
Revisiting OKVS-based OPRF and PSI:
Cryptanalysis and Better Construction

Asiacrypt 2024

Kyoohyung Han1 Seongkwang Kim1

Byeonghak Lee1 Yongha Son2

1Samsung SDS, Seoul, Korea
2SungshinWomen’s University, Seoul, Korea

Overview

• Malicious attack on OKVS-based OPRFs and PSIs
• We constructed practical overfitting algorithm for oblivious

key-value store (OKVS)

• We attacked VOLE-PSI framework [RS21] using the overfitting

algorithm

• New OPRF based on SoftSpokenVOLE
• We constructed Minicrypt OPRF and PSI based on

SoftSpokenVOLE [Roy22]

• It reduces the performance gap between Minicrypt PSI and

LPN-based PSI

OKVS Overfitting Attack

Key-Value Store

User

Key Value

Bitcoin 97,127

Ethereum 3,315

Doge 0.41
...

...

Eye-SlashEye

Key = “Bitcoin”

Value = 97,127

Key-Value Store

User

Key Value

Bitcoin 97,127

Ethereum 3,315

Doge 0.41
...

...

Eye-SlashEye

Key = “Asiacrypt”

Value = ⊥

Oblivious Key-Value Store (OKVS)

User

Key Value

Bitcoin 97,127

Ethereum 3,315

Doge 0.41
...

...

Eye-Slash

Key = “Bitcoin”

Value = 97,127

Oblivious Key-Value Store (OKVS)

User

??
Key Value

Bitcoin 97,127

Ethereum 3,315

Doge 0.41
...

...

Eye-Slash

Key = “Asiacrypt”

Value = random

Applications of OKVS

• OPRF and PSI

• OPPRF and circuit-PSI

• Sparse OT extension

Applications of OKVS

• OPRF and PSI

• OPPRF and circuit-PSI

• Sparse OT extension

Recent OKVS Interface

row : {0, 1}∗ → Fm
2 (m = (1 + ε)n)

OKVS.Ecd() OKVS.Dcd()

{(xi, yi)}

−row(x1)−
−row(x2)−

...

−row(xn)−

 ·

P

 =

y1
y2
...

yn

P

OKVS P ∈ Fm×`
2

Build

Solve

Decode(P, x)

= 〈row(x), P 〉

=

{
yi if x = xi for some i

$ otherwise

Recent OKVS Interface

row : {0, 1}∗ → Fm
2 (m = (1 + ε)n)

OKVS.Ecd() OKVS.Dcd()

{(xi, yi)}

−row(x1)−
−row(x2)−

...

−row(xn)−

 ·

P

 =

y1
y2
...

yn

P

OKVS P ∈ Fm×`
2

Build

Solve

Decode(P, x)

= 〈row(x), P 〉

=

{
yi if x = xi for some i

$ otherwise

Recent OKVS Interface

row : {0, 1}∗ → Fm
2 (m = (1 + ε)n)

OKVS.Ecd() OKVS.Dcd()

{(xi, yi)}

−row(x1)−
−row(x2)−

...

−row(xn)−

 ·

P

 =

y1
y2
...

yn

P

OKVS P ∈ Fm×`
2

Build

Solve

Decode(P, x)

= 〈row(x), P 〉

=

{
yi if x = xi for some i

$ otherwise

OKVS Overfitting Problem

• (n, n′)-OKVS overfitting game [GPRTY21]
• If a PPT adversaryAwith random oracle H : {0, 1}∗ → {0, 1}` can
make an OKVS P such that the size of

X = {x|x is queried to H, and Decode(P, x) = H(x)}

is larger than n′, A wins the game

• Information-theoretic bound [PRTY20]
• For n′ = 2m, ` is roughly 2λ− logm
• n′ ≤ m cannot be accomplished

• Computational hardness? Unknown [GPRTY21]

OKVS Overfitting Problem

• (n, n′)-OKVS overfitting game [GPRTY21]
• If a PPT adversaryAwith random oracle H : {0, 1}∗ → {0, 1}` can
make an OKVS P such that the size of

X = {x|x is queried to H, and Decode(P, x) = H(x)}

is larger than n′, A wins the game

• Information-theoretic bound [PRTY20]
• For n′ = 2m, ` is roughly 2λ− logm
• n′ ≤ m cannot be accomplished

• Computational hardness? Unknown [GPRTY21]

OKVS Overfitting Problem

• (n, n′)-OKVS overfitting game [GPRTY21]
• If a PPT adversaryAwith random oracle H : {0, 1}∗ → {0, 1}` can
make an OKVS P such that the size of

