
Constrained Pseudorandom Functions
 for Inner-Product Predicates from

Weaker Assumptions

Sacha Servan-Schreiber

This talk: New ways of building constrained PRFs

Overview

This talk: New ways of building constrained PRFs

Overview
● Background on PRFs and constrained PRFs

This talk: New ways of building constrained PRFs

Overview
● Background on PRFs and constrained PRFs
● A secret sharing perspective on constrained PRFs

This talk: New ways of building constrained PRFs

Overview
● Background on PRFs and constrained PRFs
● A secret sharing perspective on constrained PRFs
● Our framework and instantiations

This talk: New ways of building constrained PRFs

Overview
● Background on PRFs and constrained PRFs
● A secret sharing perspective on constrained PRFs
● Our framework and instantiations
● Evaluation

This talk: New ways of building constrained PRFs

Overview
● Background on PRFs and constrained PRFs
● A secret sharing perspective on constrained PRFs
● Our framework and instantiations
● Evaluation
● Open problems

Constrained PRFs

Standard PRF security

9

A function is a PRF if:

Standard PRF security

10

Challenger

Setup phase (one time)

A function is a PRF if:

Standard PRF security

11

Challenger1

Setup phase (one time)

A function is a PRF if:

Standard PRF security

12

Challenger1

2

Setup phase (one time)

A function is a PRF if:

Standard PRF security

13

Challenger1

2

3

Setup phase (one time)

A function is a PRF if:

Standard PRF security

14

Challenger

Distinguisher

1

2

3

Setup phase (one time)

A function is a PRF if:

Standard PRF security

15

Challenger

Distinguisher

1

2

3

Setup phase (one time)

Query phase (repeatable)

A function is a PRF if:

Standard PRF security

16

Challenger

Distinguisher

1

2

3

Setup phase (one time)

Query phase (repeatable)

A function is a PRF if:

Standard PRF security

17

Challenger

Distinguisher

1

2

3

4

Setup phase (one time)

Query phase (repeatable)

A function is a PRF if:

Standard PRF security

18

Challenger

Distinguisher

1

2

3

4

Setup phase (one time)

Query phase (repeatable)

A function is a PRF if:

19

Constrained Pseudorandom Function (CPRF)

CPRFs have an additional constrain functionality:

20

Constrained Pseudorandom Function (CPRF)

CPRFs have an additional constrain functionality:

21

Constrained Pseudorandom Function (CPRF)

Master PRF Key

CPRFs have an additional constrain functionality:

22

Constrained Pseudorandom Function (CPRF)

Master PRF Key

ConstrainC

CPRFs have an additional constrain functionality:

23

Constrained Pseudorandom Function (CPRF)

Master PRF Key Constrained PRF Key

ConstrainC

CPRFs have an additional constrain functionality:

24

Constrained Pseudorandom Function (CPRF)

Constrained key can be used to evaluate
 for all where

Master PRF Key Constrained PRF Key

ConstrainC

Constrain

25

Constrained Pseudorandom Function (CPRF)

Constrain

26

Constrained Pseudorandom Function (CPRF)

Constrain

Correctness: If then

Pseudorandomness: If then is pseudorandom given

Hiding (optional): is hidden given

27

Constrained Pseudorandom Function (CPRF)

Constrain

Correctness: If then

Pseudorandomness: If then is pseudorandom given

Hiding (optional): is hidden given

28

Constrained Pseudorandom Function (CPRF)

Constrain

Correctness: If then

Pseudorandomness: If then is pseudorandom given

Hiding (optional): is hidden given

29

Constrained Pseudorandom Function (CPRF)

Our focus: Inner-product predicates

30

Constrained Pseudorandom Function (CPRF)

Our focus: Inner-product predicates

31

Constrained Pseudorandom Function (CPRF)

Our focus: Inner-product predicates

32

Constrained Pseudorandom Function (CPRF)
Predicate satisfied if and only if

the inner product is zero

Our focus: Inner-product predicates

33

Constrained Pseudorandom Function (CPRF)

Can be used to build other predicates, generically:

Predicate satisfied if and only if
the inner product is zero

Our focus: Inner-product predicates

34

Constrained Pseudorandom Function (CPRF)

Can be used to build other predicates, generically:
● t-CNF predicates (for constant t) [DKN+20]

