Constrained Pseudorandom Functions for Inner-Product Predicates from Weaker Assumptions

Sacha Servan-Schreiber

Overview

• Background on PRFs and constrained PRFs

- Background on PRFs and constrained PRFs
- A secret sharing perspective on constrained PRFs

- Background on PRFs and constrained PRFs
- A secret sharing perspective on constrained PRFs
- Our framework and instantiations

- Background on PRFs and constrained PRFs
- A secret sharing perspective on constrained PRFs
- Our framework and instantiations
- Evaluation

- Background on PRFs and constrained PRFs
- A secret sharing perspective on constrained PRFs
- Our framework and instantiations
- Evaluation
- Open problems

Constrained PRFs

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Setup phase (one time)

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Setup phase (one time)

1
$$k \stackrel{R}{\leftarrow} \mathcal{K}$$

A function $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a PRF if:

Setup phase (one time)

1 $k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Challenger

Setup phase (one time)

1 $k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$ 3 $b \stackrel{R}{\leftarrow} \{0, 1\}$

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Challenger

Setup phase (one time)

1 $k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$ 3 $b \stackrel{R}{\leftarrow} \{0, 1\}$

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Challenger

Setup phase (one time)

1 $k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$ 3 $b \stackrel{R}{\leftarrow} \{0, 1\}$

Query phase (repeatable)

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Setup phase (one time)

1 $k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$ 3 $b \stackrel{R}{\leftarrow} \{0, 1\}$

Query phase (repeatable)

Challenger

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Challenger

Setup phase (one time)

1 $k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$ 3 $b \stackrel{R}{\leftarrow} \{0, 1\}$

Query phase (repeatable)

$$egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} F\left(k,\,x_i
ight) & ext{if } b=0\ R\left(x_i
ight) & ext{if } b=1 \end{array} \end{array}$$

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Challenger

Setup phase (one time)

1 $k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$ 3 $b \stackrel{R}{\leftarrow} \{0, 1\}$

Query phase (repeatable)

$$egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} F\left(k,\,x_i
ight) & ext{if } b=0\ R\left(x_i
ight) & ext{if } b=1 \end{array} \end{array}$$

CPRFs have an additional **constrain** functionality:

Master PRF Key

Correctness: If C(x) = 0 then $F(\mathsf{msk}, x) = F(\mathsf{sk}_C, x)$

Correctness: If C(x) = 0 then $F(\mathsf{msk}, x) = F(\mathsf{sk}_C, x)$

Pseudorandomness: If $C(x) \neq 0$ then $F(\mathsf{msk}, x)$ is pseudorandom given sk_C

Correctness: If C(x) = 0 then $F(\mathsf{msk}, x) = F(\mathsf{sk}_C, x)$

Pseudorandomness: If $C(x) \neq 0$ then $F(\mathsf{msk}, x)$ is pseudorandom given sk_C

Hiding (optional): C is hidden given sk_C

Our focus: Inner-product predicates

Our focus: Inner-product predicates

$$C\left(\mathbf{x}
ight)=\left\langle\mathbf{z},\mathbf{x}
ight
angle\,\in\,\mathbb{F}\, ext{ where }\mathbf{z},\mathbf{x}\,\in\mathbb{F}^{\ell}$$

Our focus: Inr

Predicate satisfied if and only if the inner product is zero

$C\left(\mathbf{x} ight)=\left\langle \mathbf{z},\mathbf{x} ight angle \,\in\,\mathbb{F}\, ext{ where }\mathbf{z},\mathbf{x}\,\in\mathbb{F}^{\ell}$

Can be used to build other predicates, generically:

Can be used to build other predicates, generically:

• **t-CNF** predicates (for constant t) [DKN+20]

Can be used to build other predicates, generically:

- **t-CNF** predicates (for constant t) [DKN+20]
- Bit-fixing predicates (special case of t-CNF) [DKN+20]

Can be used to build other predicates, generically:

- **t-CNF** predicates (for constant t) [DKN+20]
- Bit-fixing predicates (special case of t-CNF) [DKN+20]
- Matrix-product predicates (folklore & this work)
Security Definitions

Setup phase (one time)

Setup phase (one time)

Challenger

Setup phase (one time)Image: Constraint of the setup phase (one time)1msk $\stackrel{R}{\leftarrow} \mathcal{K}$ Challenger2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$

Setup phase (one time) \frown C 1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$ Challenger 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$

Distinguisher

Distinguisher

(1-key, adaptive) CPRF security game

Assumptions	Security	Hiding	Comments
-------------	----------	--------	----------

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	\checkmark	For NC and P/poly

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	1	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	1	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	1	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹
[CMPR23]	DCR	Selective	1	

Can we build CPRFs from weaker assumptions?

