Generic Differential Key Recovery Attacks and Beyond

Ling Song, **Huimin Liu**, Qianqian Yang, Yincen Chen, Lei Hu, Jian Weng

ASIACRYPT 2024

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

Background

Preliminaries

New Generic Key Recovery Attacks

Applications

Summary

Outline

Background

Preliminaries

The generic classical rectangle attack The basic differential MITM attack

New Generic Key Recovery Attacks

The generic classical differential attack The generic differential MITM attack The generic rectangle MITM attack Comparison

Applications

Summary

Background

Differential attack

- Differential cryptanalysis was introduced by Biham and Shamir in 1990. [BS90, BS91]
- Find a high-probability differential (Δx, Δy) covering a large number of rounds

the probability of (Δx, Δy) should be higher than 2⁻ⁿ, where n is the block size

Background

Boomerang attack

 Connect two short differentials of high probability to construct a long differential trail

Rectangle attack (Chosen-plaintext variant of boomerang attack)

More common for key recovery attacks

Background

Key recovery

- Structures of data [BS92]
 - ★ Enjoy the birthday effect and potentially attack more rounds without increasing the data complexity
- The probabilistic extensions [SYC⁺24]

Key guessing strategy

- \star The order of guessing key information
- ★ The flexible guessing strategy

Outline

Background

Preliminaries

The generic classical rectangle attack The basic differential MITM attack

New Generic Key Recovery Attacks

The generic classical differential attack The generic differential MITM attack The generic rectangle MITM attack Comparison

Applications

Summary

Preliminaries

The generic classical rectangle attack (GCRA) [SZY⁺22]

► Guess some key bits |k'_b ∪ k'_f| before any quartets are generated

★ r'_b/r'_f : The condition can be verified under the guess of k'_b/k'_f ; ★ $r'_b = r_b - r'_b$; $r'_f = r_f - r'_f$

 Select appropriate parameters |k'_b|, |k'_f| to obtain optimal time complexity

Preliminaries

The basic differential MITM attack(BDMA) [BDD⁺23]

Guess all key information involved in the E_b and E_f parts, respectively

More efficient when the key size of the cipher is bigger than the state size

GCRA. [SZY⁺22] Guess some key bits in advance and adopt the flexible key-guessing strategy

BDMA. [BDD⁺23] Employ a fixed key guessing strategy

Questions:

- Can guessing some key bits in advance affect the time complexity of the differential attack? [YES! the generic classical differential attack(GCDA)]
- Can BDMA be generalized to support any key guessing strategy? [YES! the generic differential MITM attack(GDMA)]
- Can the MITM technique be integrated into GCRA? [YES! the generic rectangle MITM attack(GRMA)]

Outline

Background

Preliminaries

The generic classical rectangle attack The basic differential MITM attack

New Generic Key Recovery Attacks

The generic classical differential attack The generic differential MITM attack The generic rectangle MITM attack Comparison

Applications

Summary

GCDA

- **0**: Generate pairs
- 2: Guess 2-bit key

lower time complexity
reduce the number of pairs

- Based on a distinguisher with probability 2^{-p}
- Data complexity: $D = 2^{p+1}$
- Steps:
 - Guess a part of key information $k'_b, k'_f: T_1 = 2^{|k'_b \cup k'_f|} \cdot D$
 - ▶ For each structure S_i of 2^{r_b} plaintexts, $0 \le i \le 2^{p-r_b+1}-1$:

• Generate
$$2^{2r_b-1+r_f-n-r'_b-r'_f}$$
 pairs;
 $T_2 = 2^{r_b-1+|k'_b\cup k'_f|+r_f-n-r'_b-r'_f} \cdot D$

- Extract the extra key information $k_b^*, k_f^*; T_3 = 2^{|k_b \cup k_f| + p n} \cdot \epsilon$
- The exhaustive search. $T_4 = 2^{k+p-n}$

GCDA

- Combine the MITM technique with the flexible key guessing strategy
- Steps:
 - ▶ For each structure S_i of 2^{r_b} plaintexts, $0 \le i \le 2^{p-r_b+1} 1$:
 - Guess a part of key information k'_b : $T_{1,0} = 2^{|k'_b|} \cdot D$
 - Generate $2^{2r_b-1+r_f-n-r'_b}$ pairs; $T_{2,0} = 2^{r_b-1+|k'_b|+r_f-n-r'_b} \cdot D$
 - Guess a part of key information k'_f : $T_{1,1} = 2^{|k'_f|} \cdot D$
 - Generate $2^{2r_b-1+r_f-n-r'_f}$ pairs; $T_{2,1} = 2^{r_b-1+|k'_f|+r_f-n-r'_f} \cdot D$
 - ► Match Phase. Generate $2^{2r_b-1+r_f-n-r'_b-r'_f}$ pairs; $T_{2,2} = 2^{r_b-1+|k'_b\cup k'_f|+r_f-n-r'_b-r'_f} \cdot D$
 - Extract the extra key information $k_b^*, k_f^*; T_3 = 2^{|k_b \cup k_f| + p n} \cdot \epsilon$
 - The exhaustive search. $T_4 = 2^{k+p-n}$

GRMA

Question:

Can we combine the MITM technique with the rectangle attack?