Predicate satisfied if and only if
the inner product is zero

Our focus: Inner-product predicates

35

Constrained Pseudorandom Function (CPRF)

Can be used to build other predicates, generically:
● t-CNF predicates (for constant t) [DKN+20]
● Bit-fixing predicates (special case of t-CNF) [DKN+20]

Predicate satisfied if and only if
the inner product is zero

Our focus: Inner-product predicates

36

Constrained Pseudorandom Function (CPRF)

Can be used to build other predicates, generically:
● t-CNF predicates (for constant t) [DKN+20]
● Bit-fixing predicates (special case of t-CNF) [DKN+20]
● Matrix-product predicates (folklore & this work)

Predicate satisfied if and only if
the inner product is zero

Security Definitions

37

38

Distinguisher

(1-key, selective) CPRF security game

Challenger

Setup phase (one time)

39

Distinguisher

(1-key, selective) CPRF security game

Challenger1

Setup phase (one time)

40

Distinguisher

(1-key, selective) CPRF security game

Challenger1

Setup phase (one time)

2

41

Distinguisher

(1-key, selective) CPRF security game

Challenger1

Setup phase (one time)

2

42

Distinguisher

(1-key, selective) CPRF security game

Challenger1

Setup phase (one time)

2

3

43

Distinguisher

(1-key, selective) CPRF security game

Challenger1

Setup phase (one time)

2

3

44

Distinguisher

(1-key, selective) CPRF security game

Challenger1

Setup phase (one time)

2

3

4

45

Distinguisher

(1-key, selective) CPRF security game

Challenger1

Setup phase (one time)

2

3

4

Query phase (repeatable)

46

Distinguisher

(1-key, selective) CPRF security game

Challenger1

Setup phase (one time)

2

3

4

Query phase (repeatable)

47

Challenger1

Setup phase (one time)

2

Distinguisher

3

4

Query phase (repeatable)

5

(1-key, selective) CPRF security game

Need: for all .

48

Distinguisher

(1-key, selective) CPRF security game

Challenger1

Setup phase (one time)

2

3

4

Query phase (repeatable)

5

Need: for all .

(1-key, adaptive) CPRF security game

49

Distinguisher

Challenger1

Setup phase (one time)

2

3

4

Query phase (repeatable)

5

Need: for all .

Adaptive security lets the adversary
query the challenger before sending

the constraint.

The current landscape

Assumptions Security Hiding Comments

51

The current landscape

Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

52

The current landscape

Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

53

The current landscape

Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

54

The current landscape

Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

[CMPR23] DCR Selective ✓

55

The current landscape

Can we build CPRFs from
weaker assumptions?

56

Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

[CMPR23] DCR Selective ✓

Can we build CPRFs for inner-product predicates using random oracles?

57

New results

Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

[CMPR23] DCR Selective ✓

This work ROM Adaptive ✓

58

New results

Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

[CMPR23] DCR Selective ✓

This work ROM Adaptive ✓

Can we build CPRFs for inner-product predicates from DDH?

59

New results

Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

[CMPR23] DCR Selective ✓

This work ROM Adaptive ✓

This work DDH Selective ✓

60

New results

Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

[CMPR23] DCR Selective ✓

This work ROM Adaptive ✓

This work DDH Selective ✓

Can we build CPRFs for inner-product predicates from LPN?

61

New results

New results
Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

[CMPR23] DCR Selective ✓

This work ROM Adaptive ✓

This work DDH Selective ✓

This work VDLPN Selective ✓ Weak CPRF (random inputs)

62

New results
Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

[CMPR23] DCR Selective ✓

This work ROM Adaptive ✓

This work DDH Selective ✓

This work VDLPN Selective ✓ Weak CPRF (random inputs)

63
Can we build CPRFs for inner-product predicates from OWF?

New results
Assumptions Security Hiding Comments

Generic CPRFs LWE or iO Selective ✓ For NC and P/poly

[AMN+18] L-DDHI + DDH Selective ✗ For NC1

[AMN+18] L-DDHI + ROM Adaptive ✗ For NC1

[CMPR23] DCR Selective ✓

This work ROM Adaptive ✓

This work DDH Selective ✓

This work VDLPN Selective ✓ Weak CPRF (random inputs)

