

Masayuki Abe,

KYOTO UNIVERSITY

Masaya Nanri,

Octavio Perez Kempner

Mehdi Tibouchi

Can Digital Signatures become more flexible?

Digital Signatures

→ Assuring information and issuers' integrity with mathematical technique

Additional Demands

- For easier development of high level security application
- For hiding privacy of credentials

Structure-Preserving Signatures (SPS) and successive tools were developed!

What is SPS and its Extension (SPS-EQ)?

Structure Preserving Signatures [AFG10]

Messages, signatures and verification keys are included in the same pairing groups

Verification uses pairing operation

 \mathbb{G} and $\hat{\mathbb{G}}$: pairing group ordered by p, G and \hat{G} : generators of each group, e: map from $(\mathbb{G},\hat{\mathbb{G}})$ to \mathbb{G}_T $M\in \mathcal{M}\subseteq \mathbb{G}$: messages , $\sigma\in \mathcal{S}\subseteq (\mathbb{G}\times \hat{\mathbb{G}})$: signatures , $(\operatorname{sk},\operatorname{vk})\in (\mathbb{Z}_p^*\times \hat{\mathbb{G}})$: signing keys and verification keys

Verify_{vk}
$$(M, \sigma)$$

$$\prod_{i} e(Y_i, X_j)^{c_{ij}} = 1$$

What is SPS and its Extension (SPS-EQ)?

Structure Preserving Signatures [AFG10]

Messages, signatures and verification keys are included in the same pairing groups

Verification uses pairing operation

Structure Preserving Signatures on Equivalence Class [FHS14]

Signatures can be issued for a certain equivalence class defined over the message space

Anonymizing signatures leads to

Privacy enhanced credentials

Mercurial Signatures [CL19]

Methods in [FHS14] + Key Conversion

 $\underline{\mathsf{Sign}(M,\mathsf{sk})} \to \sigma$

$$\sigma = (Z, Y, \hat{Y}) = \left(\left(\prod_{i=1}^{\ell} M_i^{x_i} \right)^y, G^{\frac{1}{y}}, \hat{G}^{\frac{1}{y}} \right)$$

Verify $(M, \sigma, vk) \rightarrow 0$ or 1

$$\prod_{i=1}^{\ell} e(M_i, \hat{X}_i) = e(Z, \hat{Y}) \land e(Y, \hat{G}) = e(G, \hat{Y})$$

ChangeRep(vk, M, σ , μ) \rightarrow (M', σ')

ConvertSig(vk, M, σ ; ρ) $\rightarrow \tilde{\sigma}$

 $\underline{\mathsf{ConvertVK}(\mathsf{vk}\;;\;\rho)\to\check{\mathsf{vk}}}$

$$\tilde{\mathsf{vk}} = \mathsf{vk}^{\rho} = (\hat{G}^{x_1 \rho}, \dots, \hat{G}^{x_{\ell} \rho})$$

ConvertSK(sk; ρ) $\rightarrow \tilde{sk}$

$$\tilde{\mathsf{sk}} = \mathsf{sk}^{\rho} = (x_1^{\rho}, \dots, x_{\ell}^{\rho})$$

Mercurial Signatures [CL19]

Methods in [FHS14] + Key Conversion

Methods in [FHS14] + Key Conversion

Verify $(M, \sigma, vk) \rightarrow 0 \text{ or } 1$

$$\prod_{i=1}^{\ell} e(M_i(\hat{X}_i)) = e(Z, \hat{Y}) \wedge e(Y, \hat{G}) = e(G, \hat{Y})$$

Verification Key
$$\mathsf{vk} = (\hat{X}_1, ..., \hat{X}_\ell) = (\hat{G}^{x_1}, ..., \hat{G}^{x_\ell})$$

Mercurial Signatures [CL19]

Methods in [FHS14] + Key Conversion

$$\frac{\operatorname{Sign}(M,\operatorname{sk})\to\sigma}{\operatorname{Signing Key}}$$
 Ephemeral Random Value
$$\operatorname{sk}=(x_1,\ldots,x_\ell)$$

$$\sigma=(Z,Y,\hat{Y})=\left(\left(\prod_{i=1}^\ell M_i^{x_i}\right)^{y},\check{\omega}\right)$$

