Revisiting OKVS-based OPRF and PSI:

Cryptanalysis and Better Construction

Asiacrypt 2024

Kyoohyung Han' Seongkwang Kim*
Byeonghak Lee! Yongha Son?

tSamsung SDS, Seoul, Korea
2Sungshin Women's University, Seoul, Korea

Overview

e Malicious attack on OKVS-based OPRFs and PSls

* We constructed practical overfitting algorithm for oblivious
key-value store (OKVS)

* We attacked VOLE-PSI framework using the overfitting
algorithm
e New OPRF based on SoftSpokenVOLE

® We constructed Minicrypt OPRF and PSI based on
SoftSpokenVOLE

¢ |t reduces the performance gap between Minicrypt PSI and
LPN-based PSI

OKYVS Overfitting Attack

Key-Value Store

Key Value
Bitcoin | 97,127
Ethereum | 3,315

Doge

0.41

Key = “Bitcoin”

Value = 97,127

>

)

User

Key-Value Store

O

Key Value

Bitcoin | 97,127 | ey ="Asiacrypt’
Ethereum | 3,315 ¢
Doge 0.41 > .
: . Value = L

User

Oblivious Key-Value Store (OKVS)

Key = “Bitcoin” '
Value = 97,127 .

User

E

Oblivious Key-Value Store (OKVS)

N
nN?

Key = “Asiacrypt” '
Value = random] -

User

E

Applications of OKVS

e OPRF and PSI
e OPPRF and circuit-PSI

e Sparse OT extension

Applications of OKVS

e OPRF and PSI
e OPPRF and circuit-PSI

e Sparse OT extension

Recent OKVS Interface

OKVS.Ecd() : OKVS.Dcd()

|

Recent OKVS Interface

OKVS.Ecd()
{<xi7 yz>}

l Build

—row(xy)—
row(azg)] . {P} _
—row:(xn)—

l Solve

U1
Y2
Yn

OKVS P ¢ =t

row : {0,1}* — FJ’

(m

OKVS.Dcd()

= (1 +¢)n)

Recent OKVS Interface

OKVS.Ecd()
{<37i7yi)}

l Build
—rOW(.I'l)— Y1
—rOW(.TQ)— Y2
; P =1.
—row(x,)— Yn

l Solve

OKVS P ¢ Tyt

row : {0,1}*

OKVS.Dcd()

Decode(P, z)

= (row(z), P)

_ Jy; ifx=2x;forsome:
~1$ otherwise

= (1 +¢)n)

OKVS Overfitting Problem

e (n,n')-OKVS overfitting game
e |f a PPT adversary A with random oracle H : {0,1}* — {0,1}* can
make an OKVS P such that the size of

X = {z|z is queried to H, and Decode(P,x) = H(z)}

is larger than n’, A wins the game

OKVS Overfitting Problem

e (n,n')-OKVS overfitting game
e |f a PPT adversary A with random oracle H : {0,1}* — {0,1}* can
make an OKVS P such that the size of

X = {z|z is queried to H, and Decode(P,x) = H(z)}

is larger than n’, A wins the game
¢ Information-theoretic bound
® Forn' = 2m, (is roughly 2\ — logm
® n/ < m cannot be accomplished

OKVS Overfitting Problem

e (n,n')-OKVS overfitting game
e |f a PPT adversary A with random oracle H : {0,1}* — {0,1}* can
make an OKVS P such that the size of

X = {z|z is queried to H, and Decode(P,x) = H(z)}

is larger than n’, A wins the game

¢ |Information-theoretic bound
® Forn' = 2m, (is roughly 2\ — logm
® n/ < m cannot be accomplished

e Computational hardness? Unknown

OKVS Overfitting Problem

¢ (n,n')-OKVS overfitting game
e |f a PPT adversary A with random oracle H : {0,1}* — {0,1}* can
make an OKVS P such that the size of

X = {z|z is queried to H, and Decode(P,z) = H(z)}

is larger than n’, A wins the game

¢ Information-theoretic bound
® Forn' = 2m, (is roughly 2\ — logm
® n/ < m cannot be accomplished

e Practical algorithm? This work!