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	1	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹
[CMPR23]	DCR	Selective	1	

Can we build CPRFs for inner-product predicates using random oracles?

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	√	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹
[CMPR23]	DCR	Selective	1	
This work	ROM	Adaptive	1	

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	√	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹
[CMPR23]	DCR	Selective	1	
This work	ROM	Adaptive	1	

Can we build CPRFs for inner-product predicates from DDH?

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	1	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹
[CMPR23]	DCR	Selective	1	
This work	ROM	Adaptive	1	
This work	DDH	Selective	1	

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	1	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹
[CMPR23]	DCR	Selective	1	
This work	ROM	Adaptive	1	
This work	DDH	Selective	1	

Can we build CPRFs for inner-product predicates from LPN?

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	1	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹
[CMPR23]	DCR	Selective	1	
This work	ROM	Adaptive	1	
This work	DDH	Selective	1	
This work	VDLPN	Selective	1	Weak CPRF (random inputs)

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	1	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹
[CMPR23]	DCR	Selective	1	
This work	ROM	Adaptive	1	
This work	DDH	Selective	1	
This work	VDLPN	Selective	1	Weak CPRF (random inputs)

Can we build CPRFs for inner-product predicates from OWF?

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹
[CMPR23]	DCR	Selective	✓	
This work	ROM	Adaptive	1	
This work	DDH	Selective	1	
This work	VDLPN	Selective	1	Weak CPRF (random inputs)
This work	OWF	Selective	1	Only for a polynomial domain

A secret sharing perspective on constrained PRFs

Idea: view msk and sk_z as being secret shares of the constraint vector z:

Idea: view msk and sk_z as being secret shares of the constraint vector z:

 $\mathbf{z}_0 - \mathbf{z}_1 \,=\, \mathbf{z}$

Alice

Idea: view msk and sk_z as being secret shares of the constraint vector z:

$$\mathbf{z}_0 - \mathbf{z}_1 = \mathbf{z}$$

 $msk = z_0$

 $\mathsf{sk}_{\mathbf{z}} = \mathbf{z}_{1}$

Idea: view msk and sk_z as being secret shares of the constraint vector z:

Idea: view msk and sk_z as being secret shares of the constraint vector z:

Idea: view msk and sk_z as being secret shares of the constraint vector z:

$$k_A := \langle \mathbf{z_0}, \mathbf{x}
angle$$

71

Idea: view msk and sk_z as being secret shares of the constraint vector z:

 $\mathsf{msk} = \mathbf{z_0}$

 $k_A := \langle \mathbf{z_0}, \mathbf{x}
angle$

For an input ${f x}$: $k_A-k_B=\langle {f z},{f x}
angle$

 ${f sk_z=z_1} \ k_B:=\langle {f z_1,x}
angle$
A secret-sharing perspective

Idea: view msk and sk_z as being secret shares of the constraint vector z:

A secret-sharing perspective

Idea: view msk and sk_z as being secret shares of the constraint vector z:

$$\mathsf{msk} := \mathbf{z_0}$$

$$\mathsf{sk}_\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

$$\mathsf{msk} := \mathbf{z_0}$$

For a constraint vector **Z**:

$$\mathsf{sk}_\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

$$\mathsf{msk} := \mathbf{z_0}$$

Eval(msk,x):

For a constraint vector **Z**:

$$\mathsf{sk}_\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

$$\mathsf{msk} := \mathbf{z_0}$$

Eval(msk,x): 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$

For a constraint vector **Z**:

$$\mathsf{sk}_\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

 $\mathsf{msk} := \mathbf{z_0}$

Eval(msk,x):

1.
$$k:=\langle \mathbf{z_0},\mathbf{x}
angle$$

2. Return $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$\mathsf{sk}_\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

$$\mathsf{msk} := \mathbf{z_0}$$

Eval(msk,x):

