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Shamir Secret Sharing

s € F and let ag, a1, ..., a, € F be distinct points.
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Flao) = s dealer
s = f(ao) @ f(o3)
V/
Works over any ring R if {ag,a1,...,a,} is an exceptional

set, i.e. o — q; is invertible.
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Secret Sharing in general is not binding toward the secret:
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Issue for applications such as Distributed Key Generation.
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Verifiable Secret Sharing

Defined by two protocols (Share, Reconstruct) satisfying:
- Privacy: After Share, any set of t parties has no information on
the shared secret s.

- Commitment: After Share there exists a unique s such that
honest users in Reconstruct obtain s against t corruptions.

- Strong Commitment: As before, but after Share honest users

also get private shares consistent with s.
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[ABCP23]: Construction

Com(f(1)) ... Com(f(n))
Com(b(1)) ... Com(b(n))

— (i), b(i
. B (). b(0)

=S

dealer verifier 7
f,b+SF[x], = r(x)=>b(x)+p-f(x) f(i_), b(i) are
with £(0) ='s valid openings

Complain! € (i) = b(i) + pu- £(i)

l—> F(7), b(i)
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Three Main Steps:

1. Commitment to f and b = Use a Merkle Tree
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Distributed Proofs [BBC+19]

x1...);C <

prover

Correctness: If (x1...x,, w) € R all honest verifiers accept

Soundness*: If there exists no z, w with z; = x; for all honest
V; and (z,w) € R, at least one honest verifier rejects w.h.p.
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Distributed Proofs: Low Degree
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Relation: (x;...x,) € Ry if there exists f € F[x] with
deg(f) < d and (o)) = x;
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X1 ... Xp ? — f(x) Xi

prover i-th verifier

felFx]lqg: floy) =X f(aj) == x;

A Q(d) communication and verification.
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Low Degree Proof: Polynomial Commitment

—> Com(f)
X1 ... Xn @ Xij
N \/
— f(a,-), T —

prover i-th verifier

f eF[x]q: f(og) = x; 7 is valid and f(o;) = x;

A Some PC are non post-quantum [KZG10]

A Some PC require Q(n?) prover time for multi-point
evaluations, such as FRI [BBHR18]
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Low Degree Proof: Folding
[—> go(e?), g1(a?) ﬁ

,ue$IF

X1 ... Xp \-/ - @ Xi

deg(go + pg1) < d/2 .
prover i-th verifier

feF[xa: flay) =x x = go(f) + aigi(a?)
f(x) = go(x?) + x - g1(x?)



Low Degree Proof: Folding

{—> (7). gi(a?) ﬁ
Iz 3F
X1 ... Xp ‘N' prove: Xi

deg(go + pg1) < d/2 .
prover i-th verifier

f eF[x]q: fa)) = x; x = go(af) + aig(ef)
F(x) = go(x®) + x - g1(x%)

@ Sound with at least d + 1 honest verifiers.
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Non Interactive Proof in the ROM

We describe a [BCS16]-like compiler to make public-coin
distributed proofs non interactive. At the j-th round:

- Let mj1,..., mj, the prover's private messages to Vi ... V.

Let M; the prover’s broadcast message.
- Ry = MerkleTree(m; 1, ..., mj,).
- MJ — H(M17R17"‘7Mj’ R/)

- Send (mj;, 7 ;) to V; with 7; ; opening of R; in i.
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Low Degree Proof in the ROM

71 gro(ai), gra(ay)

— T2 go(af), ga(af) —
v.¢

3 g3o(at), gz 1(at)

MT(g1,0.81.1)

MT(g2,0,82,1)

MT(gs,0.83,1) 1/2 - log(n)?
~ -log(n
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Conclusion

We presented a new (3-round) VSS in the ROM secure against t < n/2
corruptions with:

- Sublinear verifier's download and computational complexity in
the best case.

- Comparable costs with state of the art VSS [ABCP23] in the

worst case.

Thanks for your attention!

17



