
Revisiting OKVS-based OPRF and PSI:
Cryptanalysis and Better Construction

Asiacrypt 2024

Kyoohyung Han1 Seongkwang Kim1

Byeonghak Lee1 Yongha Son2

1Samsung SDS, Seoul, Korea
2SungshinWomen’s University, Seoul, Korea



Overview

• Malicious attack on OKVS-based OPRFs and PSIs
• We constructed practical overfitting algorithm for oblivious

key-value store (OKVS)

• We attacked VOLE-PSI framework [RS21] using the overfitting

algorithm

• New OPRF based on SoftSpokenVOLE
• We constructed Minicrypt OPRF and PSI based on

SoftSpokenVOLE [Roy22]

• It reduces the performance gap between Minicrypt PSI and

LPN-based PSI



OKVS Overfitting Attack
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Recent OKVS Interface

row : {0, 1}∗ → Fm
2 (m = (1 + ε)n)
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{(xi, yi)}


−row(x1)−
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 ·

P

 =


y1
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P

OKVS P ∈ Fm×`
2

Build
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Decode(P, x)

= 〈row(x), P 〉

=

{
yi if x = xi for some i

$ otherwise
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OKVS Overfitting Problem

• (n, n′)-OKVS overfitting game [GPRTY21]
• If a PPT adversaryAwith random oracle H : {0, 1}∗ → {0, 1}` can
make an OKVS P such that the size of

X = {x|x is queried to H, and Decode(P, x) = H(x)}

is larger than n′, A wins the game

• Information-theoretic bound [PRTY20]
• For n′ = 2m, ` is roughly 2λ− logm
• n′ ≤ m cannot be accomplished

• Computational hardness? Unknown [GPRTY21]
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OKVS Overfitting Problem

• (n, n′)-OKVS overfitting game [GPRTY21]
• If a PPT adversaryAwith random oracle H : {0, 1}∗ → {0, 1}` can
make an OKVS P such that the size of

X = {x|x is queried to H, and Decode(P, x) = H(x)}

is larger than n′, A wins the game

• Information-theoretic bound [PRTY20]
• For n′ = 2m, ` is roughly 2λ− logm
• n′ ≤ m cannot be accomplished

• Practical algorithm? This work!



OKVS Overfitting Attack
• Wewant to find {x1, . . . , xn′} and P ∈ Fm×`

2 such that
−row(x1)−
−row(x2)−
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−row(xn′)−

 ·
P

 =


H(x1)
H(x2)

...

H(xn′)



• row() looks like (e.g., [RS21]):[
0 . . . 010 . . . 010 . . . 0 1011 . . . 0101

]
two 1s (dimm) dense (dim d ≈ 40)
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Our Attack

1. Bucketize Q items with respect to the sparse part

x1

[
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Bucket B1,4
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010001 . . .
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2. Build a singular k × k-binary matrix with row weight 21 1 0 0
0 1 1 0
0 0 1 1
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3. Solve k-XOR problem (next slides)



Our Attack
1. Bucketize Q items with respect to the sparse part

x1

[
100100 . . .

]row()
Bucket B1,4

x2

[
010001 . . .

]row()
Bucket B2,6

2. Build a singular k × k-binary matrix with row weight 21 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 B1,2

B2,3

B3,4

B1,4

3. Solve k-XOR problem (next slides)



Our Attack
1. Bucketize Q items with respect to the sparse part

x1

[
100100 . . .

]row()
Bucket B1,4

x2

[
010001 . . .

]row()
Bucket B2,6

2. Build a singular k × k-binary matrix with row weight 21 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 B1,2

B2,3

B3,4

B1,4

3. Solve k-XOR problem (next slides)



Our Attack
1. Bucketize Q items with respect to the sparse part

x1

[
100100 . . .

]row()
Bucket B1,4

x2

[
010001 . . .

]row()
Bucket B2,6

2. Build a singular k × k-binary matrix with row weight 21 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 B1,2

B2,3

B3,4

B1,4

3. Solve k-XOR problem (next slides)



Our Attack


row(X)

−−−−−−−−−−


·

P
−

 =


H(X)

−



[
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

]
B1,2

B2,3

B3,4

B1,4

1. Choose buckets



Our Attack


row(X)

−−−−−−−−−−


·

P
−

 =


H(X)
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2. Solve k-XOR
∑

i(row(xi)‖H(xi)) = 0

Complexity

O
(
2

d+`
1+blog kc

)



Our Attack
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Our Attack
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1 1 0 0
0 1 1 0
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[
1 1 0 0
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4. Repeat

k − 1



Our Attack


−−−−−−−−−−


·

P
−

 =


H(X)

−



5. Solve w.r.t. P

. . .

rank(row(X)) = rank(row(X)‖H(X))



Efficacy of the Attack

• Malicious user can encode more than permitted

• Encoding km
k−1

items requires O(m22
d+`

1+blog kc ) time

• (PaXoS with n = 220, ` = 128) Encoding 3.2n items in 299 time

• This attack can be utilized to OPRF and PSI
• VOLE-PSI [RS21] = OKVS + VOLE

• [RS21] originally claimed ` = 128 achieves n′ = m

• Overfitting OKVS reveals PRF values of overly many items
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Effect on OPRF and PSI
In 2128 time,

• OPRF: a corrupt receiver can know
• (RS21) 4.8n random PRF evaluations

• (RR22) 1.26n random PRF evaluations

• (BPSY23) 1.23n random PRF evaluations

• PSI: a corrupt receiver can know membership of
• (RS21) 2.1n random items + n chosen items

• (RR22) 0.237n random items + n chosen items

• Even non-membership information can be a leakage!

• Find our mitigations in the paper!
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• Efficient even for large fields

• Structured (dual) LPN assumption
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• Minicrypt assumption

• Only efficient for small fields

• This work: SoftSpokenVOLE + VOLE-PSI→Minicrypt OPRF
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Performance

n = 220 OPRFs Silent Ours (f = 6) [PRTY20] (f = 1)

Comm. (MB) 22.8 32.7 93.6

Time (sec)
5Gbps 0.98 2.74 2.03

100Mbps 4.65 7.78 14.2

Assumption dual-LPN Minicrypt

• Previous best Minicrypt [PRTY20] : ‘f = 1’ of ours
(with minor differences)

• Narrow the gap between Minicrypt & LPN-based one!



Thank you!
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