X = {x|x is queried to H, and Decode(P, x) = H(x)}

is larger than n′, A wins the game

• Information-theoretic bound [PRTY20]
• For n′ = 2m, ` is roughly 2λ− logm
• n′ ≤ m cannot be accomplished

• Computational hardness? Unknown [GPRTY21]

OKVS Overfitting Problem

• (n, n′)-OKVS overfitting game [GPRTY21]
• If a PPT adversaryAwith random oracle H : {0, 1}∗ → {0, 1}` can
make an OKVS P such that the size of

X = {x|x is queried to H, and Decode(P, x) = H(x)}

is larger than n′, A wins the game

• Information-theoretic bound [PRTY20]
• For n′ = 2m, ` is roughly 2λ− logm
• n′ ≤ m cannot be accomplished

• Practical algorithm? This work!

OKVS Overfitting Attack
• Wewant to find {x1, . . . , xn′} and P ∈ Fm×`

2 such that
−row(x1)−
−row(x2)−

...

−row(xn′)−

 ·
P

 =

H(x1)
H(x2)

...

H(xn′)

• row() looks like (e.g., [RS21]):[
0 . . . 010 . . . 010 . . . 0 1011 . . . 0101

]
two 1s (dimm) dense (dim d ≈ 40)

OKVS Overfitting Attack
• Wewant to find {x1, . . . , xn′} and P ∈ Fm×`

2 such that
−row(x1)−
−row(x2)−

...

−row(xn′)−

 ·
P

 =

H(x1)
H(x2)

...

H(xn′)

• row() looks like (e.g., [RS21]):[

0 . . . 010 . . . 010 . . . 0 1011 . . . 0101
]

two 1s (dimm) dense (dim d ≈ 40)

Our Attack

1. Bucketize Q items with respect to the sparse part

x1

[
100100 . . .

]row()
Bucket B1,4

x2

[
010001 . . .

]row()
Bucket B2,6

2. Build a singular k × k-binary matrix with row weight 21 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 B1,2

B2,3

B3,4

B1,4

3. Solve k-XOR problem (next slides)

Our Attack
1. Bucketize Q items with respect to the sparse part

x1

[
100100 . . .

]row()
Bucket B1,4

x2

[
010001 . . .

]row()
Bucket B2,6

2. Build a singular k × k-binary matrix with row weight 21 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 B1,2

B2,3

B3,4

B1,4

3. Solve k-XOR problem (next slides)

Our Attack
1. Bucketize Q items with respect to the sparse part

x1

[
100100 . . .

]row()
Bucket B1,4

x2

[
010001 . . .

]row()
Bucket B2,6

2. Build a singular k × k-binary matrix with row weight 21 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 B1,2

B2,3

B3,4

B1,4

3. Solve k-XOR problem (next slides)

Our Attack
1. Bucketize Q items with respect to the sparse part

x1

[
100100 . . .

]row()
Bucket B1,4

x2

[
010001 . . .

]row()
Bucket B2,6

2. Build a singular k × k-binary matrix with row weight 21 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 B1,2

B2,3

B3,4

B1,4

3. Solve k-XOR problem (next slides)

Our Attack

row(X)

−−−−−−−−−−

·

P
−

 =

H(X)

−

[
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

]
B1,2

B2,3

B3,4

B1,4

1. Choose buckets

Our Attack

row(X)

−−−−−−−−−−

·

P
−

 =

H(X)

−

[
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

]
B1,2

B2,3

B3,4

B1,4

3 x1

3 x2

3 x3

3 x4

2. Solve k-XOR
∑

i(row(xi)‖H(xi)) = 0

Complexity

O
(
2

d+`
1+blog kc

)

Our Attack

row(X)

−−−−−−−−−−

·

P
−

 =

H(X)

−

[
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

]
B1,2

B2,3

B3,4

B1,4

3. Collect such inputs L← L ∪ {x1, x2, x3, x4}

Our Attack

−−−−−−−−−−

·

P
−

 =

H(X)

−

[
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

]
[
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

]
B4,5

B5,6

B6,7

B4,7

4. Repeat

k − 1

Our Attack

−−−−−−−−−−

·

P
−

 =

H(X)

−

5. Solve w.r.t. P

. . .

rank(row(X)) = rank(row(X)‖H(X))

Efficacy of the Attack

• Malicious user can encode more than permitted

• Encoding km
k−1

items requires O(m22
d+`

1+blog kc) time

• (PaXoS with n = 220, ` = 128) Encoding 3.2n items in 299 time

• This attack can be utilized to OPRF and PSI
• VOLE-PSI [RS21] = OKVS + VOLE

• [RS21] originally claimed ` = 128 achieves n′ = m

• Overfitting OKVS reveals PRF values of overly many items

Efficacy of the Attack

• Malicious user can encode more than permitted

• Encoding km
k−1

items requires O(m22
d+`

1+blog kc) time

• (PaXoS with n = 220, ` = 128) Encoding 3.2n items in 299 time

• This attack can be utilized to OPRF and PSI
• VOLE-PSI [RS21] = OKVS + VOLE

• [RS21] originally claimed ` = 128 achieves n′ = m

• Overfitting OKVS reveals PRF values of overly many items

VOLE-PSI [RS21]