1.
$$k:=\langle \mathbf{z_0},\mathbf{x}
angle$$

2. Return
$$F(k, \mathbf{x})$$

 $\mathsf{msk} := \mathbf{z_0}$

Eval(msk,x):

1.
$$k:=\langle \mathbf{z_0},\mathbf{x}
angle$$

2. Return
$$F(k, \mathbf{x})$$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

CEval(sk_z,x):
1.
$$k:=\langle \mathbf{z_1},\mathbf{x}
angle$$

$$\mathsf{msk} := \mathbf{z_0}$$

Eval(msk,x):

1.
$$k:=\langle \mathbf{z_0},\mathbf{x}
angle$$

2. Return
$$F(k, \mathbf{x})$$

$$\mathsf{sk}_\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

CEval(sk_z,x):
1.
$$k := \langle \mathbf{z_1}, \mathbf{x} \rangle$$

2. Output $F(k, \mathbf{x})$

$$\mathsf{msk} := \mathbf{z_0}$$

Eval(msk,x):

1.
$$k:=\langle \mathbf{z_0},\mathbf{x}
angle$$

2. Return
$$F(k, \mathbf{x})$$

Is this correct?

$$\mathsf{sk}_\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

CEval(sk_z,x):
1.
$$k := \langle \mathbf{z_1}, \mathbf{x} \rangle$$

2. Output $F(k, \mathbf{x})$

 $\mathsf{msk} := \mathbf{z_0}$

Eval(msk,x):

1.
$$k:=\langle \mathbf{z_0},\mathbf{x}
angle$$

2. Return
$$F(k, \mathbf{x})$$

For a constraint vector **Z**:

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_{\mathbf{1}} = \mathbf{z}_{\mathbf{0}} - \mathbf{z}$$

CEval(sk_z,x):
1.
$$k := \langle \mathbf{z_1}, \mathbf{x} \rangle$$

2. Output $F(k, \mathbf{x})$

Is this correct? Yes, because when $\langle {f z}, {f x}
angle = 0$

 $msk := z_0$

Eval(msk,x): 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$ For a constraint vector **Z**:

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_{\mathbf{1}} = \mathbf{z}_{\mathbf{0}} - \mathbf{z}$$

CEval(sk_z,x):
1.
$$k := \langle \mathbf{z_1}, \mathbf{x} \rangle$$

2. Output $F(k, \mathbf{x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

 $\mathsf{msk} := \mathbf{z_0}$

Eval(msk,x): 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$ For a constraint vector **Z**:

$$\mathsf{sk}_\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

CEval(sk_z, x):
1.
$$k := \langle \mathbf{z_1}, \mathbf{x} \rangle$$

2. Output $F(k, \mathbf{x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z}_0, \mathbf{x} \rangle = \langle \mathbf{z}_1, \mathbf{x} \rangle$.

$$\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z}, \mathbf{x} \rangle + \langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$$

 $msk := z_0$

Eval(msk,x): 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$ For a constraint vector Z:

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_{\mathbf{1}} = \mathbf{z}_{\mathbf{0}} - \mathbf{z}$$

CEval(sk_z, x):1.
$$k := \langle \mathbf{z_1}, \mathbf{x} \rangle$$
2. Output $F(k, \mathbf{x})$

Is this correct? Yes, because when $\langle z, x \rangle = 0$ then $\langle z_0, x \rangle = \langle z_1, x \rangle$. Is this secure?

For a constraint vector **Z**:

$$\mathsf{sk}_\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

CEval(sk_z,x):
1.
$$k := \langle \mathbf{z_1}, \mathbf{x} \rangle$$

2. Output $F(k, \mathbf{x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

Is this secure? No, because $\mathbf{z_0} = \mathbf{z_1} + \mathbf{z}$

 $msk := z_0$

Eval(msk,x): 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

 $\mathsf{msk} := \mathbf{z_0}$

Eval(msk,x): 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$ For a constraint vector **Z**:

$$\mathsf{sk}_\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

CEval(sk_z, x):1.
$$k := \langle \mathbf{z_1}, \mathbf{x} \rangle$$
2. Output $F(k, \mathbf{x})$

Is this correct? Yes, because when $\langle {f z},{f x}
angle=0\,$ then $\langle {f z}_0,{f x}
angle=\langle {f z}_1,{f x}
angle$.