Verify $(M, \sigma, vk) \rightarrow 0$ or 1

$$\prod_{i=1}^{\ell} e(M_i(\hat{X}_i) = e(Z, \hat{Y}) \wedge e(Y, \hat{G}) = e(G, \hat{Y})$$

Verification Key
$$\mathsf{vk} = (\hat{X}_1, ..., \hat{X}_\ell) = (\hat{G}^{x_1}, ..., \hat{G}^{x_\ell})$$

$$\underbrace{\text{ConvertVK}(\text{vk}; \rho) \rightarrow \text{vk}}_{\text{vk}} = (\hat{X}_{1}^{\rho}, \dots, \hat{X}_{\ell}^{\rho})$$

Anonymize Credentials for Privacy

Example case: Alice gives a credential to Bob like PKI

Anonymize Credentials for Privacy

Example case: Alice gives a credential to Bob like PKI

Converting credentials for privacy as a receiver

Anonymize Credentials for Privacy

Example case: Alice gives a credential to Bob like PKI

Adversary wants to find the relation to the credentials

... Who is the issuer of the anonymized signatures?

Problem: Weak unlinkability in Mercurial Signatures

Unlinkability doesn't hold for the corrupted signer

—> The Single malicious signer has chance to trace converted key and signatures

$$\begin{aligned} & \underline{\mathsf{KeyGen}(\mathsf{pp}, \ell(\kappa)) \to (\mathsf{vk}, \, \mathsf{sk})} \\ & \mathsf{sk} = (x_1, \dots, x_\ell) \\ & \mathsf{vk} = (\hat{X}_1, \dots, \hat{X}_\ell) = (\hat{G}^{x_1}, \dots, \hat{G}^{x_\ell}) \end{aligned}$$

 $\underline{\mathsf{ConvertVK}(\mathsf{vk},\,\rho)\to\check{\mathsf{vk}}}$

$$\underline{\hat{\mathbf{vk}}} = \left(\hat{X}_{1}^{\rho}, ... \hat{X}_{\ell}^{\rho}\right)$$

Obviously, this public values are the trigger

Problem: Weak unlinkability in Mercurial Signatures

Unlinkability doesn't hold for the corrupted signer

—> The Single malicious signer can trace converted keys and signatures

$$\begin{aligned} & \underline{\mathsf{KeyGen}}(\mathsf{pp},\mathscr{C}(\kappa)) \to (\mathsf{vk},\,\mathsf{sk}) \\ & \mathsf{sk} = (x_1,\ldots,x_{\mathscr{C}}) \\ & \mathsf{vk} = (\hat{X}_1,\ldots,\hat{X}_{\mathscr{C}}) = (\hat{G}^{x_1},\ldots,\hat{G}^{x_{\mathscr{C}}}) \end{aligned}$$

 $\underline{\mathsf{ConvertVK}(\mathsf{vk},\,\rho)\to \check{\mathsf{vk}}}$

$$\tilde{\mathsf{vk}} = \left(\underline{\hat{X}_{1}^{\rho}, ... \hat{X}_{\ell}^{\rho}}\right)$$

$$ilde{\mathsf{vk}} = (\hat{X}^{
ho}_1, \dots, \hat{X}^{
ho}_\ell)$$
 is in the same class as $\mathsf{vk} = (\hat{G}^{x_1}, \dots, \hat{G}^{x_\ell})$

If and only if $\hat{X}_1^{\rho \cdot \frac{1}{x_1}} = \dots = \hat{X}_{\ell}^{\rho \cdot \frac{1}{x_{\ell}}}$, only the single signer has $\mathbf{sk}^{-1} = \left(\frac{1}{x_1}, \dots, \frac{1}{x_{\ell}}\right)$

Issue: Weak unlinkability makes threat for privacy...