Sender

User-Tie
Receiver

OKVS.Ecd
{(xi, H(xi))} {yi}

P

VOLE-PSI [RS21]

Sender

User-Tie
Receiver

OKVS.Ecd
{(xi, H(xi))} {yi}

P

F2` -VOLE

~V = ∆ · ~U + ~W
~U, ~V ∆, ~W

VOLE-PSI [RS21]

Sender

User-Tie
Receiver

OKVS.Ecd
{(xi, H(xi))} {yi}

P

F2` -VOLE

~V = ∆ · ~U + ~W
~U, ~V ∆, ~W

~U ′

W ′ = W +∆ · ~U ′

H2(y,Dcd(~W ′, y)−∆H(y))
H2(x,Dcd(~V , x))

VOLE-PSI [RS21]

Sender

User-Tie
Receiver

OKVS.Ecd
{(xi, H(xi))} {yi}

P

F2` -VOLE

~V = ∆ · ~U + ~W
~U, ~V ∆, ~W

~U ′

W ′ = W +∆ · ~U ′

H2(y,Dcd(~W ′, y)−∆H(y))
H2(x,Dcd(~V , x))

?
={xi} ∩ {yi}

Effect on OPRF and PSI
In 2128 time,

• OPRF: a corrupt receiver can know
• (RS21) 4.8n random PRF evaluations

• (RR22) 1.26n random PRF evaluations

• (BPSY23) 1.23n random PRF evaluations

• PSI: a corrupt receiver can know membership of
• (RS21) 2.1n random items + n chosen items

• (RR22) 0.237n random items + n chosen items

• Even non-membership information can be a leakage!

• Find our mitigations in the paper!

Effect on OPRF and PSI
In 2128 time,
• OPRF: a corrupt receiver can know

• (RS21) 4.8n random PRF evaluations

• (RR22) 1.26n random PRF evaluations

• (BPSY23) 1.23n random PRF evaluations

• PSI: a corrupt receiver can know membership of
• (RS21) 2.1n random items + n chosen items

• (RR22) 0.237n random items + n chosen items

• Even non-membership information can be a leakage!

• Find our mitigations in the paper!

Effect on OPRF and PSI
In 2128 time,
• OPRF: a corrupt receiver can know

• (RS21) 4.8n random PRF evaluations

• (RR22) 1.26n random PRF evaluations

• (BPSY23) 1.23n random PRF evaluations

• PSI: a corrupt receiver can know membership of
• (RS21) 2.1n random items + n chosen items

• (RR22) 0.237n random items + n chosen items

• Even non-membership information can be a leakage!

• Find our mitigations in the paper!

Effect on OPRF and PSI
In 2128 time,
• OPRF: a corrupt receiver can know

• (RS21) 4.8n random PRF evaluations

• (RR22) 1.26n random PRF evaluations

• (BPSY23) 1.23n random PRF evaluations

• PSI: a corrupt receiver can know membership of
• (RS21) 2.1n random items + n chosen items

• (RR22) 0.237n random items + n chosen items

• Even non-membership information can be a leakage!

• Find our mitigations in the paper!

Effect on OPRF and PSI
In 2128 time,
• OPRF: a corrupt receiver can know

• (RS21) 4.8n random PRF evaluations

• (RR22) 1.26n random PRF evaluations

• (BPSY23) 1.23n random PRF evaluations

• PSI: a corrupt receiver can know membership of
• (RS21) 2.1n random items + n chosen items

• (RR22) 0.237n random items + n chosen items

• Even non-membership information can be a leakage!

• Find our mitigations in the paper!