Is this secure? No, because $z_0 = z_1 + z$; possible to recover the master key!

 $\mathsf{msk} := \mathbf{z_0}$

Eval(msk,x):

1.
$$k:=\langle \mathbf{z_0},\mathbf{x}
angle$$

2. Return
$$F(k, \mathbf{x})$$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_{\mathbf{1}} = \mathbf{z}_{\mathbf{0}} - \mathbf{z}$$

CEval(sk_z,x):
1.
$$k := \langle \mathbf{z_1}, \mathbf{x} \rangle$$

2. Output $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$\mathsf{msk} := \mathbf{z_0}$$

Eval(msk,x):

1.
$$k:=\langle \mathbf{z_0},\mathbf{x}
angle$$

2. Return
$$F(k, \mathbf{x})$$

 $\Delta \xleftarrow{R} \mathbb{F}$ $\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_{1} = \mathbf{z}_{0} - \Delta \mathbf{z}$ $\mathsf{CEval}(\mathsf{sk}_{\mathbf{z}}, \mathbf{x}):$ $1. \quad k := \langle \mathbf{z}_{1}, \mathbf{x} \rangle$ $2. \quad \mathsf{Output} \ F(k, \mathbf{x})$

For a constraint vector Z :			
	$\Delta \stackrel{R}{\leftarrow} \mathbb{F}$		
sk	$\mathbf{z} := \mathbf{z}_1 = \mathbf{z}_0 - \Delta \mathbf{z}_0$	Z	
CE	val($sk_{\mathbf{z}}$, \mathbf{x}):		
1.	$k:=\langle {f z_1},{f x} angle$		
2.	Output $F\left(k,\mathbf{x} ight)$		
1			

 $\mathsf{msk}:=\mathbf{z_0}$

Eval(msk,x):

1.
$$k:=\langle \mathbf{z_0},\mathbf{x}
angle$$

2. Return
$$F(k, \mathbf{x})$$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z}_0, \mathbf{x} \rangle = \langle \mathbf{z}_1, \mathbf{x} \rangle$.

	For a constraint vector \mathbf{Z} : $\Delta \stackrel{R}{\leftarrow} \mathbb{F}$		
$nsk := \mathbf{z_0}$	$sk_{\mathbf{z}} := \mathbf{z}_{1} = \mathbf{z}_{0} - \Delta \mathbf{z}$		
Eval(msk , x):	$CEval(sk_z, x):$		
1. $k:=\langle \mathbf{z_0},\mathbf{x} angle$	1. $k:=\langle \mathbf{z_1},\mathbf{x} angle$		
2. Return $F\left(k,\mathbf{x} ight)$	2. Output $F(k, \mathbf{x})$		

Is this correct? Yes, because when
$$\langle \mathbf{z}, \mathbf{x} \rangle = 0$$
 then $\langle \mathbf{z}_0, \mathbf{x} \rangle = \langle \mathbf{z}_1, \mathbf{x} \rangle$.

$$\langle \mathbf{z_0}, \mathbf{x}
angle = \langle \Delta \mathbf{z}, \mathbf{x}
angle + \langle \mathbf{z_1}, \mathbf{x}
angle = \Delta \langle \mathbf{z}, \mathbf{x}
angle + \langle \mathbf{z_1}, \mathbf{x}
angle = \langle \mathbf{z_1}, \mathbf{x}
angle$$

For a constraint vector 2.

$$\Delta \xleftarrow{R} \mathbb{F}$$

$$\mathsf{sk}_{z} := \mathbf{z}_{0} - \Delta \mathbf{z} = \mathbf{z}$$

$$\mathsf{CEval}(\mathsf{sk}_{z}, \mathbf{x}):$$
1. $k := \langle \mathbf{z}_{1}, \mathbf{x} \rangle$
2. Output $F(k, \mathbf{x})$

Earla constraint vestor 77

$$\mathsf{msk} := \mathbf{z_0}$$

Eval(msk,x):