OKVS Overfitting Attack

e Wewant to find {z,..., z,} and P € F*¢ such that

—row(zxy)— H(zy)
—row(zy)— pl H(x9)
—rowl(a:n/)— H(;cn)

OKVS Overfitting Attack

e Wewant to find {z,,...,z,} and P € F7"*‘ such that

—row(zxy)— H(xy)

—row(zy)— Pl _ H(x9)

—rowl(a:n/) — H (:%'n/)
e row() looks like (e.g.,):

[0...010...010...0 1011...0101]

~

two 1s (dim m) dense (di;n d ~ 40)

Our Attack

Our Attack

1. Bucketize () items with respect to the sparse part

row()

a (100100 ...] —— Bucket B, ,

row()
Ty —— [010001 ...] —— Bucket B

Our Attack

1. Bucketize () items with respect to the sparse part

row()

a (100100 ...] —— Bucket B, ,

row
Ty — » [010001 } —— Bucket B, 4

2. Build a singular k x k-binary matrix with row weight 2

1 10 0] Byo
0 1 1 0| Bys
00 1 1| By
1 00 1| By

Our Attack

1. Bucketize () items with respect to the sparse part

row()

a (100100 ...] —— Bucket B, ,

row
Ty — » [010001 } —— Bucket B, 4

2. Build a singular k x k-binary matrix with row weight 2

1 1 0 0| By
0 1 1 0| Byg
0 0 1 1| Bsy
10 0 1| By

3. Solve k-XOR problem (next slides)

Our Attack

1. Choose buckets

1100 BLQ ! n
0110]| Bag :
0011| Bsa ! -
1001] Big |

1

Our Attack

2. Solve k-XOR >_i(row(z;) || H (x;)) = 0
11007 Bi2 221 : m
0110]| B2,3 22 I
0011| Bga D3 : - -
1001 B1a 224 1

Complexity
d+¢
() <2 1+|logk|)

Our Attack

3. Collect such inputs

1 1007 Bi,2
0110]| B2
0011| B3a
100 1] B1a

L+ LU {Il,$27l’37374}

Our Attack

4. Repeat

0o NN
<+ 10 o <
R/
T
o~ = O
— = O O
OO~ OO —
o — - O —
.IAOOl <2

Our Attack

5. Solve w.r.t. P rank(row (X)) = rank(row(X)[|H (X))

Efficacy of the Attack

e Malicious user can encode more than permitted
* Encoding £ items requires O(m 29 ¥ 1o) time
e (PaXoS Wlth n = 220, ¢ = 128) Encoding 3.2n items in 2% time

Efficacy of the Attack

e Malicious user can encode more than permitted
* Encoding £ items requires O(m 22%) time
e (PaXoS Wlth n = 220, ¢ = 128) Encoding 3.2n items in 2% time
e This attack can be utilized to OPRF and PSI
e VOLE-PSI = OKVS + VOLE
. originally claimed ¢ = 128 achieves n’ = m
e Overfitting OKVS reveals PRF values of overly many items

Receiver

VOLE-PSI

OKVS.Ecd

Sender

Receiver

VOLE-PSI

OKVS.Ecd

F,.-VOLE

—

S
<t
4

V=A-U+W

Sender

VOLE-PSI

{(zi, H(zi))}

Receiver

P +—

)

U
Bl

"| OKVS.Ecd
. F,e-VOLE -
‘|/* V_ngsw [T AW

l

Hay(z,Ded(V, z))

W =W+A-U'
Hs(y,Ded(W',y) — AH(y))

A

Sender

{(zi, H(zi))}

Receiver

{ziy N {yi} -

VOLE-

PSI

L

P | OoKVS.Ecd
. F,e-VOLE
-+ — — -
! j]vv V=A-U+W
ol -
) '

Hay(z,Ded(V, z))

W =W+A-U'
Hs(y,Ded(W',y) — AH(y))

{yi}

Sender

A

Effect on OPRF and PSI

In 2128 time,

Effect on OPRF and PSI

In 2128 time,
e OPREF: a corrupt receiver can know
e (RS21) 4.8n random PRF evaluations
¢ (RR22) 1.26n random PRF evaluations
e (BPSY23) 1.23n random PRF evaluations

Effect on OPRF and PSI

In 2128 time,
e OPREF: a corrupt receiver can know
e (RS21) 4.8n random PRF evaluations
¢ (RR22) 1.26n random PRF evaluations
e (BPSY23) 1.23n random PRF evaluations

e PSI: a corrupt receiver can know membership of
e (RS21) 2.1n random items + n chosen items

® (RR22) 0.237n random items + n chosen items

Effect on OPRF and PSI

In 2128 time,
e OPREF: a corrupt receiver can know
e (RS21) 4.8n random PRF evaluations
¢ (RR22) 1.26n random PRF evaluations
e (BPSY23) 1.23n random PRF evaluations

e PSI: a corrupt receiver can know membership of
e (RS21) 2.1n random items + n chosen items

® (RR22) 0.237n random items + n chosen items

e Even non-membership information can be a leakage!