Answer:

► Yes! The generic rectangle MITM attack (GRMA)

More effective when the ratio k/n is large

- Based on a boomerang distinguisher with probability 2^{-2p}
- Construct y structures, each of 2^{rb} plaintexts
- Data complexity: $D = 2^{n/2+p+1}$
- Steps:
 - Guess a part of key information k'_b : $T_{1,0} = 2^{|k'_b|} \cdot D$
 - Generate $D^2 \cdot 2^{2r_b^*-2}$ quartets; $T_{2,0} = 2^{2r_b^*-2+|k_b'|} \cdot D^2$

• Guess a part of key information k'_f : $T_{1,1} = 2^{|k'_f|} \cdot D$

- Generate $D^4 \cdot 2^{2r_f^* 2n 2} \cdot y^{-2}$ quartets; $T_{2,1} = 2^{|k_f'| + 2r_f^* - 2n - 2 \cdot y^{-2}} \cdot D^4$
- Extract the extra key information k_b^*, k_f^* ; $T_3 = 2^{|k_b \cup k_f|} \cdot D^2 \cdot 2^{-2n-2} \cdot \epsilon$
- The exhaustive search. $T_4 = 2^{k+p-n}$

Achieve a first 38-round attack on SKINNYe-64-256 v2

GRMA

BDMA [BDD⁺23] vs GDMA.

Table: Time Complexities Comparison of BDMA and GDMA

	BDMA		GDMA
T_0	D	=	D
T_1	$(2^{k_f}+2^{k_b})\cdot D$	\geq	$(2^{k_f'}+2^{k_b'})\cdot D$
	_		$D\cdot 2^{ k_b' }\cdot 2^{r_b-1+r_f-n-r_b'}$
T_2	_	\leq	$D\cdot 2^{ k_f' }\cdot 2^{r_b-1+r_f-n-r_f'}$
	_		$D \cdot 2^{ k'_b \cup k'_f } \cdot 2^{r_b - 1 + r_f - n - r'_b - r'_f}$
<i>T</i> ₃	$2^{ k_b \cup k_f -n+p}$	\leq	$2^{ k_b \cup k_f -n+p} \cdot \epsilon$
T_4	2^{k-n+p}	=	2^{k-n+p}

The GDMA can be seen as a generalization of BDMA.

Comparison

GCDA vs GDMA.

Table: Time Complexities Comparison of GCDA and GDMA

- If T_1 is dominant, GDMA outperforms GCDA.
- ▶ If $r'_b \leq |k'_b|$ and $r'_f \leq |k'_f|$, GDMA will not be worse than GCDA.

イロン 不同 とくほど 不良 とうせい

BDMA, GCDA, and GDMA.

When the overall time complexity reaches $2^{|k_b \cup k_f|+p-n}$, there are ways to balance.

- If the exhaustive search time complexity is high, the counting method can be used to select the most likely candidates to test.
- The holistic key guessing strategy can balance T_1 and T_2 .
- If T₃ is large due to a large ε, precomputed tables may help to reduce ε.

Comparison

Figure: The time complexity of three attacks on KATAN-32.

GDMA always performs better than GCDA on KATAN-32.

Comparison

The last part 2^{k-n+p} of BDMA's time complexity is dominant, while GCDA and GDMA can use **the counting method** to reduce it.

Comparison

- GCDA is worse than BDMA and GDMA when T₁ dominants;
- ► GDMA outperforms BDMA, when k_b ∪ k_f is not full key space;
- When $k_b \cup k_f$ reaches full key space, the time complexities of BDMA and GDMA are the same.

Comparison

- $T_1^{BDMA} = 2^{|k_b| + |k_f|} \cdot 2^p;$
- $T_1^{GDMA} = 2^{|k_b'| + |k_f'|} \cdot 2^p;$
- GDMA has a lower time complexity than BDMA [BDD⁺23];
- GDMA adopts flexible key guessing strategy.

