Verifiable Secret Sharing from Symmetric
Key Cryptography with Improved Optimistic
Complexity

Ignacio Cascudo! Daniele Cozzo! Emanuele Giuntal:?

IMDEA Software Institute, Madrid, Spain.
name.surname@imdea.org

Universidad Politecnica de Madrid, Madrid, Spain.

u e
i I e a ‘ a
ey

POLITECNICA

Secret Sharing

&/

b
W

dealer

Secret Sharing

o

dealer

Secret Sharing

2= A

dealer

Secret Sharing

‘ 51
\
Y \/
dealer 2
53
,I K/

t privacy

Secret Sharing

.g. s1
- \
Y \/
dealer
:
,I K/

t privacy t + 1 reconstruction

Shamir Secret Sharing

s € F and let ag, a1, ..., a, € F be distinct points.

\
selF
X4 ‘

dealer

Shamir Secret Sharing

s € F and let ag, a1, ..., a, € F be distinct points.

Shamir Secret Sharing

s € F and let ag, a1, ..., a, € F be distinct points.
P f(a1)
- f(a1)
F
f 3 Flx]: T~ p
dealer (a3)
f(ao) =

Shamir Secret Sharing

s € F and let ag, a1, ..., a, € F be distinct points.

Shamir Secret Sharing

s € F and let ag, a1, ..., a, € F be distinct points.

f 041)

(v)

seF ? () f(a
f S Flx], MM ¥,
@

f 053)

V

Q)

Shamir Secret Sharing

s € F and let ag, a1, ..., a, € F be distinct points.
(v) fla1)
selF
$ N .
f <+]F[X]t
Flao) = s dealer
s = f(ao) @ f(o3)
V/
Works over any ring R if {ag,a1,...,a,} is an exceptional

set, i.e. o — q; is invertible.

Limitations of Secret Sharing

Secret Sharing in general is not binding toward the secret:

Limitations of Secret Sharing

Secret Sharing in general is not binding toward the secret:

Limitations of Secret Sharing

Secret Sharing in general is not binding toward the secret:

.@.
D, / (V) \
s1 - l \ 54 - = __— sy
- "1
? — 5 — 'S ? — S5 — () S
Y ~ \/ \ o Y ~ W, \ =
S3 / 2 s3 D)

Limitations of Secret Sharing

Secret Sharing in general is not binding toward the secret:

g 2
V2N |\ s

gl/ |\S* /51/ /51
- 1
2 A 2@
Y \E \/ \)55 Y \S W, \)Sg
3 /’ 3]
~ _—

/
-

Issue for applications such as Distributed Key Generation.

Verifiable Secret Sharing

Defined by two protocols (Share, Reconstruct) satisfying:

Verifiable Secret Sharing

Defined by two protocols (Share, Reconstruct) satisfying:

- Privacy: After Share, any set of t parties has no information on
the shared secret s.

Verifiable Secret Sharing

Defined by two protocols (Share, Reconstruct) satisfying:
- Privacy: After Share, any set of t parties has no information on
the shared secret s.

- Commitment: After Share there exists a unique s such that
honest users in Reconstruct obtain s against t corruptions.

Verifiable Secret Sharing

Defined by two protocols (Share, Reconstruct) satisfying:
- Privacy: After Share, any set of t parties has no information on
the shared secret s.

- Commitment: After Share there exists a unique s such that
honest users in Reconstruct obtain s against t corruptions.

- Strong Commitment: As before, but after Share honest users

also get private shares consistent with s.

With honest majority (n > 2t 4+ 1) and Synchronous Communication:

With honest majority (n > 2t 4+ 1) and Synchronous Communication:

Statistical Security

[BCW8S, RB89, ...]

- Arithmetic Operations Only

- High Communication: Q(n?)
- Information-Theoretic Security

With honest majority (n > 2t 4+ 1) and Synchronous Communication:

Statistical Security

[BCW8S, RB89, ...]

- Arithmetic Operations Only

- High Communication: Q(n?)

- Information-Theoretic Security

PKE-Based

[Fel87, Ped92, Sch99, ...]

- Expensive PKE operations
- Low Communication: O(n)
- Not Post-Quantum

With honest majority (n > 2t 4+ 1) and Synchronous Communication:

Statistical Security PKE-Based

[BCW8S, RB89, ...] [Fel87, Ped92, Sch99, ...]