Example case: A gives a credential to B like PKI

Our approach: Splitting the Signer

No one can have the full signing key to trace the conversion

Each party doesn't trust the opponent.

01 | Sequential communication model between Two parties

- It allows 1 party corruption

01 | Sequential communication model between Two parties

- It allows 1 party corruption

02 | Sequential communication model among t out of n parties

- It allows corruption up to t-1 party
- Pre-processing for secret sharing is required

01 | Sequential communication model between Two parties

- It allows 1 party corruption

02 | Sequential communication model among t out of n parties

- It allows corruption up to t-1 party
- Pre-processing for secret sharing is required

03 | Synchronized communication model among t out of n parties

- It allows corruption up to t-1 party
- Broadcast messages with traditional MPC

01 | Sequential communication model between Two parties

- It allows 1 party corruption

02 | Sequential communication model among t out of n parties

- It allows up to t-1 party corruption
- Pre-processing for secret sharing is required

03 | Synchronized communication model among t out of n parties

- It allows up to t-1 party corruption
- Broadcast messages with traditional MPC

Threshold Interactive Mercurial Signatures

$$\underline{\mathsf{TSign}(M,\mathsf{sk})} \to \sigma$$

$$\sigma = (Z, Y, \hat{Y}) = \left(\left(\prod_{i=1}^{\ell} M_i^{x_i} \right)^y, G^{\frac{1}{y}}, \hat{G}^{\frac{1}{y}} \right)$$

ConvertSig(vk,
$$M$$
, σ ; ρ) $\rightarrow \tilde{\sigma}$

ConvertVK(vk;
$$\rho$$
) $\rightarrow v\tilde{k}$

$$\tilde{\text{vk}} = \text{vk}^{\rho} = (\hat{G}^{x_1 \rho}, \dots, \hat{G}^{x_{\ell} \rho})$$

Change Sign to TSign with 2 Party Interactive Protocol

Verification and Conversion method in the original are adapted directly

... To keep the flexibility for applications using Mercurial Signatures

Key is shared additively / Ephemeral Randomness is shared multiplicatively

$$\sigma = \left(\left(\prod_{i=1}^{l} M_{i}^{\underbrace{x_{i}}} \right)^{\underbrace{y}}, \bigoplus_{i=1}^{l} \widehat{w}^{i} \right) \qquad \sum_{i=1}^{l} \underbrace{x_{i}}_{i} \rightarrow x_{i}^{0} + x_{i}^{1}$$

$$\underbrace{y}_{i} \rightarrow y_{0} \cdot y_{1}$$

$$\underbrace{(x_{i}^{0}, y_{0})}_{(x_{i}^{1}, y_{1})}$$

This multiplicative sharing makes easier to add randomness one by one in the Sequential stream

Key is shared additively / Ephemeral Randomness is shared multiplicatively

$$\sigma = \left(\left(\prod_{i=1}^{l} M_{i}^{(x_{i})} \right)^{y}, \bigoplus_{i=1}^{l} \widehat{\mathcal{C}}^{1} \right) \qquad \sum_{i=1}^{l} \underbrace{X_{i}^{0} \rightarrow X_{i}^{0} + X_{i}^{1}}_{(y_{i}) \rightarrow y_{0} \cdot y_{1}} \qquad \sum_{i=1}^{l} \underbrace{X_{i}^{0} \rightarrow X_{i}^{0} + X_{i}^{1}}_{(x_{i}^{0}, y_{0})} \qquad \underbrace{X_{i}^{0} \rightarrow X_{i}^{0} + X_{i}^{0}}_{(x_{i}^{0}, y_{0})} \qquad \underbrace{X_{i}^{0} \rightarrow X_{i}^$$

This multiplicative sharing makes easier to add randomness one by one in the Sequential stream