1.
$$k:=\langle \mathbf{z_0},\mathbf{x}
angle$$

2. Return
$$F(k, \mathbf{x})$$

95

1

For a constraint vector Z:

$$\Delta \stackrel{R}{\leftarrow} \mathbb{F}$$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_{\mathbf{0}} - \Delta \mathbf{z} = \mathbf{z}_{\mathbf{1}}$$

$$\mathsf{CEval}(\mathsf{sk}_{\mathbf{z}}, \mathbf{x}):$$
1. $k := \langle \mathbf{z}_{\mathbf{1}}, \mathbf{x} \rangle$
2. Output $F(k, \mathbf{x})$

msk :=
$$z_0$$

Eval(msk,x):
1. $k := \langle z_0, x \rangle$
2. Return $F(k, x)$

Problem: generally insecure if keys are correlated

Solution: use a related-key secure PRFs

A general framework

RKA-secure PRFs

Regular security for a PRF

A function $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a secure PRF if:

Regular security for a PRF

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a secure PRF if:

Challenger

Setup phase (one time)

1 $k \stackrel{R}{\leftarrow} \mathcal{K}$ 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$ 3 $b \stackrel{R}{\leftarrow} \{0, 1\}$

Query phase (repeatable)

$$egin{array}{cccc} \mathbf{5} & y_i := egin{cases} F\left(k,\,x_i
ight) & ext{if } b = 0 \ R\left(x_i
ight) & ext{if } b = 1 \end{cases}$$

 x_i y_i y_i Distinguisher

Related Key Attack (RKA) security for a PRF A function $F : \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is an **RKA-secure** PRF if:

Challenger

Setup phase (one time)

1
$$k \stackrel{R}{\leftarrow} \mathcal{K}$$

2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left((\mathcal{X}, \Phi), \mathcal{Y}\right)$
3 $b \stackrel{R}{\leftarrow} \{0, 1\}$

Query phase (repeatable)

5
$$y_i := egin{cases} F\left(oldsymbol{\phi_i}\left(k
ight), x_i
ight) & ext{if } b = 0 \ R\left(x_i, oldsymbol{\phi_i}
ight) & ext{if } b = 1 \end{cases}$$

For a class of key derivation functions $\Phi: \mathcal{K} \to \, \mathcal{K}$

The inner product $\langle {f z_1}, {f x}
angle = \langle {f z_0}, {f x}
angle - \Delta \langle {f z}, {f x}
angle$

The inner product
$$\langle {f z_1}, {f x}
angle = \langle {f z_0}, {f x}
angle - \Delta \langle {f z}, {f x}
angle$$

is an *affine* function of Δ , determined by \mathbf{x}

The inner product
$$\langle {f z_1},{f x}
angle = \langle {f z_0},{f x}
angle - \Delta \langle {f z},{f x}
angle$$

is an *affine* function of Δ , determined by \mathbf{x}

msk :=
$$\mathbf{z_0}$$

Eval(msk, \mathbf{x}):
1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$
2. Return $F(k, \mathbf{x})$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z_0} - \Delta \mathbf{z} = \mathbf{z_1}$$

CEval(sk_z,x):
1.
$$k := \langle \mathbf{z_1}, \mathbf{x} \rangle$$

2. Output $F(k, \mathbf{x})$

The inner product
$$\langle {f z_1},{f x}
angle = \langle {f z_0},{f x}
angle - \Delta \langle {f z},{f x}
angle$$

is an *affine* function of Δ , determined by \mathbf{x}

Reduction to RKA security
Step 1: The (1 key, selective) CPRF security game

Step 2: Change definition of z_0 to be in terms of z_1

Step 3: Define the inner-product as an affine function

$$egin{aligned} &\Delta &\stackrel{R}{\leftarrow} \mathcal{K} \ &\mathbf{z_1} &\stackrel{R}{\leftarrow} \mathcal{K}^\ell \ &\mathbf{z_0} &:= \mathbf{z_1} + \Delta \mathbf{z} \ &\mathbf{b}_i &:= \sum_{j=1}^\ell \left(\mathbf{z_1} \left[j
ight] \cdot \mathbf{x}_i \left[j
ight]
ight) \ &a_i &:= \sum_{j=1}^\ell \left(\mathbf{z} \left[j
ight] \cdot \mathbf{x}_i \left[j
ight]
ight) \end{aligned}$$

Step 3: Define the inner-product as an affine function

Step 4: Reduce to RKA security

The key Δ is not sampled anymore...

