Verifiable Secret Sharing from Symmetric Key Cryptography with Improved Optimistic Complexity

Ignacio Cascudo¹ Daniele Cozzo¹ Emanuele Giunta^{1,2}

IMDEA Software Institute, Madrid, Spain. name.surname@imdea.org

Universidad Politecnica de Madrid, Madrid, Spain.

t privacy

 $s \in \mathbb{F}$ and let $\alpha_0, \alpha_1, \dots, \alpha_n \in \mathbb{F}$ be distinct points.

Works over any ring R if $\{\alpha_0, \alpha_1, \dots, \alpha_n\}$ is an **exceptional** set, i.e. $\alpha_i - \alpha_j$ is invertible.

Secret Sharing in general is **not binding** toward the secret:

Secret Sharing in general is **not binding** toward the secret:

Secret Sharing in general is **not binding** toward the secret:

Secret Sharing in general is **not binding** toward the secret:

Issue for applications such as Distributed Key Generation.

Defined by two protocols (Share, Reconstruct) satisfying:

Defined by two protocols (Share, Reconstruct) satisfying:

- **Privacy:** After Share, any set of *t* parties has no information on the shared secret *s*.

Defined by two protocols (Share, Reconstruct) satisfying:

- **Privacy:** After Share, any set of *t* parties has no information on the shared secret *s*.
- Commitment: After Share there exists a unique s such that honest users in Reconstruct obtain s against t corruptions.

Defined by two protocols (Share, Reconstruct) satisfying:

- **Privacy:** After Share, any set of *t* parties has no information on the shared secret *s*.
- Commitment: After Share there exists a unique s such that honest users in Reconstruct obtain s against t corruptions.
- **Strong Commitment:** As before, but after Share honest users also get private shares consistent with *s*.

With honest majority $(n \ge 2t + 1)$ and Synchronous Communication:

With honest majority $(n \ge 2t + 1)$ and Synchronous Communication:

Statistical Security [BCW88, RB89, ...]

- Arithmetic Operations Only
- High Communication: $\Omega(n^2)$
- Information-Theoretic Security

With honest majority $(n \ge 2t + 1)$ and Synchronous Communication:

Statistical Security

[BCW88, RB89, ...]

- Arithmetic Operations Only
- High Communication: $\Omega(n^2)$
- Information-Theoretic Security

PKE-Based

[Fel87, Ped92, Sch99, ...]

- Expensive PKE operations
- Low Communication: O(n)
- Not Post-Quantum

With honest majority $(n \ge 2t + 1)$ and Synchronous Communication:

Statistical Security [BCW88, RB89, ...]

- Arithmetic Operations Only
- High Communication: $\Omega(n^2)$
- Information-Theoretic Security

PKE-Based

[Fel87, Ped92, Sch99, ...]

- Expensive PKE operations
- Low Communication: O(n)
- Not Post-Quantum

SKE/ROM-Based [GRR99, BKP11, ABCP23]

- Cheaper SKE operations
- Plausibly Post-Quantum

With honest majority $(n \ge 2t + 1)$ and Synchronous Communication:

Statistical Security

[BCW88, RB89, ...]

- Arithmetic Operations Only
- High Communication: $\Omega(n^2)$
- Information-Theoretic Security

PKE-Based

[Fel87, Ped92, Sch99, . . .]

- Expensive PKE operations
- Low Communication: O(n)
- Not Post-Quantum

SKE/ROM-Based

[GRR99, BKP11, ABCP23]

- Cheaper SKE operations
- Plausibly Post-Quantum

[ABCP23] **Dealer Computation** $O(n \log n)$ **Dealer Upload** O(n)Worst Case: **Verifier Computation** O(n)Verifier Download O(n) ϑ Active Corruptions: **Verifier Computation** O(n)Verifier Download O(n)

[ABCP23]

Dealer Computation $O(n \log n)$

Dealer Upload O(n)

Worst Case:

Verifier Computation O(n)Verifier Download O(n)

ϑ Active Corruptions:

Verifier Computation
Verifier Download

O(n) O(n)

	[ABCP23]	Our Work
Dealer Computation Dealer Upload	$O(n\log n)$ $O(n)$	$O(n\log n)$ $O(n(\log n)^2)$
Worst Case: Verifier Computation Verifier Download	O(n) O(n)	O(n) O(n)
θ Active Corruptions:Verifier ComputationVerifier Download	O(n) O(n)	$O(\vartheta \log(n)^2)$ $O(\vartheta \log(n)^2)$

Dealer Computation Dealer Upload	$[ABCP23]$ $O(n \log n)$ $O(n)$	Our Work $O(n \log n)$ $O(n(\log n)^2)$
Worst Case: Verifier Computation Verifier Download	O(n) O(n)	O(n) O(n)
θ Active Corruptions:Verifier ComputationVerifier Download	O(n) O(n)	$O(\vartheta \log(n)^2)$ $O(\vartheta \log(n)^2)$

	[ABCP23]	Our Work
Dealer Computation Dealer Upload	$O(n \log n)$ O(n)	$\frac{O(n\log n)}{O(n(\log n)^2)}$
Worst Case: Verifier Computation Verifier Download	O(n) O(n)	O(n) O(n)
ϑ Active Corruptions:		
Verifier Computation	O(n)	$O(\vartheta \log(n)^2)$
Verifier Download	O(n)	$O(\theta \log(n)^2)$

dealer

 $f, b \leftarrow^{\$} \mathbb{F}[x]_t$ with f(0) = s

verifier i

verifier i

[ABCP23]: Construction

[ABCP23]: Construction

[ABCP23]: Construction

 $\textbf{Three} \ \mathsf{Main} \ \mathsf{Steps:}$

Three Main Steps:

