Constrained Pseudorandom Functions for Inner-Product Predicates from Weaker Assumptions

Sacha Servan-Schreiber

Overview

● Background on PRFs and constrained PRFs

- **● Background on PRFs and constrained PRFs**
- **● A secret sharing perspective on constrained PRFs**

- **● Background on PRFs and constrained PRFs**
- **● A secret sharing perspective on constrained PRFs**
- **● Our framework and instantiations**

- **● Background on PRFs and constrained PRFs**
- **● A secret sharing perspective on constrained PRFs**
- **● Our framework and instantiations**
- **● Evaluation**

- **● Background on PRFs and constrained PRFs**
- **● A secret sharing perspective on constrained PRFs**
- **● Our framework and instantiations**
- **● Evaluation**
- **● Open problems**

Constrained PRFs

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a PRF if:

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a PRF if:

Setup phase (one time)

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a PRF if:

Setup phase (one time)

$$
\bullet \ \ k \stackrel{R}{\leftarrow} \mathcal{K}
$$

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a PRF if:

Setup phase (one time)

O $k \stackrel{R}{\leftarrow} \mathcal{K}$ Challenger 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a PRF if:

Setup phase (one time)

O $k \stackrel{R}{\leftarrow} \mathcal{K}$ Challenger 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X},\mathcal{Y}\right)$ $\begin{matrix} \textbf{3} & b \leftarrow & \{0,1\} \end{matrix}$

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a PRF if:

Challenger

Setup phase (one time)

 $\bigoplus k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$ \bullet $b \stackrel{R}{\leftarrow} \{0,1\}$

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a PRF if:

Challenger

Setup phase (one time)

 $\bigoplus k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$ $\bullet \stackrel{R}{\leftarrow} \{0,1\}$

Query phase (repeatable)

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a PRF if:

Setup phase (one time)

 $\bigoplus k \stackrel{R}{\leftarrow} \mathcal{K}$ **2** $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X},\mathcal{Y}\right)$ $\overline{\bm{3}\,}\;\overline{\bm{b}} \stackrel{R}{\leftarrow} \overline{\{0,1\}}$

Query phase (repeatable)

Challenger

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a PRF if:

Challenger

Setup phase (one time)

 $\bigoplus k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \text{Funs } (\mathcal{X}, \mathcal{Y})$ $\bullet \stackrel{R}{\leftarrow} \{0,1\}$

Query phase (repeatable)

$$
\quad \ \ \, \mathbf{4}\quad y_i\,:=\,\begin{cases} F\left(k,\,x_i\right) & \text{ if }b=0\\ R\left(x_i\right) & \text{ if }b=1 \end{cases}
$$

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a PRF if:

Challenger

Setup phase (one time)

 $\bigoplus k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$ $\bullet \stackrel{R}{\leftarrow} \{0,1\}$

Query phase (repeatable)

$$
\quad \ \ \, \mathbf{4}\quad y_i\,:=\,\begin{cases} F\left(k,\,x_i\right) & \text{if }b=0\\ R\left(x_i\right) & \text{if }b=1 \end{cases}
$$

 x_i y_i Distinguisher

CPRFs have an additional **constrain** functionality:

Master PRF Key

Correctness: If $C(x) = 0$ then $F(msk, x) = F(sk_C, x)$

Correctness: If $C(x) = 0$ then $F(msk, x) = F(sk_C, x)$

Pseudorandomness: If $C(x) \neq 0$ then $F(msk, x)$ is pseudorandom given sk $_C$

Correctness: If $C(x) = 0$ then $F(msk, x) = F(sk_C, x)$

Pseudorandomness: If $C(x) \neq 0$ then $F(msk, x)$ is pseudorandom given sk $_C$

Hiding (optional): C is hidden given sk_{C}

Our focus: Inner-product predicates

Our focus: Inner-product predicates

$$
C\left(\mathbf{x}\right)=\left\langle \mathbf{z},\mathbf{x}\right\rangle \,\in\,\mathbb{F}\,\text{ where }\mathbf{z},\mathbf{x}\,\in\mathbb{F}^{\ell}
$$