This work OWF Selective ✓ Only for a polynomial domain

64

A secret sharing perspective on
constrained PRFs

A secret-sharing perspective

66

Idea: view and as being secret shares of the constraint vector z:

A secret-sharing perspective

67

BobAlice

Idea: view and as being secret shares of the constraint vector z:

A secret-sharing perspective

68

BobAlice

Idea: view and as being secret shares of the constraint vector z:

A secret-sharing perspective

69

BobAlice

Idea: view and as being secret shares of the constraint vector z:

One share (master share) can
be sampled independently of

the constraint vector z

A secret-sharing perspective

70

BobAlice

Idea: view and as being secret shares of the constraint vector z:

For an input :

A secret-sharing perspective

71

BobAlice

Idea: view and as being secret shares of the constraint vector z:

For an input :

A secret-sharing perspective

72

BobAlice

Idea: view and as being secret shares of the constraint vector z:

For an input :

A secret-sharing perspective

73

BobAlice

Idea: view and as being secret shares of the constraint vector z:

For an input :

A secret-sharing perspective

74

BobAlice

Idea: view and as being secret shares of the constraint vector z:

Same PRF output

For an input :

75

A first attempt at constructing a CPRF

76

For a constraint vector :

A first attempt at constructing a CPRF

77

For a constraint vector :

A first attempt at constructing a CPRF

78

Eval(,):

For a constraint vector :

A first attempt at constructing a CPRF

79

Eval(,):

1.

For a constraint vector :

A first attempt at constructing a CPRF

80

Eval(,):

1.

2. Return

For a constraint vector :

A first attempt at constructing a CPRF

81

Eval(,):

1.

2. Return

CEval(,):

For a constraint vector :

A first attempt at constructing a CPRF

82

Eval(,):

1.

2. Return

CEval(,):

1.

For a constraint vector :

A first attempt at constructing a CPRF

83

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A first attempt at constructing a CPRF

84

Is this correct?

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A first attempt at constructing a CPRF

85

Is this correct? Yes, because when

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A first attempt at constructing a CPRF

86

Is this correct? Yes, because when then .

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A first attempt at constructing a CPRF

87

Is this correct? Yes, because when then .

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A first attempt at constructing a CPRF

88

Is this correct? Yes, because when then .

Is this secure?

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A first attempt at constructing a CPRF

89

Is this correct? Yes, because when then .

Is this secure? No, because

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A first attempt at constructing a CPRF

90

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

Is this correct? Yes, because when then .

Is this secure? No, because ; possible to recover the master key!

For a constraint vector :

A first attempt at constructing a CPRF

91

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A second attempt at constructing a CPRF

92

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A second attempt at constructing a CPRF

93

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A second attempt at constructing a CPRF

Is this correct? Yes, because when then .

94

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

A second attempt at constructing a CPRF

Is this correct? Yes, because when then .

95

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

Problem: keys are highly correlated

96

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

Problem: keys are highly correlated

97

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

Problem: keys are highly correlated

Evaluations are using
correlated keys

Problem: generally insecure if keys are correlated

98

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

For a constraint vector :

Problem: keys are highly correlated

Solution: use a related-key secure PRFs

Evaluations are using
correlated keys

A general framework

RKA-secure PRFs

100

Regular security for a PRF

101

A function is a secure PRF if:

Regular security for a PRF

102

Challenger

Distinguisher

1

2

3

5

Setup phase (one time)

Query phase (repeatable)

b

A function is a secure PRF if:

Related Key Attack (RKA) security for a PRF

For a class of key derivation
functions

103

Challenger

Distinguisher

1

2

3

5

Setup phase (one time)

Query phase (repeatable)

b

A function is an RKA-secure PRF if:

The inner product

104

Solution: Use a PRF with related-key security

The inner product

is an affine function of , determined by

105

Solution: Use a PRF with related-key security

The inner product

is an affine function of , determined by

106

Solution: Use a PRF with related-key security

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

The inner product

is an affine function of , determined by

107

Solution: Use a PRF with related-key security

Eval(,):

1.

2. Return

CEval(,):

1.