- Arithmetic Operations Only - Expensive PKE operations
- High Communication: Q(n?) - Low Communication: O(n)
- Information-Theoretic Security - Not Post-Quantum

SKE/ROM-Based
[GRR99, BKP11, ABCP23]
- Cheaper SKE operations
- Plausibly Post-Quantum

With honest majority (n > 2t 4+ 1) and Synchronous Communication:

Statistical Security PKE-Based

[BCW8S, RB89, ...] [Fel87, Ped92, Sch99, ...]

- Arithmetic Operations Only - Expensive PKE operations
- High Communication: Q(n?) - Low Communication: O(n)
- Information-Theoretic Security - Not Post-Quantum

SKE/ROM-Based
[GRR99, BKP11, ABCP23]
- Cheaper SKE operations
- Plausibly Post-Quantum

Our Results

[ABCP23]

Dealer Computation O(nlog n)
Dealer Upload O(n)

Worst Case:
Verifier Computation O(n)
Verifier Download O(n)

¥ Active Corruptions:
Verifier Computation O(n)
Verifier Download O(n)

Our Results

[ABCP23]

Dealer Computation O(nlog n)
Dealer Upload O(n)

Worst Case:
Verifier Computation O(n)
Verifier Download O(n)

¥ Active Corruptions:
Verifier Computation O(n)
Verifier Download O(n)

Our Results

[ABCP23] Our Work
Dealer Computation O(nlogn) O(nlog n)

Dealer Upload O(n) O(n(log n)?)
Worst Case:
Verifier Computation O(n) O(n)
Verifier Download O(n) O(n)
1 Active Corruptions:
Verifier Computation O(n) O(v log(n)?)
Verifier Download O(n) O(v log(n)?)

Our Results

[ABCP23] Our Work
Dealer Computation O(nlogn) O(nlog n)

Dealer Upload O(n) O(n(log n)?)
Worst Case:
Verifier Computation O(n) O(n)
Verifier Download O(n) O(n)
1 Active Corruptions:
Verifier Computation O(n) O(v log(n)?)
Verifier Download O(n) O(v log(n)?)

Our Results

[ABCP23] Our Work
Dealer Computation O(nlogn) O(nlog n)

Dealer Upload O(n) O(n(log n)?)
Worst Case:
Verifier Computation O(n) O(n)
Verifier Download O(n) O(n)
1 Active Corruptions:
Verifier Computation O(n) O(v log(n)?)
Verifier Download O(n) O(v log(n)?)

[ABCP23]: Construction

o/
2\

X \/

dealer verifier |

[ABCP23]: Construction

3
X4 ‘

dealer verifier |

f,b <3 F[x];
with £(0) =s

[ABCP23]: Construction

Com(f(1)) ... Com(f(n))

| Com(b(1)) ... Com(b(n))
:
Y \/

verifier |

f,b <3 F[x];
with £(0) =

[ABCP23]: Construction

?

\2

=
L

verifier |

f,b <3 F[x];
with £(0) =

[ABCP23]: Construction

?

\2

=
L

verifier |

f,b <3 F[x];
with £(0) =

[ABCP23]: Construction

?

\2

=
L

verifier |

F1b S Flx], —> () = b(x)+ - F(x)
with £(0) =

[ABCP23]: Construction

i), b(i
@ £(i), b(i)
Ve : ‘
=l verifier |
f,b«SF[x], = r(x) = b(x) 4+ w - f(x) £(i), b(i) are

valid openings

r(i) = b(i) + p - £(¥)

with £(0) =

[ABCP23]: Construction

i), b(i
@ £(i), b(i)
Ve : ‘
=l verifier |
f,b«SF[x], = r(x) = b(x) 4+ w - f(x) £(i), b(i) are

valid openings
Complain! € (i) = b(i) + pu- £(i)

with £(0) =

[ABCP23]: Construction

Com(f(1)) ... Com(f(n))
Com(b(1)) ... Com(b(n))

— (i), b(i
. B (). b(0)

=S

dealer verifier 7
f,b+SF[x], = r(x)=>b(x)+p-f(x) f(i_), b(i) are
with £(0) ='s valid openings

Complain! € (i) = b(i) + pu- £(i)

l—> F(7), b(i)

[ABCP23]: Zooming Out

Three Main Steps:

[ABCP23]: Zooming Out

Three Main Steps:

1. Commitment to f and b

[ABCP23]: Zooming Out

Three Main Steps:

1. Commitment to f and b

2. Low Degree Test for r = f + ub

[ABCP23]: Zooming Out

Three Main Steps:

1. Commitment to f and b
2. Low Degree Test for r = f + ub

3. Complain Phase

[ABCP23]: Zooming Out

Three Main Steps:

1. Commitment to f and b = Use a Merkle Tree
2. Low Degree Test for r = f + ub

3. Complain Phase

[ABCP23]: Zooming Out

Three Main Steps:

1. Commitment to f and b = Use a Merkle Tree
2. Low Degree Test for r = f + ub = New Distributed Proof

3. Complain Phase

[ABCP23]: Zooming Out

Three Main Steps:

1. Commitment to f and b = Use a Merkle Tree
2. Low Degree Test for r = f + ub = New Distributed Proof

3. Complain Phase = Use MT Subvector Opening

[ABCP23]: Zooming Out

Three Main Steps:

1. Commitment to f and b = Use a Merkle Tree

2. Low Degree Test for r = f + ub = New Distributed Proof

3. Complain Phase = Use MT Subvector Opening

Distributed Proofs [BBC+19]

W,

W A
NS

0 B 3

prover

{

<
W

Distributed Proofs [BBC+19]

.g. x1
\
XX L @ ou
w "% \/
prover
X3
': K/

Distributed Proofs [BBC+19]

prover

\

13

Distributed Proofs [BBC+19]

prover

\

@
0

{

<
W

Distributed Proofs [BBC+19]

X1...);Z igj <

prover

@
0

{

<
W

Correctness: If (x1...x,, w) € R all honest verifiers accept

Distributed Proofs [BBC+19]

x1...);C <

prover

Correctness: If (x1...x,, w) € R all honest verifiers accept

Soundness*: If there exists no z, w with z; = x; for all honest
V; and (z,w) € R, at least one honest verifier rejects w.h.p.

10

Distributed Proofs: Low Degree

X1 ... Xp @

N4

prover

/
\

1o 3

Relation: (x;...x,) € Ry if there exists f € F[x] with
deg(f) < d and (o)) = x;

11

Low Degree Proof: Direct Test [ABCP23]
X1 ... Xp Xi
N \/

prover i-th verifier

Low Degree Proof: Direct Test [ABCP23]
X1 ... Xp Xi
N \/

prover i-th verifier

felFx]lqg: floy) =X

Low Degree Proof: Direct Test [ABCP23]

X1 ... Xp ? — f(x) Xi

prover i-th verifier

felFx]lqg: floy) =X

Low Degree Proof: Direct Test [ABCP23]

X1 ... Xp ? — f(x) Xi

prover i-th verifier

felFx]lqg: floy) =X f(aj) == x;

Low Degree Proof: Direct Test [ABCP23]

X1 ... Xp ? — f(x) Xi

prover i-th verifier

felFx]lqg: floy) =X f(aj) == x;

A Q(d) communication and verification.

12

Low Degree Proof: Polynomial Commitment
X1 ... Xn @ Xij
) \/

prover i-th verifier

Low Degree Proof: Polynomial Commitment
S .
) \/

prover i-th verifier

f eFx]qg: f(ey) = x

Low Degree Proof: Polynomial Commitment

—> Com(f)
X1 ... Xn @ Xij
) \/

prover i-th verifier

f eFx]qg: f(ey) = x

Low Degree Proof: Polynomial Commitment

28| 000 24 @ Xi
) \/
— f(a,-), T —

prover i-th verifier

f eFx]qg: f(ey) = x

Low Degree Proof: Polynomial Commitment

28| 000 24 @ Xi
) \/
— f(a,-), T —

prover i-th verifier

f eF[x]q: f(og) = x; 7 is valid and f(o;) = x;

Low Degree Proof: Polynomial Commitment

—> Com(f)
X1 ... Xn @ Xij
N \/
— f(a,-), T —

prover i-th verifier

f eF[x]q: f(og) = x; 7 is valid and f(o;) = x;

A Some PC are non post-quantum [KZG10]

A Some PC require Q(n?) prover time for multi-point
evaluations, such as FRI [BBHR18]

13

Low Degree Proof: Folding

X1 ... Xp ‘v' @ Xi
54 '

(PR i-th verifier

Low Degree Proof: Folding

X1 ... Xp Xj
W \/

(PR i-th verifier

f eF[x]q: fa)) = x;

Low Degree Proof: Folding

X1 ... Xp Xj
W \/

prover i-th verifier
f eF[x]q: fa)) = x;
f(x) = go(x*) + x - g1(x?)

