Revisiting OKVS-based OPRF and PSI: Cryptanalysis and Better Construction

Asiacrypt 2024

Kyoohyung Han¹ **Seongkwang Kim**¹ Byeonghak Lee¹ Yongha Son²

> ¹Samsung SDS, Seoul, Korea ²Sungshin Women's University, Seoul, Korea

Overview

- Malicious attack on OKVS-based OPRFs and PSIs
 - We constructed practical overfitting algorithm for oblivious key-value store (OKVS)
 - We attacked VOLE-PSI framework [RS21] using the overfitting algorithm
- New OPRF based on SoftSpokenVOLE
 - We constructed Minicrypt OPRF and PSI based on SoftSpokenVOLE [Roy22]
 - It reduces the performance gap between Minicrypt PSI and LPN-based PSI

OKVS Overfitting Attack

Key-Value Store

Key-Value Store

Oblivious Key-Value Store (OKVS)

Oblivious Key-Value Store (OKVS)

Applications of OKVS

- OPRF and PSI
- OPPRF and circuit-PSI
- Sparse OT extension

Applications of OKVS

- OPRF and PSI
- OPPRF and circuit-PSI
- Sparse OT extension

Recent OKVS Interface

OKVS.Ecd()

OKVS.Dcd()

Recent OKVS Interface

Recent OKVS Interface

- (n, n')-OKVS overfitting game [GPRTY21]
 - If a PPT adversary A with random oracle $H : \{0,1\}^* \to \{0,1\}^\ell$ can make an OKVS P such that the size of

 $X = \{x | x \text{ is queried to } H, \text{ and } \mathsf{Decode}(P, x) = H(x)\}$

is larger than n', \mathcal{A} wins the game

- (n, n')-OKVS overfitting game [GPRTY21]
 - If a PPT adversary A with random oracle $H : \{0,1\}^* \to \{0,1\}^\ell$ can make an OKVS P such that the size of

 $X = \{x | x \text{ is queried to } H, \text{ and } \mathsf{Decode}(P, x) = H(x)\}$

is larger than $n^\prime\text{,}\ensuremath{\mathcal{A}}$ wins the game

- Information-theoretic bound [PRTY20]
 - For n' = 2m, ℓ is roughly $2\lambda \log m$
 - $n' \leq m$ cannot be accomplished

- (n, n')-OKVS overfitting game [GPRTY21]
 - If a PPT adversary A with random oracle $H : \{0,1\}^* \to \{0,1\}^\ell$ can make an OKVS P such that the size of

 $X = \{x | x \text{ is queried to } H, \text{ and } \mathsf{Decode}(P, x) = H(x)\}$

is larger than $n^\prime\text{,}\ensuremath{\mathcal{A}}$ wins the game

- Information-theoretic bound [PRTY20]
 - For n' = 2m, ℓ is roughly $2\lambda \log m$
 - $n' \leq m$ cannot be accomplished
- Computational hardness? Unknown [GPRTY21]

- (n, n')-OKVS overfitting game [GPRTY21]
 - If a PPT adversary A with random oracle $H : \{0,1\}^* \to \{0,1\}^\ell$ can make an OKVS P such that the size of

 $X = \{x | x \text{ is queried to } H, \text{ and } \mathsf{Decode}(P, x) = H(x)\}$

is larger than $n^\prime\text{,}\ensuremath{\mathcal{A}}$ wins the game

- Information-theoretic bound [PRTY20]
 - For n' = 2m, ℓ is roughly $2\lambda \log m$
 - $n' \leq m$ cannot be accomplished
- Practical algorithm? This work!