2. Output

Need to be RKA-secure for
Affine Functions

Reduction to RKA security

108

Step 1: The (1 key, selective) CPRF security game

109

110

Step 2: Change definition of to be in terms of

111

Step 3: Define the inner-product as an affine function

112

Step 3: Define the inner-product as an affine function

113

Step 4: Reduce to RKA security

Query RKA PRF challenger on input:

And get back:

The key is not sampled anymore…

Constructions from RKA-secure PRFs

114

115

Constructions of CPRFs from RKA-secure PRFs

In the random oracle model (ROM)
Easy to construct RKA-secure PRFs in the ROM

116

Constructions of CPRFs from RKA-secure PRFs

In the random oracle model (ROM)
Easy to construct RKA-secure PRFs in the ROM

From DDH
Directly follows from the affine RKA-secure construction of [ABP+14]

117

Constructions of CPRFs from RKA-secure PRFs

In the random oracle model (ROM)
Easy to construct RKA-secure PRFs in the ROM

From DDH
Directly follows from the affine RKA-secure construction of [ABP+14]

From Variable Density LPN
Directly follows from the RKA-secure weak PRF candidate of [BCG+20]

118

Constructions of CPRFs from RKA-secure PRFs

In the random oracle model (ROM)
Easy to construct RKA-secure PRFs in the ROM

From DDH
Directly follows from the affine RKA-secure construction of [ABP+14]

From Variable Density LPN
Directly follows from the RKA-secure weak PRF candidate of [BCG+20]

From OWF
Almost directly follows from OWF-based RKA secure construction of [AW14]

119

Constructions of CPRFs from RKA-secure PRFs

In the random oracle model (ROM)
Easy to construct RKA-secure PRFs in the ROM

From DDH
Directly follows from the affine RKA-secure construction of [ABP+14]

From Variable Density LPN
Directly follows from the RKA-secure weak PRF candidate of [BCG+20]

From OWF
Almost directly follows from OWF-based RKA secure construction of [AW14]

120

Constructions of CPRFs from RKA-secure PRFs

Practical
Constructions

Evaluation

121

Artifact Badges: Available, Functional, and Reproduced.

https://github.com/sachaservan/cprf

https://github.com/sachaservan/cprf

Evaluation of the random oracle based CPRF

Implemented in Go (v1.20) without any significant optimizations

Bottleneck: inner-product computation in the finite field

 (length of vector) Evaluation time

10 2 μs

50 10 μs

100 19 μs

500 98 μs

1000 200 μs

122

Evaluation of the DDH-based CPRF

 (length of vector) Evaluation time

10 8 ms

50 11 ms

100 16 ms

500 46 ms

1000 85 ms

123

Implemented in Go (v1.20) without any significant optimizations

Bottleneck: exponentiations in the group

Open Questions

124

Open Questions

125

Concrete applications for CPRFs with inner product predicates?

Open Questions

126

Concrete applications for CPRFs with inner product predicates?

Extending constructions to NC1 constraints?

Open Questions

127

Concrete applications for CPRFs with inner product predicates?

Extending constructions to NC1 constraints?

Instantiating the framework under more assumptions?

Open Questions

128

Concrete applications for CPRFs with inner product predicates?

Extending constructions to NC1 constraints?

Instantiating the framework under more assumptions?

OWF construction with superpolynomial domain?

Thank you!
Email: 3s@mit.edu
ePrint: ia.cr/2024/058

mailto:3s@mit.edu
http://eprint.iacr.org/2024/058.pdf

References
[ABP+14]: Abdalla, Michel, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson. "Related-key security for pseudorandom functions
beyond the linear barrier." CRYPTO 2014.

[AW14]: Applebaum, Benny, and Eyal Widder. "Related-key secure pseudorandom functions: The case of additive attacks." ePrint Archive (2014).

[AMN+18]: Attrapadung, Nuttapong, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. "Constrained PRFs for in traditional
groups." CRYPTO 2018.

[BCG+20]: Boyle, Elette, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. "Correlated pseudorandom functions from
variable-density LPN." FOCS 2020.

[CMPR23]: Couteau, Geoffroy, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. "Constrained Pseudorandom Functions from Homomorphic
Secret Sharing." EUROCRYPT 2023.

[DKN+20]: Davidson, Alex, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. "Adaptively secure constrained
pseudorandom functions in the standard model." CRYPTO 2020.

130