Low Degree Proof: Folding

[—> go(a?). g1(af) ﬁ
X1 ... Xp Xj

prover i-th verifier
f eF[x]q: fa)) = x;
f(x) = go(x*) + x - g1(x?)

Low Degree Proof: Folding
[—> go(e?), g1(a?) ﬁ

Iz 3F
X1 ... Xp Xj
% \/
prover i-th verifier
f eF[x]q: fa)) = x;
f(x) = go(x®) + x - g1(x*)

Low Degree Proof: Folding
[—> go(e?), g1(a?) ﬁ

,ue$IF

deg(go + pg1) < d/2 .
prover i-th verifier

f eF[x]q: fa)) = x;
f(x) = go(x?) + x - g1(x?)

Low Degree Proof: Folding
[—> go(e?), g1(a?) ﬁ

,ue$IF

X1 ... Xp \-/ - @ Xi

deg(go + pg1) < d/2 .
prover i-th verifier

feF[xa: flay) =x x = go(f) + aigi(a?)
f(x) = go(x?) + x - g1(x?)

Low Degree Proof: Folding

{—> (7). gi(a?) ﬁ
Iz 3F
X1 ... Xp ‘N' prove: Xi

deg(go + pg1) < d/2 .
prover i-th verifier

f eF[x]q: fa)) = x; x = go(af) + aig(ef)
F(x) = go(x®) + x - g1(x%)

@ Sound with at least d + 1 honest verifiers.

14

Non Interactive Proof in the ROM

We describe a [BCS16]-like compiler to make public-coin
distributed proofs non interactive. At the j-th round:

15

Non Interactive Proof in the ROM

We describe a [BCS16]-like compiler to make public-coin
distributed proofs non interactive. At the j-th round:

- Let mj1,..., mj, the prover's private messages to Vi ... V.

15

Non Interactive Proof in the ROM

We describe a [BCS16]-like compiler to make public-coin
distributed proofs non interactive. At the j-th round:

- Let mj1,..., mj, the prover's private messages to Vi ... V.

- Let M; the prover’s broadcast message.

15

Non Interactive Proof in the ROM

We describe a [BCS16]-like compiler to make public-coin
distributed proofs non interactive. At the j-th round:

- Let mj1,..., mj, the prover's private messages to Vi ... V.
- Let M; the prover’s broadcast message.

- Ry = MerkleTree(mj 1,..., mj p).

15

Non Interactive Proof in the ROM

We describe a [BCS16]-like compiler to make public-coin
distributed proofs non interactive. At the j-th round:

- Let mj1,..., mj, the prover's private messages to Vi ... V.

Let M; the prover’s broadcast message.
- Ry = MerkleTree(m; 1, ..., mj,).
- MJ — H(M17R17"‘7Mj’ R/)

15

Non Interactive Proof in the ROM

We describe a [BCS16]-like compiler to make public-coin
distributed proofs non interactive. At the j-th round:

- Let mj1,..., mj, the prover's private messages to Vi ... V.

Let M; the prover’s broadcast message.
- Ry = MerkleTree(m; 1, ..., mj,).
- MJ — H(M17R17"‘7Mj’ R/)

- Send (mj;, 7 ;) to V; with 7; ; opening of R; in i.

15

Low Degree Proof in the ROM

R/
e\

@

\/

Low Degree Proof in the ROM

MT(g1,0.81.1)

7 \/

MT(gz,O, g2,1)

MT(g3,0,83.1)

Low Degree Proof in the ROM

71 gro(ai), gra(ay)

— T2 go(af), ga(af) —
v.¢

3 g3o(at), gz 1(at)

MT(g1,0.81.1)

MT(g2,0,82,1)

MT(g3‘07 g311)

Low Degree Proof in the ROM

71 gro(ai), gra(ay)

— T2 go(af), ga(af) —
v.¢

3 g3o(at), gz 1(at)

MT(g1,0.81.1)

MT(g2,0,82,1)

MT(gs,0.83,1) 1/2 - log(n)?
~ -log(n

16

Conclusion

We presented a new (3-round) VSS in the ROM secure against t < n/2
corruptions with:

- Sublinear verifier's download and computational complexity in
the best case.

- Comparable costs with state of the art VSS [ABCP23] in the

worst case.

Thanks for your attention!

17