Our focus: Inner

Predicate satisfied if and only if the inner product is zero

$C\left(\mathbf{x}\right)=\left\langle \mathbf{z},\mathbf{x}\right\rangle \,\in\,\mathbb{F}\,\,\text{where}\,\mathbf{z},\mathbf{x}\,\in\mathbb{F}^{\ell}$

Our focus: Inn Constrained Pseudorandom Function (**C**PRF) Predicate satisfied if and only if

the inner product is zero

$$
C\left(\mathbf{x}\right)=\left\langle \mathbf{z},\mathbf{x}\right\rangle \,\in\,\mathbb{F}\,\text{ where }\mathbf{z},\mathbf{x}\,\in\mathbb{F}^{\ell}
$$

Can be used to build other predicates, generically:

Constrained Pseudorandom Function (**C**PRF) Predicate satisfied if and only if **Our focus: Inn** the inner product is zero $C\left(\mathbf{x}\right)=\left\langle \mathbf{z},\mathbf{x}\right\rangle \,\in\,\mathbb{F}\,\,\text{where}\,\mathbf{z},\mathbf{x}\,\in\mathbb{F}^{\ell}$

Can be used to build other predicates, generically:

t-CNF predicates (for constant t) [DKN+20]

Constrained Pseudorandom Function (**C**PRF) Predicate satisfied if and only if **Our focus: Inner** the inner product is zero $\mathbf{C}\left(\mathbf{x}\right)=\left\langle \mathbf{z},\mathbf{x}\right\rangle \,\in\,\mathbb{F}\,\,\,\text{where}\,\mathbf{z},\mathbf{x}\,\in\mathbb{F}^{\ell}.$

Can be used to build other predicates, generically:

- **t-CNF** predicates (for constant t) [DKN+20]
- **Bit-fixing** predicates (special case of t-CNF) [DKN+20]

Constrained Pseudorandom Function (**C**PRF) Predicate satisfied if and only if **Our focus: Inn** the inner product is zero $C\left(\mathbf{x}\right)=\left\langle \mathbf{z},\mathbf{x}\right\rangle \,\in\,\mathbb{F}\,\,\text{where}\,\mathbf{z},\mathbf{x}\,\in\mathbb{F}^{\ell}$

Can be used to build other predicates, generically:

- **t-CNF** predicates (for constant t) [DKN+20]
- **Bit-fixing** predicates (special case of t-CNF) [DKN+20]
- **Matrix-product** predicates (folklore & this work)
Security Definitions

Setup phase (one time)

Setup phase (one time)

1 msk $\stackrel{R}{\leftarrow}$ K Challenger **Setup phase (one time)** 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X},\mathcal{Y}\right)$

Distinguisher

Setup phase (one time) C **1** msk $\stackrel{R}{\leftarrow}$ K Challenger $\begin{equation*} \begin{array}{c} R \leftarrow \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right), \end{array} \end{equation*}$

(1-key, adaptive) CPRF security game

Can we build CPRFs from weaker assumptions?

Can we build CPRFs for inner-product predicates using random oracles?

Can we build CPRFs for inner-product predicates from DDH?

Can we build CPRFs for inner-product predicates from LPN?

Can we build CPRFs for inner-product predicates from OWF?

A secret sharing perspective on constrained PRFs

Idea: view msk and sk_z as being secret shares of the constraint vector **z**:

$$
\mathbf{z_0} - \mathbf{z_1} = \mathbf{z}
$$

Alice Bob

Idea: view msk and sk_z as being secret shares of the constraint vector **z**:

$$
\mathbf{z}_0 - \mathbf{z}_1 = \mathbf{z}
$$

 $msk = z_0$

 $sk_z = z_1$

Idea: view msk and sk_z as being secret shares of the constraint vector **z**:

 $sk_z = z_1$ $k_B := \langle \mathbf{z_1}, \mathbf{x} \rangle$
A secret-sharing perspective

Idea: view msk and sk_z as being secret shares of the constraint vector **z**:

A secret-sharing perspective

Idea: view msk and sk_z as being secret shares of the constraint vector **z**:

$$
\mathsf{msk} := \mathbf{z_0}
$$

For a constraint vector Z:

 $msk := z_0$

For a constraint vector Z:

$$
\mathsf{sk}_\mathbf{z} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

$$
\mathsf{msk} := \mathbf{z_0}
$$

For a constraint vector Z:

$$
\mathsf{sk}_{\mathbf{z}} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

 $msk := z_0$

For a constraint vector Z:

$$
\mathsf{sk}_{\mathbf{z}} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

$$
\mathsf{msk} := \mathbf{z_0}
$$

For a constraint vector Z:

$$
\mathsf{sk}_{\mathbf{z}} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

 $msk := z_0$

$$
1. \quad k:=\langle \mathbf{z_0}, \mathbf{x} \rangle
$$

2. Return
$$
F(k, \mathbf{x})
$$

For a constraint vector Z:

$$
\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}
$$

$$
\begin{cases} \text{CEval}(sk_z, x): \\ \end{cases}
$$

$$
\mathsf{msk} := \mathbf{z_0}
$$

$$
1. \quad k:=\langle \mathbf{z_0}, \mathbf{x} \rangle
$$

2. Return
$$
F(k, \mathbf{x})
$$

For a constraint vector Z:

$$
\mathsf{sk}_\mathbf{z} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

$$
\begin{bmatrix}\n\text{CEval}(sk_z, \mathbf{x}) \\
1. & k := \langle \mathbf{z}_1, \mathbf{x} \rangle\n\end{bmatrix}
$$

$$
\mathsf{msk} := \mathbf{z_0}
$$

$$
1. \quad k:=\langle \mathbf{z_0}, \mathbf{x} \rangle
$$

2. Return
$$
F(k, \mathbf{x})
$$

 $msk := z_0$

Eval(msk, x):

$$
1. \quad k:=\langle \mathbf{z_0}, \mathbf{x} \rangle
$$

2. Return
$$
F(k, \mathbf{x})
$$

For a constraint vector Z:

$$
\mathsf{sk}_\mathbf{z} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

CEval(
$$
sk_{z}
$$
, **x**):

\n1. $k := \langle z_1, x \rangle$

\n2. Output $F(k, x)$

 $msk := z_0$

Eval(msk, x):

$$
1. \quad k:=\langle \mathbf{z_0}, \mathbf{x} \rangle
$$

2. Return $F(k, \mathbf{x})$

Is this correct?

For a constraint vector Z:

$$
\mathsf{sk}_{\mathbf{z}} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

CEval(
$$
sk_z
$$
, x):
1. $k := \langle z_1, x \rangle$
2. Output $F(k, x)$

For a constraint vector Z:

$$
\mathsf{sk}_\mathbf{z} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

CEval(
$$
sk_z
$$
, **x**):

\n1. $k := \langle z_1, x \rangle$

\n2. Output $F(k, x)$

 $msk := z_0$

Eval(msk, x):

$$
1. \quad k:=\langle \mathbf{z_0}, \mathbf{x} \rangle
$$

2. Return
$$
F(k, \mathbf{x})
$$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$

Eval(msk, x):

 $msk := z_0$

2. Return

1.

For a constraint vector Z:

$$
\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}
$$

$$
\begin{cases}\n\text{CEval}(sk_{\mathbf{z}}, \mathbf{x}) \\
1. \quad k := \langle \mathbf{z}_1, \mathbf{x} \rangle \\
2. \quad \text{Output } F(k, \mathbf{x})\n\end{cases}
$$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

$$
86 \\
$$

Eval(msk, x):

 $msk := z_0$

2. Return

1.

For a constraint vector Z:

$$
\mathsf{sk}_\mathbf{z} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

CEval(
$$
sk_z
$$
, x):

\n1. $k := \langle z_1, x \rangle$

\n2. Output $F(k, x)$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

$$
\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z}, \mathbf{x} \rangle + \langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle
$$

Eval(msk, x):

 $msk := z_0$

2. Return

1.