Effect on OPRF and PSI

In 2128 time,
e OPREF: a corrupt receiver can know
e (RS21) 4.8n random PRF evaluations
¢ (RR22) 1.26n random PRF evaluations
e (BPSY23) 1.23n random PRF evaluations

e PSI: a corrupt receiver can know membership of
e (RS21) 2.1n random items + n chosen items

® (RR22) 0.237n random items + n chosen items
e Even non-membership information can be a leakage!

¢ Find our mitigations in the paper!

New Minicrypt OPRF

VOLE Types

VOLE Types

e Silent VOLE
e Used in recent PSI protocols
e Efficient even for large fields
e Structured (dual) LPN assumption

VOLE Types

e Silent VOLE
e Used in recent PSI protocols
e Efficient even for large fields
e Structured (dual) LPN assumption

e SoftSpokenVOLE
® Minicrypt assumption
® Only efficient for small fields
® This work: SoftSpokenVOLE + VOLE-PSI — Minicrypt OPRF

OPRF in VOLE-PSI

Receiver Sender
{(zs, H(zs))} >

P —

OKVS.Ecd

! U,V V= C?L;er ~ AW
- 4
> ﬁ/
v
(Locally) compute Define W' := W + A - U’

Hy(z;,Ded(V, z;)) and Fa(z) := Hy(x,Ded(W', z) — A - H(x))

OPRF in VOLE-PSI

Receiver Sender
{(zs, H(2:))} » | OKVS.Ecd
Uv7‘7 - le-VOLE — A7W
Y
o
= A.| +
U W
> U_"/ —
Y

(Locally) compute
Hy(x;,Ded(V, ;)

Define W' := W + A - U’
and Fa(z) := Hy(x,Ded(W',) — A - H(z))

OPRF in VOLE-PSI

Receiver Sender

{(@i Hz))} a "1 okvs.Ecd
UV <« Fy.-VOLE - AW
&
AUy
V| = | w
> U —
Y
(Locally) compute Define W' :=W + A .U’

Hy(x;, Ded(V, x;)) and Fa(x) := Ho(z,Dcd(W' 2) — A - H(x))

VOLE — SoftSpoken-VOLE

Receiver sender
{(zs, H(z:))} - "| oKkvs.Ecd
UV < Fy;-VOLE - AW
Y
b

Y
(Locally) compute Define W' :=W + Ao U’
Hj(z;, Ded(V, z;)) and Fa(z) := Hy(z,Ded(W',) — A ® H(z))

VOLE — SoftSpoken-VOLE

Receiver sender
{(zi, H(xi))} - "| oKvs.Ecd
UV < F,;-VOLE - AW
Y
B |
| Notasimple ¢/f reps_!
(See our paper for details)
U/

Y

(Locally) compute
Hy(z;, Ded(V, 2;))

Define W’ :=W + Ao U’

and Fa(z) := Hy(z,Dcd(W', z) — A © H(z))

Performance

n=2"OPRFs | Silent | Ours(s=6) | [PRTY20] (f
Comm. (MB) 22.8 32.7 93.6
. 5Gbps 0.98 2.74 2.03
Time (sec)
100Mbps 4.65 7.78 14.2
Assumption dual-LPN Minicrypt

e Previous best Minicrypt [PRTY20] : °

f =1 of ours

(with minor differences)

e Narrow the gap between Minicrypt & LPN-based one!

Thank you!

References

[PRTY20] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. PSI from PaXoS: Fast,
Malicious Private Set Intersection. Eurocrypt 2020.

[RS21] P. Rindal, and P. Schoppmann. VOLE-PSI: Fast OPRF and Circuit-PSI from
Vector-OLE. Eurocrypt 2021.

[GPRTY21] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. Oblivious
Key-Value Stores and Amplification for Private Set Intersection. Crypto 2021.
[Roy22] L. Roy. SoftSpokenOT: Communication-Computation Tradeoffs in OT
Extension. Crypto 2022.

[RR22] S. Raghuraman, and P. Rindal. Blazing Fast PSI from Improved OKVS and
Subfield VOLE. ACM CCS 2022.

[BPSY23] A. Bienstock, S. Patel, J. Seo, and K. Yeo. Near-Optimal Oblivious Key-Value
Stores for Efficient PSI, PSU and Volume-Hiding Multi-Maps. USENIX Security 2023.
[RRT23] S. Raghuraman, P. Rindal, T. Tanguy. Expand-Convolute Codes for
Pseudorandom Correlation Generators from LPN. CRYPTO 2023.

Acknowledgment

e We appreciate Peter Rindal for valuable comments.

e Some illustrations were created using fontawesome5
(https://fontawesome.com/) free version latex
package.

 https://fontawesome.com/

