: @ ?
If yes: publish seed|1]

The secret Q, can be computed by
Q1:Q'5(Q-11Q'5)-1

Leaks secret information!!!!

15

Generic Fault Location

x[0]

16

Generic Fault Location

x[0]

x[0]

16

Generic Fault Location

x[0]

N S
R NI AN AN ¢ &
DA SR S S +

A

S
S N I A
- R T R A S

Change of any grey node by injecting fault will leak the information of the secret

16

Generic Fault Location

x[0]

&
S

S
R NI AN AN ¢ &
DA SR S S >

3 A A A B
OIS A
£ o8)R & R

* Change of any grey node by injecting fault will leak the information of the secret

* The nodes with higher heights would always give more informations about secret

16

Generic Fault Location

x[0]

a
N

-
N I &
SR £

3 A A A B
& 0 S SI
£ o8)R & R

* Change of any grey node by injecting fault will leak the information of the secret
* The nodes with higher heights would always give more informations about secret

* For our result, we have targeted the location x[1]/x[2]

16

Fault Detection

* After Fault injection we need to answer the questions:

O Is the fault injected exactly at i-th location?

O Is the fault injection successful?

18

Fault Detection

* After Fault injection we need to answer the questions:

O Is the fault injected exactly at i-th location?

O Is the fault injection successful?

* In our work, the fault detection method answers both of the above questions.

18

How to Prevent the Fault Attack?

Ch

19

How to Prevent the Fault Attack?

Ch

* By injecting fault in the first part to get the value seed[1'] corresponding

Compute x
z; =0 and P(z;) =17

X, Rsp; = seed|i]

|

Ch; =17
X% Reps = Q71Q!

to Ch,=1, which will not hamper the second part.

Rsp

19

How to Prevent the Fault Attack?

Ch
* By injecting fault in the first part to get the value seed[1'] corresponding
C t
mioil%uai;{ Plz;) = 17 to Ch.=1, which will not hamper the second part.

X, Rsp; = seed|i]

* So, we are getting both values seed[i'] (=Q',) and Q"'Q", for a non-zero
|

1

Ch; =17
X% Reps = Q71Q!

Rsp

19

How to Prevent the Fault Attack?

Ch
* By injecting fault in the first part to get the value seed[1'] corresponding
C t
mioil%uai;{ Plz;) = 17 to Ch.=1, which will not hamper the second part.

X%, Rsp; = seed|i]

* So, we are getting both values seed[i'] (=Q',) and Q"'Q", for a non-zero
|

1

Ch; =17 * The attack successfully done.
= Rspi = Q7'

Rsp

19

First Countermeasure

Ch

Compute x

x; =0 and P(z;) =17

X5, Rsp; = seed|i]

Chy =17
Yes —1,
— Rsp; = Q7" Q;

Rsp

20

First Countermeasure

Ch

Ch

Compute x

x; =0 and P(z;) =17

X5, Rsp; = seed|i]

Chy =17
Yes —1,
— Rsp; = Q7" Q;

Rsp

20

First Countermeasure

Ch

Ch

Compute x

x; =0 and P(z;) =17

X5, Rsp; = seed|i]

Chy =17
Yes —1,
— Rsp; = Q7" Q;

Rsp

Ch
Ch; =17
== Rsp; = Q™ 'Q}
& Rsp; = Q;
Rsp

20

First Countermeasure

Ch

Ch

Compute x

x; =0 and P(x;) =17

X5, Rsp; = seed|i]

|

Ch; =17
X Rsp; = Q71Q!

Rsp

Ch
Ch; =17
—> Yo, Repr = Q-1Q!
= Rsp; = Q;
Rsp

The signature size will increase

20

Second Countermeasure

Ch

Compute x
x; =0 and P(z;) =17

Ch; =17

Second Countermeasure

Ch

Ch

Compute x

x; =0 and P(z;) =17

X5, Rsp; = seed|i]

Ch; =17
— Rsp; = Q7'Q;

Rsp

Compute x

Compute the path Pt;
h=distance of last 0
i’=index of last 0

Check h=07?
Yes

— Rsp; = Q71 Q;
2% Rsp; = seed|[i']

skip all leaf nodes of seed[i’]

21

Second Countermeasure

Ch
Ch

Compute x
Compute the path Pt;

Compute x h=distance of last 0
i’=index of last 0

i =0 and P(z;) = 17) Check h=07

XS, Rsp; = seed]i] ~= Rspi = Q'@ * The signature size remain unchanged
2% Rsp; = seed|[i']
l skip all leaf nodes of seed[i’]
Ch; =17

— Rsp; = Q7'Q;

Rsp

21

Conclusion

* We show a fault attack on LESS and CROSS.