OKVS Overfitting Attack

• We want to find $\{x_1, \ldots, x_{n'}\}$ and $P \in \mathbb{F}_2^{m \times \ell}$ such that

$$\begin{bmatrix} -\operatorname{row}(x_1) - \\ -\operatorname{row}(x_2) - \\ \vdots \\ -\operatorname{row}(x_{n'}) - \end{bmatrix} \cdot \begin{bmatrix} P \\ P \end{bmatrix} = \begin{bmatrix} H(x_1) \\ H(x_2) \\ \vdots \\ H(x_{n'}) \end{bmatrix}$$

OKVS Overfitting Attack

• We want to find $\{x_1, \ldots, x_{n'}\}$ and $P \in \mathbb{F}_2^{m \times \ell}$ such that

$$\begin{bmatrix} -\operatorname{row}(x_1) - \\ -\operatorname{row}(x_2) - \\ \vdots \\ -\operatorname{row}(x_{n'}) - \end{bmatrix} \cdot \begin{bmatrix} P \\ P \end{bmatrix} = \begin{bmatrix} H(x_1) \\ H(x_2) \\ \vdots \\ H(x_{n'}) \end{bmatrix}$$

• row() looks like (e.g., [RS21]): $\begin{bmatrix} 0 \dots 010 \dots 010 \dots 0 \\ \text{two 1s (dim } m) \end{bmatrix} \underbrace{1011 \dots 0101}_{\text{dense (dim } d \approx 40)}$

1. Bucketize Q items with respect to the sparse part

$$\begin{array}{c} x_1 \xrightarrow{\mathsf{row}()} & [100100 \quad \dots] \longrightarrow \mathsf{Bucket} \ B_{1,4} \\ x_2 \xrightarrow{\mathsf{row}()} & [010001 \quad \dots] \longrightarrow \mathsf{Bucket} \ B_{2,6} \end{array}$$

1. Bucketize Q items with respect to the sparse part

$$\begin{array}{c} x_1 \xrightarrow{\mathsf{row}()} & [100100 & \dots] \longrightarrow \mathsf{Bucket} \ B_{1,4} \\ x_2 \xrightarrow{\mathsf{row}()} & [010001 & \dots] \longrightarrow \mathsf{Bucket} \ B_{2,6} \end{array}$$

2. Build a singular $k \times k$ -binary matrix with row weight 2

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{matrix} B_{1,2} \\ B_{2,3} \\ B_{3,4} \\ B_{1,4} \end{matrix}$$

1. Bucketize Q items with respect to the sparse part

$$x_{1} \xrightarrow{\operatorname{row}()} [100100 \dots] \longrightarrow \operatorname{Bucket} B_{1,4}$$
$$x_{2} \xrightarrow{\operatorname{row}()} [010001 \dots] \longrightarrow \operatorname{Bucket} B_{2,6}$$

2. Build a singular $k \times k$ -binary matrix with row weight 2

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} B_{1,2} \\ B_{2,3} \\ B_{3,4} \\ B_{1,4} \end{bmatrix}$$

3. Solve *k*-XOR problem (next slides)

1. Choose buckets

4. Repeat

Efficacy of the Attack

- Malicious user can encode more than permitted
 - Encoding $\frac{km}{k-1}$ items requires $O(m^2 2^{\frac{d+\ell}{1+\lfloor \log k \rfloor}})$ time
 - (PaXoS with $n=2^{20}$, $\ell=128$) Encoding 3.2n items in 2^{99} time

Efficacy of the Attack

- Malicious user can encode more than permitted
 - Encoding $\frac{km}{k-1}$ items requires $O(m^2 2^{\frac{d+\ell}{1+\lfloor \log k \rfloor}})$ time
 - (PaXoS with $n=2^{20}$, $\ell=128$) Encoding 3.2n items in 2^{99} time
- This attack can be utilized to OPRF and PSI
 - VOLE-PSI [RS21] = OKVS + VOLE
 - [RS21] originally claimed $\ell = 128$ achieves n' = m
 - Overfitting OKVS reveals PRF values of overly many items

In 2^{128} time,

In 2^{128} time,

- OPRF: a corrupt receiver can know
 - (RS21) 4.8n random PRF evaluations
 - (RR22) 1.26*n* random PRF evaluations
 - (BPSY23) 1.23n random PRF evaluations

 $\ln 2^{128}$ time,

- OPRF: a corrupt receiver can know
 - (RS21) 4.8n random PRF evaluations
 - (RR22) 1.26*n* random PRF evaluations
 - (BPSY23) 1.23n random PRF evaluations
- PSI: a corrupt receiver can know membership of
 - (RS21) 2.1*n* random items + *n* chosen items
 - (RR22) 0.237*n* random items + *n* chosen items

In 2^{128} time,

- OPRF: a corrupt receiver can know
 - (RS21) 4.8n random PRF evaluations
 - (RR22) 1.26*n* random PRF evaluations
 - (BPSY23) 1.23n random PRF evaluations
- PSI: a corrupt receiver can know membership of
 - (RS21) 2.1*n* random items + *n* chosen items
 - (RR22) 0.237*n* random items + *n* chosen items
- Even non-membership information can be a leakage!