 $\mathbf{Z}_1 \stackrel{R}{\leftarrow} \mathcal{K}^\ell$ $a_i := \sum_{j=1}^{\ell} \left(\mathbf{z_1}\left[j
ight] \cdot \mathbf{x}_i\left[j
ight]
ight)$ $b_i := \sum_{j=1}^{\ell} \left(\mathbf{z}\left[j
ight] \cdot \mathbf{x}_i\left[j
ight]
ight)$ **Query RKA PRF challenger on input:** $\overline{(\phi_i := (a_i, b_i), \mathbf{x}_i)}$ And get back: $F(\phi_i(\Delta), \mathbf{x}_i)$

$$egin{aligned} \mathsf{sk}_{\mathbf{z}} := \mathbf{z}_{1} \ \mathbf{x}_{i} \ F\left(\phi_{i}\left(\Delta
ight), \mathbf{x}_{i}
ight) \end{aligned}$$

Constructions from RKA-secure PRFs

In the random oracle model (ROM)

Easy to construct RKA-secure PRFs in the ROM

In the random oracle model (ROM)

Easy to construct RKA-secure PRFs in the ROM

From **DDH**

Directly follows from the affine RKA-secure construction of [ABP+14]

In the random oracle model (ROM)

Easy to construct RKA-secure PRFs in the ROM

From **DDH**

Directly follows from the affine RKA-secure construction of [ABP+14]

From Variable Density LPN

Directly follows from the RKA-secure weak PRF candidate of [BCG+20]

In the random oracle model (ROM)

Easy to construct RKA-secure PRFs in the ROM

From **DDH**

Directly follows from the affine RKA-secure construction of [ABP+14]

From Variable Density LPN

Directly follows from the RKA-secure weak PRF candidate of [BCG+20]

From **OWF**

Almost directly follows from OWF-based RKA secure construction of [AW14]

In the random oracle model (ROM)

Easy to construct RKA-secure PRFs in the ROM

From **DDH**

Directly follows from the affine RKA-secure construction of [ABP+14]

From Variable Density LPN

Directly follows from the RKA-secure weak PRF candidate of [BCG+20]

From **OWF**

Almost directly follows from OWF-based RKA secure construction of [AW14]

Practical

Constructions

Evaluation

Artifact Badges: Available, Functional, and Reproduced.

https://github.com/sachaservan/cprf

Evaluation of the random oracle based CPRF

ℓ (length of vector)	Evaluation time
10	2 µs
50	10 <i>µ</i> s
100	19 µs
500	98 µs
1000	200 µs

Implemented in Go (v1.20) without any significant optimizations

Bottleneck: inner-product computation in the finite field

Evaluation of the **DDH-based** CPRF

ℓ (length of vector)	Evaluation time
10	8 ms
50	11 ms
100	16 ms
500	46 ms
1000	85 ms

Implemented in Go (v1.20) without any significant optimizations

Bottleneck: exponentiations in the group

Open Questions

Open Questions

Extending constructions to NC¹ constraints?

Open Questions

Extending constructions to NC¹ constraints?

Open Questions

Instantiating the framework under more assumptions?

Extending constructions to NC¹ constraints?

Open Questions

Instantiating the framework under more assumptions?

OWF construction with superpolynomial domain?

Thank you!

Email: <u>3s@mit.edu</u> ePrint: ia.cr/<u>2024/058</u>

Constrained Pseudorandom Functions for Inner-Product Predicates from Weaker Assumptions

Sacha Servan-Schreiber^*

MIT

References

[ABP+14]: Abdalla, Michel, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson. "Related-key security for pseudorandom functions beyond the linear barrier." *CRYPTO 2014.*

[AW14]: Applebaum, Benny, and Eyal Widder. "Related-key secure pseudorandom functions: The case of additive attacks." ePrint Archive (2014).

[AMN+18]: Attrapadung, Nuttapong, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. "Constrained PRFs for in traditional groups." CRYPTO 2018.

[BCG+20]: Boyle, Elette, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. "Correlated pseudorandom functions from variable-density LPN." FOCS 2020.

[CMPR23]: Couteau, Geoffroy, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. "Constrained Pseudorandom Functions from Homomorphic Secret Sharing." EUROCRYPT 2023.

[DKN+20]: Davidson, Alex, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. "Adaptively secure constrained pseudorandom functions in the standard model." CRYPTO 2020.