22

Conclusion

* We show a fault attack on LESS and CROSS.

* QOur proposed fault detection method prevents erroneous secret recovery

22

Conclusion

* We show a fault attack on LESS and CROSS.
* QOur proposed fault detection method prevents erroneous secret recovery

* It can be realized bit flip fault, struck at zero/one fault, instruction skip fault, etc.

22

Conclusion

We show a fault attack on LESS and CROSS.

* QOur proposed fault detection method prevents erroneous secret recovery

It can be realized bit flip fault, struck at zero/one fault, instruction skip fault, etc.

This attack can be applied to other schemes those uses the similar ZK structure

v'E.g. MEDS

22

Conclusion

We show a fault attack on LESS and CROSS.

* Our proposed fault detection method prevents erroneous secret recovery

It can be realized bit flip fault, struck at zero/one fault, instruction skip fault, etc.

This attack can be applied to other schemes those uses the similar ZK structure

v'E.g. MEDS

* We have proposed two countermeasures that prevent the fault

22

Questions?

Thank you!

	Slide 1
	Slide 2: NIST's Additional Digital Signature
	Slide 3: NIST's Additional Digital Signature
	Slide 4: NIST's Additional Digital Signature
	Slide 5: NIST's Additional Digital Signature
	Slide 6: Interactive-Zero-Knowledge (ZK) Framework
	Slide 7: Interactive-Zero-Knowledge (ZK) Framework
	Slide 8: Interactive-Zero-Knowledge (ZK) Framework
	Slide 9: Interactive-Zero-Knowledge (ZK) Framework
	Slide 10: Interactive-Zero-Knowledge (ZK) Framework
	Slide 11: Interactive-Zero-Knowledge (ZK) Framework
	Slide 12: ZK with Fiat-Shamir Transformation
	Slide 13: ZK with Fiat-Shamir Transformation
	Slide 14: ZK with Fiat-Shamir Transformation
	Slide 15: ZK with Fiat-Shamir Transformation
	Slide 16: LESS
	Slide 17: LESS
	Slide 18: LESS
	Slide 19: LESS
	Slide 20: LESS
	Slide 21: Target of Our Fault Attack
	Slide 22: Target of Our Fault Attack
	Slide 23: Target of Our Fault Attack
	Slide 24: Target of Our Fault Attack
	Slide 25: Fault Assumption and Result
	Slide 26: Fault Assumption and Result
	Slide 27: Fault Assumption and Result
	Slide 28: Overview of LESS
	Slide 29: Overview of LESS
	Slide 30: Overview of LESS
	Slide 31: Overview of LESS
	Slide 32: Overview of LESS
	Slide 33: Overview of LESS
	Slide 34: Overview of LESS
	Slide 35: Summary of Signature Compression
	Slide 36: Summary of Signature Compression
	Slide 37: Summary of Signature Compression
	Slide 38: Summary of Signature Compression
	Slide 39: Seed Tree Generation
	Slide 40: Seed Tree Generation
	Slide 41: Compression Technique
	Slide 42: Compression Technique
	Slide 43: Compression Technique
	Slide 44: Compression Technique
	Slide 45: Compression Technique
	Slide 46: Compression Technique
	Slide 47: Compression Technique
	Slide 48: Compression Technique
	Slide 49: Compression Technique
	Slide 50: Compression Technique
	Slide 51: Compression Technique
	Slide 52: Compression Technique
	Slide 53: Compression Technique
	Slide 54: Compression Technique
	Slide 55: Compression Technique
	Slide 56: Compression Technique
	Slide 57: Our Attack Location
	Slide 58: Our Attack Location
	Slide 59: Our Attack Location
	Slide 60: Our Attack Location
	Slide 61: Our Attack Location
	Slide 62: Our Attack Location
	Slide 63: Generic Fault Location
	Slide 64: Generic Fault Location
	Slide 65: Generic Fault Location
	Slide 66: Generic Fault Location
	Slide 67: Generic Fault Location
	Slide 68: Fault Detection
	Slide 69: Fault Detection
	Slide 70: How to Prevent the Fault Attack?
	Slide 71: How to Prevent the Fault Attack?
	Slide 72: How to Prevent the Fault Attack?
	Slide 73: How to Prevent the Fault Attack?
	Slide 74: First Countermeasure
	Slide 75: First Countermeasure
	Slide 76: First Countermeasure
	Slide 77: First Countermeasure
	Slide 78: Second Countermeasure
	Slide 79: Second Countermeasure
	Slide 80: Second Countermeasure
	Slide 81: Conclusion
	Slide 82: Conclusion
	Slide 83: Conclusion
	Slide 84: Conclusion
	Slide 85: Conclusion
	Slide 86
	Slide 87

