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Q.=Q'(Q' Q") will be recovered.
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Fault Assumption and Result

e Our fault tion i h Scheme | Security Parameter set Required faults for
ur fault assumption 1s we can change COMpletesecret
the value of a location from 1 to 0 recovery
LESS 1 Less-1b 1
* This can be achieved by any one of Less-1i 1
O bit flip fault Less-1s 2
O stuck at zero fault 3 Less-3b 1
O instruction skip fault Less-3s 1
5 Less-5b 1
Less-5s 1
CROSS 1, 3,5 CROSS-R-SDP 1
CROSS-R-SDPG 1
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Overview of LESS

* Each Q', is generated from a random seed seed,
* The challenge c=¢,,c,,..,¢, is of fixed weight w

* The response must contain information of (t-w) many seeds of Q'

* For parameter, LESS-5b signature size 74960 Bytes

* LESS uses Goldreich-Goldwasser-Micali (GGM) tree construction

* Compressed signatures size: ~32500 Bytes (~57% reduced)
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Summary of Signature Compression

Step 1 Step 2 Step 3
Generate a GGM tree (seedtree) Generate a reference tree Decide the nodes of the seedtree
and generate all the ephimeral based on the challenge to be published based on reference
keys Q,', Q,', ... ,Q/ tree

Q Qy - Q;
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* Change of any grey node by injecting fault will leak the information of the secret
* The nodes with higher heights would always give more informations about secret

* For our result, we have targeted the location x[1]/x[2]
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Fault Detection

* After Fault injection we need to answer the questions:

O Is the fault injected exactly at i-th location?

O Is the fault injection successful?

* In our work, the fault detection method answers both of the above questions.
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How to Prevent the Fault Attack?

Ch
* By injecting fault in the first part to get the value seed[1'] corresponding
C t
mioil%uai;{ Plz;) = 17 to Ch.=1, which will not hamper the second part.

X%, Rsp; = seed|i]

* So, we are getting both values seed[i'] (=Q',) and Q"'Q", for a non-zero
|

1

Ch; =17 * The attack successfully done.
= Rspi = Q7'

Rsp
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Compute x
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X5, Rsp; = seed|i]

|
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X Rsp; = Q71Q!

Rsp
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Ch; =17
—> Yo, Repr = Q-1Q!
= Rsp; = Q;
Rsp

The signature size will increase
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Compute x
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X5, Rsp; = seed|i]
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— Rsp; = Q71 Q;
2% Rsp; = seed|[i']

skip all leaf nodes of seed[i’]
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Compute x
Compute the path Pt;

Compute x h=distance of last 0
i’=index of last 0

i =0 and P(z;) = 17 ) Check h=07

XS, Rsp; = seed]i] ~= Rspi = Q'@ * The signature size remain unchanged
2% Rsp; = seed|[i']
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Conclusion

We show a fault attack on LESS and CROSS.

* Our proposed fault detection method prevents erroneous secret recovery

It can be realized bit flip fault, struck at zero/one fault, instruction skip fault, etc.

This attack can be applied to other schemes those uses the similar ZK structure

v'E.g. MEDS

* We have proposed two countermeasures that prevent the fault

22



Questions?



Thank you!
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