Blinded Computation

··· Blinding local computation using other party's random factor

Naive protocol

$$P_0: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_0 = \{x_i^0\}_{i \in [\ell]}$$

$$P_1: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_1 = \{x_i^1\}_{i \in [\ell]}$$

$$Z_0 = \prod_{i=1}^{\ell} M_i^{x_i^0}$$

 Z_0

$$y_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*, Y_1 = G^{\frac{1}{y_1}}, \hat{Y}_1 = \hat{G}^{\frac{1}{y_1}}$$
 $Z_1 = \left(Z_0 \cdot \prod_{i=1}^l M_i^{x_i^1}\right)^{y_1}$

$$Z_1, Y_1, \hat{Y}_1$$

$$y_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*, Y = Y_1^{\frac{1}{y_0}}, \ \hat{Y} = \hat{Y}_1^{\frac{1}{y_0}}$$

$$Z = Z_1^{y_0}$$

Return $\sigma = (Z, Y, \hat{Y})$

Problem: Naive protocol

$$P_0: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_0 = \{x_i^0\}_{i \in [\ell]}$$

$$P_1: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_1 = \{x_i^1\}_{i \in [\ell]}$$

$$Z_0 = \prod_{i=1}^{\ell} M_i^{x_i^0}$$

 Z_0 is computed with only deterministic values

$$y_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*, Y_1 = G^{\frac{1}{y_1}}, \hat{Y}_1 = \hat{G}^{\frac{1}{y_1}}$$

$$Z_1 = \left(Z_0 \cdot \prod_{i=1}^l M_i^{x_i^1}\right)^{y_1}$$

$$Z_1, Y_1, \hat{Y}_1$$

$$y_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*, Y = Y_1^{\frac{1}{y_0}}, \ \hat{Y} = \hat{Y}_1^{\frac{1}{y_0}}$$

$$Z = Z_1^{y_0}$$

Return
$$\sigma = (Z, Y, \hat{Y})$$

It makes a difficulty for setting secure simulator

It is required to blind Z_0 without harming protocol

Final protocol 1/4

$$P_0: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_0 = \{x_i^0\}_{i \in [\ell]}$$

$$P_1: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_1 = \{x_i^1\}_{i \in [\ell]}$$

$$y_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*, \ Y_0 = G^{\frac{1}{y_0}}, \ \hat{Y}_0 = \hat{G}^{\frac{1}{y_0}}$$

$$Y_0, \hat{Y}_0, \pi_0^{(1)}$$

Commitment of y_0 (using ZK)

Return
$$\sigma = (Z, Y, \hat{Y})$$

Return
$$\sigma = (Z, Y, \hat{Y})$$

Final protocol 2/4

$$P_0: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_0 = \{x_i^0\}_{i \in [\ell]}$$

$$P_1: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_1 = \{x_i^1\}_{i \in [\ell]}$$

$$y_0 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*, Y_0 = G^{\frac{1}{y_0}}, \hat{Y}_0 = \hat{G}^{\frac{1}{y_0}}$$

$$Y_0, \hat{Y}_0, \pi_0^{(1)}$$

$$K_1, \pi_1^{(1)}$$

$$r \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*, \ y_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$$

$$K_1, \pi_1^{(1)}$$
 $K_1 = Y_0^r \cdot \prod_{i=1}^{\ell} M_i^{x_i^1}, Y = Y_0^{\frac{1}{y_1}}, \hat{Y} = \hat{Y}_0^{\frac{1}{y_1}}$

Commitment of y_1 (using ZK)

Partial signature is blinded with $Y_0^r = G^{\frac{r}{y_0}}$

Return
$$\sigma = (Z, Y, \hat{Y})$$

Return
$$\sigma = (Z, Y, \hat{Y})$$

Final protocol 3/4

$$P_{0}: M = \{M_{i}\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \mathsf{sk}_{0} = \{x_{i}^{0}\}_{i \in [\ell]} \qquad P_{1}: M = \{M_{i}\}_{i \in [\ell']} \in (\mathbb{G})^{\ell} \quad \mathsf{sk}_{1} = \{x_{i}^{1}\}_{i \in [\ell']}$$

$$y_{0} \overset{\$}{\leftarrow} \mathbb{Z}_{p}^{*}, \ Y_{0} = G^{\frac{1}{y_{0}}}, \ \hat{Y}_{0} = \hat{G}^{\frac{1}{y_{0}}} \qquad Y_{0}, \hat{Y}_{0}^{(1)}$$