Outline

Background

Preliminaries

The generic classical rectangle attack The basic differential MITM attack

New Generic Key Recovery Attacks

The generic classical differential attack The generic differential MITM attack The generic rectangle MITM attack Comparison

Applications

Summary

Applications

AES-256

Attacks on 12-round AES-256

• Based on a 9-round distinguisher with probability $p = 2^{-86}$

Applications

AES-256

Attacks on 13-round AES-256

▶ Based on a 9-round distinguisher with probability $p = 2^{-86}$

- ▶ $|k_b| = 120, |k_f| = 224; |r_b| = 88, |r_f| = 128;$
- $|k'_b| = 16, |r'_b| = 16; |k'_f| = 72, |r'_f| = 8;$
- $\blacktriangleright T_{BDMA} = 2^{342} \times$
- $\blacktriangleright T_{GCDA} = 2^{240}$

Applications

Cipher	Rounds	Data	Time	Memory	Setting	Type				
			2^{214}	2^{89}	RK	$BDMA [BDD^+23]$				
			2^{206}	2^{184}	RK	BDMA $[BDD^+23]$				
	12	2^{89}	2 ¹⁸⁵	2 ⁸⁹	RK	GCDA (Section 4.1)				
			2^{144}	2^{184}	RK	GDMA (Section 4.1)				
AES-200			2^{145}	2^{128}	RK	GCDA (Section 4.1)				
	13	2^{126}	2^{253}	2^{89}	RK	BDMA [BDF23]				
		2^{126}	2^{250}	2^{231}	RK	BDMA [BDF23]				
		2 ⁸⁹	2^{248}	2^{89}	RK	GCDA (Section 4.1)				
		2 ⁸⁹	2 ²⁴⁰	2^{144}	RK	GCDA $(App. A.3)$				
KAMAN 90	115	032	$2^{79.98}$	_	SK	Differential [AL13]				
KAIAN-32	151	2	$2^{79.98}$	2^{38}	SK	BDMA (Section 4.2)				
<u>autumu</u> 64.056 0	37	$2^{62.8}$	$2^{240.03}$	$2^{62.8}$	RK	Rectangle [QDW ⁺ 22]				
SKINNYe-04-200 V2	38	$2^{65.4}$	$2^{251.07}$	$2^{254.8}$	RK	GRMA (Section 4.3)				

Table 1: Summary of the cryptanalytic results. RK: related-key. SK: single-key.

Outline

Background

Preliminaries

The generic classical rectangle attack The basic differential MITM attack

New Generic Key Recovery Attacks

The generic classical differential attack The generic differential MITM attack The generic rectangle MITM attack Comparison

Applications

Summary

Summary

Three generic key recovery attacks

- ★ GCDA: encompassing the previous differential attack with any key guessing strategies
- ★ GDMA: introducing the flexible key guessing strategy into the BDMA
- ★ GRMA: employing the MITM technique into GCRA
- \hookrightarrow A series of improved results

Thank you! Q & A

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

References I

- Christina Boura, Nicolas David, Patrick Derbez, Gregor Leander, and María Naya-Plasencia, <u>Differential meet-in-the-middle cryptanalysis</u>, Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part III (Helena Handschuh and Anna Lysyanskaya, eds.), Lecture Notes in Computer Science, vol. 14083, Springer, 2023, pp. 240–272.
- Eli Biham and Adi Shamir, <u>Differential cryptanalysis of DES-like</u> <u>cryptosystems</u>, Advances in Cryptology - CRYPTO '90, 10th Annual International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990, Proceedings (Alfred Menezes and Scott A. Vanstone, eds.), Lecture Notes in Computer Science, vol. 537, Springer, 1990, pp. 2–21.

Eli Biham and Adi Shamir, <u>Differential cryptanalysis of des-like</u> <u>cryptosystems</u>, Journal of CRYPTOLOGY **4** (1991), 3–72.

References II

- Eli Biham and Adi Shamir, <u>Differential cryptanalysis of the full</u> <u>16-round DES</u>, Advances in Cryptology - CRYPTO '92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings (Ernest F. Brickell, ed.), Lecture Notes in Computer Science, vol. 740, Springer, 1992, pp. 487–496.
- Ling Song, Qianqian Yang, Yincen Chen, Lei Hu, and Jian Weng, Probabilistic extensions: a one-step framework for finding rectangle attacks and beyond, Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2024, pp. 339–367.
- Ling Song, Nana Zhang, Qianqian Yang, Danping Shi, Jiahao Zhao, Lei Hu, and Jian Weng, <u>Optimizing rectangle attacks: A unified and</u> generic framework for key recovery, ASIACRYPT (2022).