1. Commitment to f and b

Three Main Steps:

- 1. Commitment to f and b
- 2. Low Degree Test for $r = f + \mu b$

Three Main Steps:

- 1. Commitment to f and b
- 2. Low Degree Test for $r = f + \mu b$
- 3. Complain Phase

Three Main Steps:

1. Commitment to f and b

⇒ Use a Merkle Tree

- 2. Low Degree Test for $r = f + \mu b$
- 3. Complain Phase

Three Main Steps:

1. Commitment to f and b

- ⇒ Use a Merkle Tree
- 2. Low Degree Test for $r = f + \mu b$ \Rightarrow New Distributed Proof

3. Complain Phase

Three Main Steps:

- 1. Commitment to f and b \Rightarrow Use a Merkle Tree
- 2. Low Degree Test for $r = f + \mu b$ \Rightarrow New Distributed Proof
- 3. Complain Phase ⇒ Use MT Subvector Opening

Three Main Steps:

- 1. Commitment to f and b \Rightarrow Use a Merkle Tree
- 2. Low Degree Test for $r = f + \mu b$ \Rightarrow New Distributed Proof
- 3. Complain Phase ⇒ Use MT Subvector Opening

Correctness: If $(x_1 \dots x_n, w) \in \mathcal{R}$ all honest verifiers accept

Correctness: If $(x_1 \dots x_n, w) \in \mathcal{R}$ all honest verifiers accept

Soundness*: If there exists no z, w with $z_i = x_i$ for all honest V_i and $(z, w) \in \mathcal{R}$, at least one honest verifier rejects w.h.p.

Distributed Proofs: Low Degree

Relation: $(x_1 ... x_n) \in \mathcal{R}_d$ if there exists $f \in \mathbb{F}[x]$ with $\deg(f) \leq d$ and $f(\alpha_i) = x_i$

$$f \in \mathbb{F}[x]_d : f(\alpha_j) = x_j$$

$$f \in \mathbb{F}[x]_d : f(\alpha_j) = x_j$$

$$f \in \mathbb{F}[x]_d : f(\alpha_j) = x_j$$

i-th verifier

$$f(\alpha_i) == \mathbf{x_i}$$

 \triangle $\Omega(d)$ communication and verification.

$$f \in \mathbb{F}[x]_d : f(\alpha_j) = x_j$$

$$f \in \mathbb{F}[x]_d : f(\alpha_j) = x_j$$

$$f \in \mathbb{F}[x]_d : f(\alpha_j) = x_j$$
 π_i is valid and $f(\alpha_i) = x_i$

- ▲ Some PC are non post-quantum [KZG10]
- A Some PC require $\Omega(n^2)$ prover time for multi-point evaluations, such as FRI [BBHR18]

 $f \in \mathbb{F}[x]_d : f(\alpha_j) = x_j$

i-th verifier

$$f \in \mathbb{F}[x]_d : f(\alpha_j) = x_j$$

$$f(x) = g_0(x^2) + x \cdot g_1(x^2)$$

i-th verifier

 $f(x) = g_0(x^2) + x \cdot g_1(x^2)$

 $f(x) = g_0(x^2) + x \cdot g_1(x^2)$

Low Degree Proof: Folding

Sound with at least d+1 honest verifiers.

We describe a [BCS16]-like compiler to make **public-coin** distributed proofs **non interactive**. At the *j*-th round:

- Let $m_{i,1}, \ldots, m_{i,n}$ the prover's **private** messages to $V_1 \ldots V_n$.

- Let $m_{i,1}, \ldots, m_{i,n}$ the prover's **private** messages to $V_1 \ldots V_n$.
- Let M_j the prover's broadcast message.

- Let $m_{j,1}, \ldots, m_{j,n}$ the prover's **private** messages to $V_1 \ldots V_n$.
- Let M_j the prover's broadcast message.
- $R_j = \text{MerkleTree}(m_{j,1}, \dots, m_{j,n}).$

- Let $m_{j,1}, \ldots, m_{j,n}$ the prover's **private** messages to $V_1 \ldots V_n$.
- Let M_j the prover's broadcast message.
- $R_j = \text{MerkleTree}(m_{j,1}, \dots, m_{j,n}).$
- $\mu_j = H(M_1, R_1, \dots, M_j, R_j).$

- Let $m_{j,1}, \ldots, m_{j,n}$ the prover's **private** messages to $V_1 \ldots V_n$.
- Let M_j the prover's broadcast message.
- $R_j = MerkleTree(m_{j,1}, \dots, m_{j,n}).$
- $\mu_j = H(M_1, R_1, \dots, M_j, R_j)$.
- **Send** $(m_{j,i}, \pi_{j,i})$ to V_i with $\pi_{j,i}$ opening of R_j in i.

 $\mathsf{MT}(g_{1,0},g_{1,1})$

 $MT(g_{2,0}, g_{2,1})$

 $MT(g_{3,0}, g_{3,1})$

Conclusion

We presented a new (3-round) **VSS** in the **ROM** secure against t < n/2 corruptions with:

- Sublinear verifier's download and computational complexity in the best case.
- Comparable costs with state of the art VSS [ABCP23] in the worst case.

Thanks for your attention!