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Overview

e Malicious attack on OKVS-based OPRFs and PSls

* We constructed practical overfitting algorithm for oblivious
key-value store (OKVS)

* We attacked VOLE-PSI framework using the overfitting
algorithm
e New OPRF based on SoftSpokenVOLE

® We constructed Minicrypt OPRF and PSI based on
SoftSpokenVOLE

¢ |t reduces the performance gap between Minicrypt PSI and
LPN-based PSI



OKYVS Overfitting Attack
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Recent OKVS Interface

OKVS.Ecd() : OKVS.Dcd()
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Recent OKVS Interface

OKVS.Ecd()
{<37i7yi)}

l Build
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OKVS Overfitting Problem

e (n,n')-OKVS overfitting game
e |f a PPT adversary A with random oracle H : {0,1}* — {0,1}* can
make an OKVS P such that the size of

X = {z|z is queried to H, and Decode(P,x) = H(z)}

is larger than n’, A wins the game
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OKVS Overfitting Problem

¢ (n,n')-OKVS overfitting game
e |f a PPT adversary A with random oracle H : {0,1}* — {0,1}* can
make an OKVS P such that the size of

X = {z|z is queried to H, and Decode(P,z) = H(z)}

is larger than n’, A wins the game

¢ Information-theoretic bound
® Forn' = 2m, ( is roughly 2\ — logm
® n/ < m cannot be accomplished

e Practical algorithm? This work!
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OKVS Overfitting Attack

e Wewant to find {z,,...,z,} and P € F7"*‘ such that

—row(zxy)— H(xy)

—row(zy)— Pl _ H(x9)

—rowl(a:n/) — H (:%'n/)
e row() looks like (e.g., ):

[0...010...010...0 1011...0101]

~

two 1s (dim m) dense (di;n d ~ 40)
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Our Attack

1. Bucketize () items with respect to the sparse part

row()

a (100100 ...] —— Bucket B, ,

row
Ty — » [010001 } —— Bucket B, 4

2. Build a singular k x k-binary matrix with row weight 2

1 1 0 0| By
0 1 1 0| Byg
0 0 1 1| Bsy
10 0 1| By

3. Solve k-XOR problem (next slides)



Our Attack

1. Choose buckets
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Our Attack

2. Solve k-XOR >_i(row(z;) || H (x;)) = 0
11007 Bi2 221 : m
0110]| B2,3 22 I
0011| Bga D3 : - -
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Complexity
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Our Attack

3. Collect such inputs
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Our Attack
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Our Attack

5. Solve w.r.t. P rank(row (X)) = rank(row(X)[|H (X))
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e Malicious user can encode more than permitted
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Efficacy of the Attack

e Malicious user can encode more than permitted
* Encoding £ items requires O(m 22%) time
e (PaXoS Wlth n = 220, ¢ = 128) Encoding 3.2n items in 2% time
e This attack can be utilized to OPRF and PSI
e VOLE-PSI = OKVS + VOLE
. originally claimed ¢ = 128 achieves n’ = m
e Overfitting OKVS reveals PRF values of overly many items
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Effect on OPRF and PSI

In 2128 time,
e OPREF: a corrupt receiver can know
e (RS21) 4.8n random PRF evaluations
¢ (RR22) 1.26n random PRF evaluations
e (BPSY23) 1.23n random PRF evaluations

e PSI: a corrupt receiver can know membership of
e (RS21) 2.1n random items + n chosen items

® (RR22) 0.237n random items + n chosen items
e Even non-membership information can be a leakage!

¢ Find our mitigations in the paper!



New Minicrypt OPRF
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VOLE Types

e Silent VOLE
e Used in recent PSI protocols
e Efficient even for large fields
e Structured (dual) LPN assumption

e SoftSpokenVOLE
® Minicrypt assumption
® Only efficient for small fields
® This work: SoftSpokenVOLE + VOLE-PSI — Minicrypt OPRF
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OPRF in VOLE-PSI

Receiver Sender
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and Fa(z) := Hy(x,Ded(W', ) — A - H(z))



OPRF in VOLE-PSI

Receiver Sender

{(@i Hz))} a "1 okvs.Ecd
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(Locally) compute Define W' :=W + A .U’

Hy(x;, Ded(V, x;)) and Fa(x) := Ho(z,Dcd(W' 2) — A - H(x))



VOLE — SoftSpoken-VOLE

Receiver sender
{(zs, H(z:))} - "| oKkvs.Ecd
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Y
b
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(Locally) compute Define W' :=W + Ao U’
Hj(z;, Ded(V, z;)) and Fa(z) := Hy(z,Ded(W', ) — A ® H(z))



VOLE — SoftSpoken-VOLE

Receiver sender
{(zi, H(xi))} - "| oKvs.Ecd
UV < F,;-VOLE - AW
Y
B |
| Notasimple ¢/f reps_!
(See our paper for details)
U/

Y

(Locally) compute
Hy(z;, Ded(V, 2;))

Define W’ :=W + Ao U’

and Fa(z) := Hy(z,Dcd(W', z) — A © H(z))




Performance

n=2"OPRFs | Silent | Ours(s=6) | [PRTY20] (f
Comm. (MB) 22.8 32.7 93.6
. 5Gbps 0.98 2.74 2.03
Time (sec)
100Mbps 4.65 7.78 14.2
Assumption dual-LPN Minicrypt

e Previous best Minicrypt [PRTY20] : °

f =1 of ours

(with minor differences)

e Narrow the gap between Minicrypt & LPN-based one!



Thank you!
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