NewMinicrypt OPRF

VOLE Types

• Silent VOLE
• Used in recent PSI protocols

• Efficient even for large fields

• Structured (dual) LPN assumption

• SoftSpokenVOLE [Roy22]
• Minicrypt assumption

• Only efficient for small fields

• This work: SoftSpokenVOLE + VOLE-PSI→Minicrypt OPRF

VOLE Types

• Silent VOLE
• Used in recent PSI protocols

• Efficient even for large fields

• Structured (dual) LPN assumption

• SoftSpokenVOLE [Roy22]
• Minicrypt assumption

• Only efficient for small fields

• This work: SoftSpokenVOLE + VOLE-PSI→Minicrypt OPRF

VOLE Types

• Silent VOLE
• Used in recent PSI protocols

• Efficient even for large fields

• Structured (dual) LPN assumption

• SoftSpokenVOLE [Roy22]
• Minicrypt assumption

• Only efficient for small fields

• This work: SoftSpokenVOLE + VOLE-PSI→Minicrypt OPRF

OPRF in VOLE-PSI

SenderReceiver

OKVS.Ecd
{(xi, H(xi))}

P

VOLE
~V = ∆ · ~U + ~W

~U, ~V ∆, ~W

~U ′

Define ~W ′ := ~W +∆ · ~U ′

and F∆(x) := H2(x,Dcd(~W
′, x)−∆ ·H(x))

(Locally) compute

H2(xi,Dcd(~V , xi))

OPRF in VOLE-PSI
SenderReceiver

OKVS.Ecd
{(xi, H(xi))}

P

F2`-VOLE

~V

= ∆ ·

~U

+

~W

~U, ~V ∆, ~W

~U ′

Define ~W ′ := ~W +∆ · ~U ′

and F∆(x) := H2(x,Dcd(~W
′, x)−∆ ·H(x))

(Locally) compute

H2(xi,Dcd(~V , xi))

OPRF in VOLE-PSI
SenderReceiver

OKVS.Ecd
{(xi, H(xi))}

P

F2`-VOLE

V =

∆ · U1

∆ · U2

...

+ W

U,V ∆,W

U ′

DefineW ′ := W +∆ · U ′

and F∆(x) := H2(x,Dcd(W
′, x)−∆ ·H(x))

(Locally) compute

H2(xi,Dcd(V, xi))

VOLE→ SoftSpoken-VOLE

SenderReceiver

OKVS.Ecd
{(xi, H(xi))}

P

F2f -VOLE

V = ~∆� U +W

~V1
~V2 · · · =

∆1

~U1

∆2

~U2 · · · + ~W1
~W2 · · ·

U, V ~∆,W

U ′

DefineW ′ := W + ~∆� U ′

and F∆(x) := H2(x,Dcd(W
′, x)− ~∆�H(x))

(Locally) compute

H2(xi,Dcd(V, xi))

Not a simple `/f reps!

(See our paper for details)

VOLE→ SoftSpoken-VOLE

SenderReceiver

OKVS.Ecd
{(xi, H(xi))}

P

F2f -VOLE

V = ~∆� U +W

~V1
~V2 · · · =

∆1

~U1

∆2

~U2 · · · + ~W1
~W2 · · ·

U, V ~∆,W

U ′

DefineW ′ := W + ~∆� U ′

and F∆(x) := H2(x,Dcd(W
′, x)− ~∆�H(x))

(Locally) compute

H2(xi,Dcd(V, xi))

Not a simple `/f reps!

(See our paper for details)

Performance

n = 220 OPRFs Silent Ours (f = 6) [PRTY20] (f = 1)

Comm. (MB) 22.8 32.7 93.6

Time (sec)
5Gbps 0.98 2.74 2.03

100Mbps 4.65 7.78 14.2

Assumption dual-LPN Minicrypt

• Previous best Minicrypt [PRTY20] : ‘f = 1’ of ours
(with minor differences)

• Narrow the gap between Minicrypt & LPN-based one!

Thank you!

References

[PRTY20] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. PSI from PaXoS: Fast,

Malicious Private Set Intersection. Eurocrypt 2020.

[RS21] P. Rindal, and P. Schoppmann. VOLE-PSI: Fast OPRF and Circuit-PSI from

Vector-OLE. Eurocrypt 2021.

[GPRTY21] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. Oblivious

Key-Value Stores and Amplification for Private Set Intersection. Crypto 2021.

[Roy22] L. Roy. SoftSpokenOT: Communication–Computation Tradeoffs in OT

Extension. Crypto 2022.

[RR22] S. Raghuraman, and P. Rindal. Blazing Fast PSI from Improved OKVS and

Subfield VOLE. ACM CCS 2022.

[BPSY23] A. Bienstock, S. Patel, J. Seo, and K. Yeo. Near-Optimal Oblivious Key-Value

Stores for Efficient PSI, PSU and Volume-Hiding Multi-Maps. USENIX Security 2023.

[RRT23] S. Raghuraman, P. Rindal, T. Tanguy. Expand-Convolute Codes for

Pseudorandom Correlation Generators from LPN. CRYPTO 2023.

Acknowledgment

• We appreciate Peter Rindal for valuable comments.

• Some illustrations were created using fontawesome5

(https://fontawesome.com/) free version latex

package.

 https://fontawesome.com/

