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● Our framework and instantiations
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Constrained Pseudorandom Function (CPRF)

Can be used to build other predicates, generically:
● t-CNF predicates (for constant t) [DKN+20]
● Bit-fixing predicates (special case of t-CNF) [DKN+20]
● Matrix-product predicates (folklore & this work)

Predicate satisfied if and only if 
the inner product is zero
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Distinguisher

Challenger1

Setup phase (one time)

2

3

4

Query phase (repeatable)

5

Need:                      for all              . 

Adaptive security lets the adversary 
query the challenger before sending 

the constraint.
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New results
Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

[CMPR23] DCR  Selective ✓

This work ROM Adaptive ✓

This work DDH Selective ✓

This work VDLPN Selective ✓ Weak CPRF (random inputs)

This work OWF Selective ✓ Only for a polynomial domain
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BobAlice

Idea: view           and        as being secret shares of the constraint vector z: 

Same PRF output

For an input     : 
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Eval(        ,   ): 

1.

2. Return

CEval(       ,   ): 

1.

2. Output

For a constraint vector    :

Problem: keys are highly correlated

Solution: use a related-key secure PRFs

Evaluations are using 
correlated keys
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Related Key Attack (RKA) security for a PRF

For a class of key derivation 
functions                   
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Challenger

Distinguisher

1

2

3

5

Setup phase (one time)

Query phase (repeatable)

b

A function                                is an RKA-secure PRF if:  
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Solution: Use a PRF with related-key security

Eval(        ,   ): 

1.

2. Return

CEval(       ,   ): 

1.

2. Output

Need     to be RKA-secure for 
Affine Functions
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Step 1: The (1 key, selective) CPRF security game
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Step 2: Change definition of      to be in terms of     
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Step 3: Define the inner-product as an affine function
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Step 3: Define the inner-product as an affine function
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Step 4: Reduce to RKA security

Query RKA PRF challenger on input:

And get back:

The key      is not sampled anymore…
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Constructions of CPRFs from RKA-secure PRFs

Practical 
Constructions
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Artifact Badges: Available, Functional, and Reproduced. 

https://github.com/sachaservan/cprf 

https://github.com/sachaservan/cprf


Evaluation of the random oracle based CPRF

Implemented in Go (v1.20) without any significant optimizations

Bottleneck: inner-product computation in the finite field

      (length of vector) Evaluation time

10 2 μs

50 10 μs

100 19 μs

500 98 μs

1000 200 μs
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Evaluation of the DDH-based CPRF

      (length of vector) Evaluation time

10 8 ms

50 11 ms

100 16 ms

500 46 ms

1000 85 ms
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Implemented in Go (v1.20) without any significant optimizations

Bottleneck: exponentiations in the group
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Concrete applications for CPRFs with inner product predicates?

Extending constructions to NC1 constraints? 

Instantiating the framework under more assumptions?

OWF construction with superpolynomial domain?



Thank you!
Email: 3s@mit.edu
ePrint: ia.cr/2024/058

mailto:3s@mit.edu
http://eprint.iacr.org/2024/058.pdf
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