For a constraint vector Z:

$$
\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}
$$

CEval(
$$
sk_z
$$
, **x**):

\n1. $k := \langle z_1, x \rangle$

\n2. Output $F(k, x)$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$. **Is this secure?**

For a constraint vector Z:

$$
\mathsf{sk}_\mathbf{z} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

CEval(
$$
sk_z
$$
, x):

\n1. $k := \langle z_1, x \rangle$

\n2. Output $F(k, x)$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

Is this secure? No, because $\mathbf{z}_0 = \mathbf{z}_1 + \mathbf{z}$

Eval(msk, x):

 $msk := z_0$

2. Return

1.

Eval(msk, x):

 $msk := z_0$

2. Return

1.

For a constraint vector Z:

$$
\mathsf{sk}_\mathbf{z} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

CEval(
$$
sk_z
$$
, x):

\n1. $k := \langle z_1, x \rangle$

\n2. Output $F(k, x)$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

Is this secure? No, because $\mathbf{z}_0 = \mathbf{z}_1 + \mathbf{z}$; possible to recover the master key!

For a constraint vector Z:

$$
\mathsf{sk}_\mathbf{z} := \mathbf{z_1} = \mathbf{z_0} - \mathbf{z}
$$

$$
\begin{cases}\n\text{CEval}(sk_{\mathbf{z}}, \mathbf{x}) \\
1. \quad k := \langle \mathbf{z}_1, \mathbf{x} \rangle \\
2. \quad \text{Output } F(k, \mathbf{x})\n\end{cases}
$$

$$
\mathsf{msk} := \mathbf{z_0}
$$

$$
1. \quad k:=\langle \mathbf{z_0}, \mathbf{x} \rangle
$$

2. Return
$$
F(k, \mathbf{x})
$$

For a constraint vector Z:

$$
\mathsf{msk} := \mathbf{z_0}
$$

Eval(msk, x):

$$
1. \quad k:=\langle \mathbf{z_0}, \mathbf{x} \rangle
$$

2. Return
$$
F(k, \mathbf{x})
$$

 $\Delta \stackrel{R}{\leftarrow} \mathbb{F}$ $sk_z := z_1 = z_0 - \Delta z$ **CEval**($\mathsf{sk}_{\mathbf{z}}$, **x**): 1. 2. Output

Eval(msk, x):

 $msk := z_0$

2. Return

1.

For a constraint vector Z: $\Delta \stackrel{R}{\leftarrow} \mathbb{F}$ $sk_z := z_1 = z_0 - \Delta z$ **CEval**($\mathsf{sk}_{\mathbf{z}}$, **x**): 1. 2. Output

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z}_0, \mathbf{x} \rangle = \langle \mathbf{z}_1, \mathbf{x} \rangle$.

$$
\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \Delta \mathbf{z}, \mathbf{x} \rangle + \langle \mathbf{z_1}, \mathbf{x} \rangle = \Delta \langle \mathbf{z}, \mathbf{x} \rangle + \langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle
$$

$$
msk := \mathbf{z}_0
$$

\n
$$
\overline{\text{Eval(msk, x)}}\n\n1. $k := \langle \mathbf{z}_0, \mathbf{x} \rangle$
\n2. Return $F(k, \mathbf{x})$
$$

For a constraint vector Z: $\bm{\Lambda} \stackrel{\bm{R}}{\leftarrow} \mathbb{F}$ $sk_z := z_0 - \Delta z = z_1$ **CEval**($sk_{\mathbf{z}}$, **x**): 1. 2. Output

1.

2. Return

$msk := z_0$	$\Delta \stackrel{R}{\leftarrow} F$
$Eval(msk, x)$:	$sk_z := z_0 - \Delta z = z_1$
$1. \quad k := \langle z_0, x \rangle$	$1. \quad k := \langle z_1, x \rangle$
$2. \quad \text{Return } F(k, x)$	$2. \quad \text{Output } F(k, x)$

$$
k := \langle \mathbf{z_1}, \mathbf{x} \rangle
$$

Output $F(k, \mathbf{x})$

For a constraint vector Z:

 $\Delta \stackrel{R}{\leftarrow} \mathbb{F}$

Problem: generally insecure if keys are correlated

Solution: use a related-key secure PRFs

A general framework

RKA-secure PRFs

Regular security for a PRF

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a secure PRF if:

Regular security for a PRF

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is a secure PRF if:

Challenger

Setup phase (one time)

 $\overline{\bigcirc}$ $k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$ $\bigodot b \stackrel{R}{\leftarrow} \{0,1\}$

Query phase (repeatable)

$$
\qquad \qquad \bullet \quad y_i \,:=\, \begin{cases} F\left(k,\, x_i\right) & \text{ if } b=0\\ R\left(x_i\right) & \text{ if } b=1 \end{cases}
$$

Related Key Attack (RKA) security for a PRF A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ is an **RKA-secure** PRF if:

Challenger

Setup phase (one time)

 $\overline{\bigcirc}$ $k \stackrel{R}{\leftarrow}$ \mathcal{K} 2 $R \leftarrow \mathcal{F}uns\left((\mathcal{X},\Phi),\mathcal{Y}\right)$ $\begin{array}{c} \hline R \ \hline 0,1 \end{array}$

Query phase (repeatable)

$$
\qquad \qquad \bullet \quad y_i \,:=\, \begin{cases} F\left(\phi_i\left(k \right),\, x_i \right) & \text{ if } b=0 \\ R\left(x_i,\phi_i \right) & \text{ if } b=1 \end{cases}
$$

For a class of key derivation functions $\Phi: \mathcal{K} \to \mathcal{K}$

The inner product $\langle z_1, x \rangle = \langle z_0, x \rangle - \Delta \langle z, x \rangle$

$$
\text{The inner product }\langle \mathbf{z_1}, \mathbf{x} \rangle \,=\langle \mathbf{z_0}, \mathbf{x} \rangle - \,\Delta \langle \mathbf{z}, \mathbf{x} \rangle
$$

is an *affine* function of Δ , determined by $\mathbf x$

$$
\text{The inner product }\langle \mathbf{z_1}, \mathbf{x} \rangle \,=\langle \mathbf{z_0}, \mathbf{x} \rangle - \,\Delta \langle \mathbf{z}, \mathbf{x} \rangle
$$

is an *affine* function of Δ , determined by $\mathbf x$

$$
\begin{aligned}\n\text{msk} &:= \mathbf{z_0} \\
\begin{cases}\n\text{Eval(msk, x)} \\
1. & k := \langle \mathbf{z_0}, \mathbf{x} \rangle \\
2. & \text{Return } F(k, \mathbf{x})\n\end{cases}\n\end{aligned}
$$

$$
\mathsf{sk}_\mathbf{z} := \mathbf{z_0} - \Delta \mathbf{z} = \mathbf{z_1}
$$

CEval(
$$
sk_z
$$
, **x**):

\n1. $k := \langle z_1, x \rangle$

\n2. Output $F(k, x)$

$$
\text{The inner product }\langle \mathbf{z_1}, \mathbf{x} \rangle \,=\langle \mathbf{z_0}, \mathbf{x} \rangle - \,\Delta \langle \mathbf{z}, \mathbf{x} \rangle
$$

is an *affine* function of Δ , determined by \bf{x}

Reduction to RKA security
Step 1: The (1 key, selective) CPRF security game

Step 2: Change definition of z_0 to be in terms of z_1

Step 3: Define the inner-product as an affine function

$$
\Delta \stackrel{R}{\leftarrow} \mathcal{K}
$$
\n
$$
\mathbf{z}_{1} \stackrel{R}{\leftarrow} \mathcal{K}^{\ell}
$$
\n
$$
\mathbf{z}_{0} := \mathbf{z}_{1} + \Delta \mathbf{z}
$$
\n
$$
b_{i} := \sum_{j=1}^{\ell} (\mathbf{z}_{1} [j] \cdot \mathbf{x}_{i} [j])
$$
\n
$$
a_{i} := \sum_{j=1}^{\ell} (\mathbf{z} [j] \cdot \mathbf{x}_{i} [j])
$$
\n
$$
\mathbf{F} (a_{i} \Delta + b_{i}, \mathbf{x}_{i})
$$

Step 3: Define the inner-product as an affine function

Step 4: Reduce to RKA security

The key Δ is not sampled anymore...