$$r \overset{\$}{\leftarrow} \mathbb{Z}_{p}^{*}, \ y_{1} \overset{\$}{\leftarrow} \mathbb{Z}_{p}^{*} \qquad K_{1} = Y_{0}^{r} \cdot \prod_{i=1}^{\ell} M_{i}^{x_{i}^{1}}, \ Y = Y_{0}^{\frac{1}{y_{1}}}, \ \hat{Y} = \hat{Y}_{0}^{\frac{1}{y_{1}}} \qquad Z_{0} = \left(K_{1} \cdot \prod_{i=i}^{\ell} M_{i}^{x_{i}^{0}}\right)^{y_{0}} \qquad Z_{0}, \pi_{0}^{(2)}$$

Partial signing and randomizing

Expansion...
$$Z_0 = G^{\frac{r}{y_0} \cdot y_0} \cdot \left(\prod_{i=1}^{\ell} M_i^{x_i^0 + x_i^1} \right)^{y_0}$$

Return $\sigma = (Z, Y, Y)$

Return $\sigma = (Z, Y, \hat{Y})$

Final protocol 4/4

$$\begin{split} \mathbf{P}_0 : M &= \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \mathsf{sk}_0 = \{x_i^0\}_{i \in [\ell]} \\ y_0 &\stackrel{\$}{\leftarrow} \mathbb{Z}_p^*, \ Y_0 = G^{\frac{1}{y_0}}, \ \hat{Y}_0 = \hat{G}^{\frac{1}{y_0}} \\ &\qquad \qquad Y_0, \ \hat{Y}_0, \ \pi_0^{(1)} \\ &\qquad \qquad r \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*, \ y_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^* \\ &\qquad \qquad K_1, \ \pi_1^{(1)} \qquad K_1 = Y_0^r \cdot \prod_{i=1}^{\ell} M_i^{x_i^1}, \ Y = Y_0^{\frac{1}{y_1}}, \ \hat{Y} = \hat{Y}_0^{\frac{1}{y_0}} \\ &\qquad \qquad Z_0 = \left(K_1 \cdot \prod_{i=i}^{\ell} M_i^{x_i^0}\right)^{y_0} \\ &\qquad \qquad Z_0, \ \pi_0^{(2)} \\ &\qquad \qquad Z = \left(Z_0 \cdot G^{-r}\right)^{y_1} \quad \mathsf{Return} \ \ \sigma = (Z, Y, \hat{Y}) \end{split}$$

Return $\sigma = (Z, Y, \hat{Y})$

Offsetting blinded part and randomizing

Expansion...
$$Z = \left(G^{r-r} \cdot \prod_{i=i}^{\ell} M_i^{x_i^0 + x_i^1}\right)^{y_0 y_1}$$

Signing Oracle Simulation : Corrupted P_0

Corr. Sim. with Sign(sk, \cdot) $P_1: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_1 = \{x_i^1\}_{i \in [\ell]}$ $P_0: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_0 = \{x_i^0\}_{i \in [\ell]}$ $Y_0, \hat{Y}_0, \pi_0^{(1)}$ $(Z', Y', \hat{Y}') \leftarrow \text{Sign}(\text{sk}, M)$ $(Y_0, \hat{Y}_0, \pi_0^{(1)}) \leftarrow \mathcal{A}(\mathsf{st})$ $K_1 \stackrel{\$}{\leftarrow} \mathbb{G}, \ Y \leftarrow Y', \ \hat{Y} \leftarrow \hat{Y}'_0$ $K_1, \pi_1^{(1)} \qquad \pi_1^{(1)} \leftarrow \mathsf{ZKPoK} . \mathsf{Sim}(Z_1, Y_0, M)$ $(Z_0, \pi_0^{(2)}) \leftarrow \mathcal{A}(\mathsf{st}, K_1, \pi_1^{(1)})$ $Z_0, \pi_0^{(2)}$ $Z \leftarrow Z' \quad \sigma = (Z, Y, \hat{Y})$ $\pi_1^{(2)} \leftarrow \mathsf{ZKPoK} \cdot \mathsf{Sim}(Z, Z_0, Y, Y_0)$ Return $\sigma = (Z, Y, \hat{Y})$ Return $\sigma = (Z, Y, \hat{Y})$