In 2^{128} time,

- OPRF: a corrupt receiver can know
 - (RS21) 4.8n random PRF evaluations
 - (RR22) 1.26*n* random PRF evaluations
 - (BPSY23) 1.23n random PRF evaluations
- PSI: a corrupt receiver can know membership of
 - (RS21) 2.1*n* random items + *n* chosen items
 - (RR22) 0.237*n* random items + *n* chosen items
- Even non-membership information can be a leakage!
- Find our mitigations in the paper!

New Minicrypt OPRF

VOLE Types

VOLE Types

- Silent VOLE
 - Used in recent PSI protocols
 - Efficient even for large fields
 - Structured (dual) LPN assumption

VOLE Types

- Silent VOLE
 - Used in recent PSI protocols
 - Efficient even for large fields
 - Structured (dual) LPN assumption
- SoftSpokenVOLE [Roy22]
 - Minicrypt assumption
 - Only efficient for small fields
 - This work: SoftSpokenVOLE + VOLE-PSI \rightarrow Minicrypt OPRF

OPRF in VOLE-PSI

OPRF in VOLE-PSI

OPRF in VOLE-PSI

$\textbf{VOLE} \rightarrow \textbf{SoftSpoken-VOLE}$

(Locally) compute $H_2(x_i, \mathsf{Dcd}(V, x_i))$

Define $W' := W + \vec{\Delta} \odot U'$ and $F_{\Delta}(x) := H_2(x, \mathsf{Dcd}(W', x) - \vec{\Delta} \odot H(x))$

$\textbf{VOLE} \rightarrow \textbf{SoftSpoken-VOLE}$

 $H_2(x_i, \mathsf{Dcd}(V, x_i))$

and $F_{\Delta}(x) := H_2(x, \mathsf{Dcd}(W', x) - \vec{\Delta} \odot H(x))$

Performance

$n=2^{20} \ \mathrm{OPRFs}$		Silent	Ours $(f = 6)$	[PRTY20] (<i>f</i> = 1)
Comm. (MB)		22.8	32.7	93.6
Time (sec)	5Gbps	0.98	2.74	2.03
	100Mbps	4.65	7.78	14.2
Assumption		dual-LPN	Minicrypt	

• Previous best Minicrypt [PRTY20] : 'f = 1' of ours

(with minor differences)

• Narrow the gap between Minicrypt & LPN-based one!

Thank you!

References

[PRTY20] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. *PSI from PaXoS: Fast, Malicious Private Set Intersection*. Eurocrypt 2020.

[RS21] P. Rindal, and P. Schoppmann. VOLE-PSI: Fast OPRF and Circuit-PSI from *Vector-OLE*. Eurocrypt 2021.

[GPRTY21] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. *Oblivious Key-Value Stores and Amplification for Private Set Intersection*. Crypto 2021.

[Roy22] L. Roy. SoftSpokenOT: Communication–Computation Tradeoffs in OT Extension. Crypto 2022.

[RR22] S. Raghuraman, and P. Rindal. *Blazing Fast PSI from Improved OKVS and Subfield VOLE*. ACM CCS 2022.

[BPSY23] A. Bienstock, S. Patel, J. Seo, and K. Yeo. *Near-Optimal Oblivious Key-Value Stores for Efficient PSI, PSU and Volume-Hiding Multi-Maps*. USENIX Security 2023. [RRT23] S. Raghuraman, P. Rindal, T. Tanguy. *Expand-Convolute Codes for Pseudorandom Correlation Generators from LPN*. CRYPTO 2023.

Acknowledgment

- We appreciate Peter Rindal for valuable comments.
- Some illustrations were created using fontawesome5 (https://fontawesome.com/) free version latex package.