 $\mathbf{z_1} \stackrel{R}{\leftarrow} \mathcal{K}^{\ell}$ $a_i := \sum_{j=1}^{\ell} \left(\mathbf{z_1}\left[j\right] \cdot \mathbf{x}_i\left[j\right] \right)$ $b_i := \sum_{j=1}^{\ell} (\mathbf{z}[j] \cdot \mathbf{x}_i[j])$ **Query RKA PRF challenger on input:** $(\phi_i := (a_i, b_i), \mathbf{x}_i)$ And get back: $\,F\,(\phi_i\,(\Delta),\mathbf{x_i})\,$

Constructions from RKA-secure PRFs

In the **random oracle model (ROM)**

Easy to construct RKA-secure PRFs in the ROM

In the **random oracle model (ROM)**

Easy to construct RKA-secure PRFs in the ROM

From **DDH**

Directly follows from the affine RKA-secure construction of [ABP+14]

In the **random oracle model (ROM)**

Easy to construct RKA-secure PRFs in the ROM

From **DDH**

Directly follows from the affine RKA-secure construction of [ABP+14]

From **Variable Density LPN**

Directly follows from the RKA-secure weak PRF candidate of [BCG+20]

In the **random oracle model (ROM)**

Easy to construct RKA-secure PRFs in the ROM

From **DDH**

Directly follows from the affine RKA-secure construction of [ABP+14]

From **Variable Density LPN**

Directly follows from the RKA-secure weak PRF candidate of [BCG+20]

From **OWF**

Almost directly follows from OWF-based RKA secure construction of [AW14]

In the **random oracle model (ROM)**

Easy to construct RKA-secure PRFs in the ROM

From **DDH**

Directly follows from the affine RKA-secure construction of [ABP+14]

From **Variable Density LPN**

Directly follows from the RKA-secure weak PRF candidate of [BCG+20]

From **OWF**

Almost directly follows from OWF-based RKA secure construction of [AW14]

Practical

Constructions

Evaluation

Artifact Badges: Available, Functional, and Reproduced.

<https://github.com/sachaservan/cprf>

Evaluation of the **random oracle** based CPRF

Implemented in Go (v1.20) without any significant optimizations

Bottleneck: inner-product computation in the finite field

Evaluation of the **DDH-based** CPRF

Implemented in Go (v1.20) without any significant optimizations

Bottleneck: exponentiations in the group

Open Questions

Open Questions

Extending constructions to NC¹ constraints?

Open Questions

Extending constructions to NC¹ constraints?

Open Questions

Instantiating the framework under more assumptions?

Extending constructions to NC¹ constraints?

Open Questions

Instantiating the framework under more assumptions?

OWF construction with superpolynomial domain?

Thank you!

Email: 3s@mit.edu **ePrint:** ia.cr/**[2024/058](http://eprint.iacr.org/2024/058.pdf)**

Constrained Pseudorandom Functions for Inner-Product **Predicates from Weaker Assumptions**

Sacha Servan-Schreiber*

MIT

References

[ABP+14]: Abdalla, Michel, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson. "Related-key security for pseudorandom functions beyond the linear barrier." *CRYPTO 2014.*

[AW14]: Applebaum, Benny, and Eyal Widder. "Related-key secure pseudorandom functions: The case of additive attacks." *ePrint Archive* (2014).

[AMN+18]: Attrapadung, Nuttapong, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. "Constrained PRFs for in traditional groups." CRYPTO 2018.

[BCG+20]: Boyle, Elette, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. "Correlated pseudorandom functions from variable-density LPN." FOCS 2020.

[CMPR23]: Couteau, Geoffroy, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. "Constrained Pseudorandom Functions from Homomorphic Secret Sharing." EUROCRYPT 2023.

[DKN+20]: Davidson, Alex, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. "Adaptively secure constrained pseudorandom functions in the standard model." CRYPTO 2020.