Signing Oracle Simulation : Corrupted P_1

Sim. with Sign(sk, \cdot)

Corr.

$$\mathsf{P}_0: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \mathsf{sk}_0 = \{x_i^0\}_{i \in [\ell]}$$

$$P_1: M = \{M_i\}_{i \in [\ell]} \in (\mathbb{G})^{\ell} \quad \text{sk}_1 = \{x_i^1\}_{i \in [\ell]}$$

$$(Z', Y', \hat{Y}') \leftarrow \mathsf{Sign}(\mathsf{sk}, M)$$

$$Y_0 \leftarrow Y', \ \hat{Y}_0 \leftarrow \hat{Y}'$$

$$\pi_0^{(1)} \leftarrow \mathsf{ZKPoK} \cdot \mathsf{Sim}(Y_0, \hat{Y}_0)$$

$$Y_0, \hat{Y}_0, \pi_0^{(1)}$$

$$K_1, \pi_1^{(1)}$$

$$Y_0, \hat{Y}_0, \pi_0^{(1)}$$

$$K_1, \pi_1^{(1)} \qquad (K_1, \pi_0^{(1)}) \leftarrow \mathcal{A}(\mathsf{st}, Y_0, \hat{Y}_0, \pi_1^{(1)})$$

$$r \leftarrow \mathsf{ZKPoK} \cdot \mathsf{Ext}(\pi_1^{(1)}); \ Z_0 \leftarrow Z'G^r$$

$$\pi_0^{(2)} \leftarrow \mathsf{ZKPoK} \cdot \mathsf{Sim}(Z_0, K_1, M, Y_0)$$

$$Z_0, \pi_0^{(2)}$$

$$\sigma$$
, $\pi_1^{(1)}$

$$(\sigma, \pi_0^{(1)}) \leftarrow \mathcal{A}(\mathsf{st}, Z_0, \pi_0^{(2)})$$

Return
$$\sigma = (Z, Y, \hat{Y})$$

Return
$$\sigma = (Z, Y, \hat{Y})$$

Comment for Extension

01 | Sequential communication model between Two parties

- It allows 1 party corruption

02 | Sequential communication model among t out of n parties

- It allows up to t-1 party corruption
- Pre-processing for secret sharing is required

03 | Synchronized communication model among t out of n parties

- It allows up to t-1 party corruption
- Broadcast messages with traditional MPC

Challenge for Extension

To construct the simulator for intermediators, another blinding trick is required

Challenge for Extension

To construct the simulator for intermediators, another blinding trick is required

··· Zero-Sharing over Public Channel (including pre-processing phase)

Performance of Measurement

The cost is proportional to the size of the message and the number of parties

Scheme	# of Parties	Message Size 2	Message Size 5	Message Size 10
Mercurial Signatures [FHS19]	1	0.3	0.4	0.5
Sequential Communication in Two Parties	2	3.9	6.2	10.1
Sequential Communication in t out of n	5	13.3	19.3	29.6
Sequential Communication in t out of n	10	28.0	40.8	60.5

(Unit: millisecond)

Conclusion

Contribution of our work

- > Extension for Mercurial Signatures for Distributed Parties (with threshold)
 - 1. Provides distributed trust of the root authority for delegatable credential system
 - 2. Improves privacy for standard anonymous credentials

> Implementation of our scheme to show its reasonable cost

Future Direction

- > More Applications
 - ... e.g. Delegatable Anonymous Credentials System
- > Stronger security
 - ... e.g. Asynchronous and non-erasable Communication Model, Security for Adaptive Corruption

Thank you for listening

The latest version of our paper (https://eprint.iacr.org/2024/625)
Artifact of Implementation is accepted by IACR